
Toward Representation Independent Similarity Search
Over Graphs

Yodsawalai
Chodpathumwan
University of Illinois

ychodpa2@illinois.edu

Arash Termehchy
Oregon State University

termehca@eecs.oregonstate.edu

Yizhou Sun
Northeastern University
yzsun@ccs.neu.edu

Amirhossein Aleyasin
University of Illinois

aleyase2@illinois.edu

Jose Picado
Oregon State University

picadolj@eecs.oregonstate.edu

ABSTRACT
Finding similar entities over data graphs is an important
problem with many applications. Current similarity search
algorithms use intuitively appealing heuristics that leverage
the link information in the data graph to quantify the de-
gree of similarity between its entities. In this paper, using
examples from real-world data sets, we show that people
represent the same information using data graphs with dif-
ferent shapes. We argue that in order for a similarity search
algorithm to be usable and effective, it should be repre-
sentation independent: it should return essentially the
same answers for a query over different graphs that represent
the same information. We formalize this property and show
that the outcome of current similarity search algorithms de-
pend highly on data representation. Hence, they may be
effective on some datasets and ineffective over others. We
also perform an empirical study and analyze the sensitivity
of current methods against changes in data representation.
Our results indicate that the output of these algorithms are
highly affected by changes in data representation.

1. INTRODUCTION
Finding similar entities in graph databases is an important

and popular information need with applications in many do-
mains, such as Web, social networks, and scientific data [3,
4, 7]. In the last decade, as data sets became more het-
erogeneous and complex, the difficulty of this task multi-
plied [3, 4]. Since the properties of similar entities cannot
be precisely defined in a query, current similarity search al-
gorithms use intuitively appealing heuristics that leverage
information about the links between entities to choose, from
among all possible answers, those that are most similar to
the input entity. These heuristics normally implement the
idea that similar entities are strongly connected via links in
the database.
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For example, a user may want to find similar movies in
IMDb (imdb.com), which contains information about movies,
actors and directors (see fragment in Figure 1a). With
no traditional query available, Data exploration algorithms
leverage the concept of proximity to find strong relationships
in the data [3, 4, 6]. They quantify the proximity between
entities by, among other heuristics, computing the length of
the shortest path between them, computing their PageRank
score in the node-pair graph (SimRank), or the probability
that a random walk with restart (RWR) leads from one to
the other. For instance, if a user asks for movies that are
similar to Casino Royale, since the RWR score and Sim-
Rank of Golden Compass (RWR-score = 0.063, SimRank-
score = 0.196) are larger than that of Mask of Zorro or Green
Lantern (RWR-score = 0.041, SimRank-score = 0.141) , an
algorithm might rank them in that order and report them
as being similar to Casino Royale.

The power of similarity search algorithms remains out of
the reach of most users, however, as today’s similarity search
algorithms and tools are usable only by trained data ana-
lysts who can predict which algorithms are likely to be ef-
fective for particular queries and datasets, or who are able
to customize these algorithms to satisfy their information
needs over a new dataset. To see why, consider the excerpts
of Freebase (freebase.com) in Figure 1b. Freebase contains
facts about entities and their relationships, harvested mainly
from Wikipedia. IMDb and Freebase use different repre-
sentations to express the same relationship between Casino
Royale and Golden Compass. If a data exploration algo-
rithm uses a proximity-based heuristic, such as RWR or Sim-
Rank, to pick out closely related entities, it will find Casino
Royale more closely related to Mask of Zorro and Green
Lantern (RWR-score = 0.024, SimRank-score = 0.070) than
to Golden Compass (RWR-score = 0.016, SimRank-Score =
0.064) in Figure 1b.

Furthermore, an algorithm that leverages edge distances
to compute proximity will also deliver a different ranking be-
tween the two databases in Figure 1 because Casino Royale
and Golden Compass are relatively far apart in Figure 1b
than in Figure 1a. Therefore, a data exploration algorithm
that successfully discovers a strong relationship between Casino
Royale and Golden Compass in IMDb may not find the same
relationship interesting over Freebase, without further cus-
tomization.

More generally, there is no canonical or ideal structure for
representing a particular set of content. For instance, many
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Figure 1: Fragments of IMDb (imdb.com) and Freebase (freebase.com) databases.

researchers use DBLP (dblp.uni-trier.de), a publicly avail-
able bibliographical database about computer science publi-
cations, to validate and evaluate their algorithms. We have
observed that different researchers often represent DBLP
data differently. Figure 2 shows two different ways DBLP
data was organized in two papers in premier conferences
in data management and mining [4, 7]. However, one may
change term to year in [4] and get two schemas of DBLP
that represents the same information.

Expert customization may be well worth the expense for
data sets as popular as IMDb and Freebase, but will not be
affordable for the masses of users who would like to draw
insights from data in the long tail, i.e., originating from less
popular sources, or created by merging and mashing data
from multiple sources. For similar reasons, current similarity
search algorithms will not be well suited for Big Data, which
is inherently heterogeneous.

To the best of our knowledge, the problem of represen-
tation independence has not previously been defined and
explored for algorithms over graph data. Our contributions
in this paper are as follows.

• We introduce and formally define the property of general-
ity for similarity search algorithms over graph databases.
We introduce a family of information preserving trans-
formations over graph data and define the property of
generality for similarity search algorithms as robustness
under these transformations.

• We empirically study the generality of some widely used
similarity search algorithms. Our results indicate that
modifying representation of the data considerably affects
the results of these algorithms.

This paper is organized as follows. Section 2 describes the
related works, Section 3 formally defines the property of gen-
erality for similarity search algorithms. Section 4 contains
our empirical results, and Section 5 concludes the paper.

2. RELATED WORK
Database researchers envisioned the desirable property

of logical data independence from the early days [1]. This
property requires a database management system to return
the same answers for a relational query no matter what
schema is chosen for the data. Our recent work on design-
independent query answering algorithms extended the con-
cept of logical data independence to apply to keyword queries
over XML data [5]. This paper, however, introduces and
studies the concept of generality for similarity search algo-
rithms over graph databases. Because graph data model is

more complex than XML data model, one cannot simply ex-
tend the notion of design independence from XML for graph
databases. Further, the task of entity similarity search has a
different semantic than the one of keyword search and there-
fore requires different algorithms. Current entity similarity
search algorithms also differ from keyword query methods.

Paper

Term Venue

Author

(a) DBLP schema from [4].

Paper
Author

Conference

Year

(b) DBLP schema from [7].

Figure 2: Different schemas for DBLP data set.

3. INFORMATION EQUIVALENT GRAPHS
We model a database as a graph D = (V,E,L,A), where

V is the set of nodes in the graph, E is the set of edges be-
tween members of V , and L andA respectively assign a label
and an optional data value (e.g., a string) to all the mem-
bers of V . Figure 1a and 1b show fragments of two graph
databases. In some databases, such as graph representations
of RDF, some nodes may not have any value. A query for an
entity similarity search algorithm over database D(V,E, L,A)
is defined as q = (v) where v ∈ V and asks for similar nodes
to v in the database. We call v a query node. An example of
a query over graph database fragment shown in Figure 1a is
(film: Mask of Zorro). A similarity search algorithm returns
a ranked list of nodes as the answer for a query. We denote
the result of query q over D as q(D).

Database transformations have been used to formally cap-
ture the relationships between different choices of structure
in terms of the amount of information they can contain [2].
A transformation T over database D is a function that
modifies D to generate a new database T (D). Transforma-
tion T is invertible if and only if there is a transformation
T−1 such that T−1(T (D)) = D. That is, we can reconstruct
the information available in the original database given the
transformed database. If there is an invertible transforma-
tion from database D1 to D2 and from D2 to D1, D1 and
D2 essentially represent the same information [2]. We call
such databases information equivalent.

We further restrict the properties of an invertible transfor-
mation to satisfy the requirements and settings of similarity
search algorithms. An invertible transformation may intro-



duce or eliminate finite number of data items in a way that
is recoverable using its inverse [2]. For example, one can de-
fine transformation U and its inverse U−1 over a database as
in Figure 1a such that U replaces all occurrences of Daniel
Craig with Alan Dan and U−1 replaces all occurrences of
Alan Dan with Daniel Craig. However, to get the same an-
swers for query s: Find actors similar to Daniel Craig over
the original and transformed databases, we must modify s
to Find actors similar to Alan Dan. We want our similarity
algorithms to be sufficiently general that users do not have
to drastically modify their queries over different representa-
tions of the same information. For that reason, we consider
only the transformations, which leave the values stored in
the database intact. Since similarity search algorithms of-
ten treat the labels of nodes as their types, it is natural for
an information preserving transformation T to map nodes
of the same type in original database D to nodes from the
same types in the transformed database T (D).

Definition 1. An invertible transformation T that maps
database D1(V1, E1,L1,A1) to database D2(V2, E2,L2,A2)
is information preserving iff there is a total and surjective
relation R between nodes with values in D1 and D2 such
that

• Nodes e and R(e) have equal values.

• If we have L1(e1) = L1(e2), then L2(R(e1)) = L2(R(e2)).

Transformations that add or remove duplicate values from
databases and preserve their information contents, e.g. database
normalization and denormalization, are very frequently used
in data processing. Thus, Definition 3 allows for the (de-
)duplications of nodes in a database. Figures 3a(a) and
3a(b) illustrate fragments of two representations of DBLP
database that are organized according to the schemas in
Figures 2(a) and 2(b), respectively. The transformation be-
tween two databases duplicates the conference nodes in Fig-
ure 3a(a). It is easy for the query interface to check and
remove duplicates in their answers.

If an information preserving transformation (de-)duplicates
some nodes in the database, it is hard to translate the queries
that ask about similar entities to (de-)duplicated nodes from
the original to the transformed database. For instance, there
is only one conference node with value PVLDB in Figure 3a(a)
but there are more than one such node in Figure 3a(b).
Hence, it is not clear how to translate query conference:PVLDB
over Figure 3a(a) to a query over Figure 3a(b). A similarity
search algorithm may deliver a different result for each con-
ference:PVLDB node over Figure 3a(b). Hence, we further
limit information preserving transformations to be able to
translate similarity queries over equivalent databases. We
show all nodes with values in database D whose labels be-
long to set F ⊆ L(D) as F (D).

Definition 2. An information preserving transformation
T that maps D1(V1, E1,L1,A1) to D2(V2, E2,L2,A2) is query
preserving w.r.t. L1 ⊆ L1(D1) and L2 ⊆ L2(D2) iff there is
a bijective mapping M : L1(D1)→ L2(D2) such that

• Nodes e and M(e) have equal values.

• If L1(e1) = L1(e2), we have L2(M(e1)) = L2(M(e2)).

Generally, users are mainly interested in only a subset of la-
bels for their queries. For instance, users of a movie database
are mostly interested in finding similar actors or movies

rather than similar countries. A query preserving trans-
formation T w.r.t. L1 and L2, over database D, provides
a bijective mapping between all potential queries in D and
T (D) that preserves value and label information. Hence, it
is possible to submit essentially same queries over databases
D and T (D). By the abuse of notation, we denote the query
over T (D) that is mapped to q as T (q). D1(V1, E1,L1,A1)
and D2(V2, E2,L2,A2) are query equivalent (equivalent for
short) w.r.t. L1 ⊆ L1(D1) and L2 ⊆ L2(D2) iff there is a
query preserving transformation from D1 to D2 w.r.t. L1

and L2 and a query preserving transformation from D2 to
D1 w.r.t. L2 and L1. Next, we define this notion of gener-
ality formally as follows.

Definition 3. A similarity search algorithm A is general
iff given query q and T (q) over equivalent database D and
T (D), respectively, there is one-to-one mapping M between
q(D) and T (q)(T (D)) where

• If e ∈ q(D) and M(e) ∈ T (q)(T (D)), we have M(e) =
T (e).

• Node e ∈ q(D) appears before node f ∈ q(D) iff node
M(e) ∈ T (q)(T (D)) appears before node M(f) ∈ T (q)(T (D)).

4. EXPERIMENTS
Datasets and Query Workload: We have empirically
studied the generality of widely used similarity search algo-
rithms on two real world datasets: IMDb and DBLP. Since
the computation of SimRank is extremely inefficient over
large data graphs, we select a sample of of IMDb and DBLP
datasets. The IMDb dataset consists of the movies pro-
duced in US from 2000-2012 with the rating of at least 6.0
(1038 nodes), their directors (846 nodes), top 100 actors
who played in them, and their characters (2864 nodes). We
construct a data graph of IMDb using the schema shown
in Figure 1a and then transform it according to Figure 1b.
The DBLP dataset consists of 22 database, data mining,
and AI conferences during 2008-2012, their years, 100 most
prolific authors of these conferences, and 2341 papers. We
construct a graph for DBLP using the schema similar to Fig-
ure 2a, with term replaced by year, namely DBLP-1. We
then transform DBLP-1 to a new graph, called DBLP-2,
according to a schema shown in Figure 2b. Figure 3b illus-
trates this transformation over a fragment of DBLP data.
We randomly select 30 actors for IMDb and 30 authors for
the DBLP datasets as queries.
Similarity Methods and Parameters We compare the
similarity ranking between the original data graph and a
transformed data graph using Random Walk with Restart,
SimRank, and PathSim. For RWR and SimRank, we use
a decay factor C = 0.8. For PathSim, we use a meta-path
AMA in IMDb and ASMSA in Freebase where A, C, M ,
and S refer to actor, character, movie, and starring, respec-
tively. We use APCPA and ACA as a meta-path in DBLP-1
and DBLP-2 respectively where A is author, C is conference
and P is paper.
Evaluation Metric: We adapt Kendall’s tau metric to
measure the difference between two ranked list. The met-
ric penalizes a list if an answer occurs in a position that is
different from its position in another list. Since each query
may yield different sets of answers, we assume the missing
elements from a list are ranked at the end of the other list.
With this modification, each query can yield a different num-



Y :2011 C:PVLDB Y :2010 C:ICDM Y :2006

P :PATHSIM
P :Graph Query

P :Tree Mining

A:Han A:Zhao A:Yu

(a)

Y :2011
A:Han Y :2010 A:Zhao

Y :2006

A:Yu

C:PVLDB C:PVLDB C:ICDM

P :PATHSIM P :Graph Query P :Tree Mining

(b)

Figure 3: Transformation of a fragment of a DBLP. Labels A, C, Y and P are author, conference, year and paper, respectively.

ber of candidate answers. We normalized Kendall’s tau by
dividing it by its maximum value, n(n − 1)/2, where n is
the total number of unique elements in the two lists. If the
two lists are identical, the measurement is 0. If one list is a
reverse of the other list, then the measurement is 1. Further-
more, ranking methods generally returns too many answers
but users usually focus more on top ranked answers. We per-
form the measurement over the top 10 and top 50 answers
for each query.
Results:According to the formal definitions in section 3,
the transformation for IMDb and Freebase are equivalent
w.r.t. actor, and DBLP-1 and DBLP-2 are equivalent w.r.t.
author. Table 1 shows the average ranking difference of
top 10 and top 50 answers between equivalent representa-
tions of IMDb adn DBLP. None of the previously discussed
methods are general under the transformations used in this
experiment. RWR ranks the answers according to the de-
gree distributions of nodes in the graph. All transformations
in our experiment change the degree distribution, thus, the
RWR computes a different score for each answer and return
different rankings over equivalent databases. For example,
RWR finds “Meryl Streep” to be more similar to the query
actor “Nicolas Cage” than “Morgan Freeman” in IMDb, but
it ranks “Morgan Freeman” higher than “Meryl Streep” in
Freebase. In DBLP dataset, RWR finds“Christos Faloutsos”
to be more similar to “Philip S. Yu” than “Jure Leskovec”
in DBLP-1, but it finds the opposite in DBLP-2. SimRank
usually prefers nodes with highly skewed degree distribu-
tions. Adding new nodes or new edges to the graph modify
these values. Thus, the rankings returned by SimRank varies
across original and transformed datasets. For example, Sim-
Rank ranks “Brian Cox” as the most similar actor to “Matt
Demon” in IMDb but it ranks “George Clooney” the highest
in Freebase. It ranks “Philip S. Yu” highest for query “W.
Bruce Croft” in DBLP-1 but selects “Fabio Crestani” as the
most similar author to “W. Bruce Croft” in DBLP-2.

PathSim is not general under the transformations on both
IMDb and DBLP dataset. For example, PathSim finds“Mag-
gie Gyllenhaal” to be the most similar actor to “Nicolas
Cage” in Freebase, but returns “Michael Shannon” as the
most similar actor to “Nicolas Cage” in IMDb. This dif-
ference is due to the fact that “Nicolas Cage” has played
multiple roles in some films. IMDb graph contains only one
path between a movie and each of its actors regardless of
the number of roles the actor has in that movie. However,
in Freebase, the number of paths between a movie and each
of its actors is more than one as the path between actor and
movie passes through a starring node which is repeated once
per each character that the actor played in the movie. For
instance, if an actor has played two characters in a movie,
there are two paths between that actor and the movie in
Freebase. As PathSim uses the number of paths between

IMDb (10) IMDb (50) DBLP (10) DBLP (50)
RWR 0.375 0.204 0.773 0.718

SimRank 0.418 0.264 0.626 0.673
PathSim 0.375 0.110 0.953 0.688

Table 1: Average ranking difference for top 10 and 50 an-
swers over IMDb and DBLP.

two nodes to compute their similarities it return different
results over these equivalent databases. Since DBLP-2 con-
tains some duplicate nodes, the number of paths between
some entities are larger in DBLP-2 than the number of paths
between the same entities in DBLP-1. For instance, Path-
Sim finds “Philip S. Yu” to be the most similar author to
“Jiawei Han” in DBLP-1, but it finds “Charu C. Aggarwal”
to be the most similar one to “Jiawei Han” in DBLP-2.

5. CONCLUSION AND FUTURE WORK
We introduced the problem of representation independent

similarity search over graph data and proposed a formal
framework to measure the degree of representation indepen-
dence for a similarity search algorithm. We analyzed and
empirically studied the representation independence of some
widely used similarity search algorithms and show that al-
though some of these methods may be more representation
independent than others, none of them are representation in-
dependent. We plan to leverage our formal framework and
findings in order to develop a more general similarity search
algorithm over graph data.
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