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ABSTRACT
Iterative computations are in the core of large-scale graph process-
ing. In these applications, a set of parameters is continuously re-
fined, until a fixed point is reached. Such fixed point iterations
often exhibit non-uniform computational behavior, where changes
propagate with different speeds throughout the parameter set, mak-
ing them active or inactive during iterations. This asymmetrical
behavior can lead to a many redundant computations, if not ex-
ploited. Many specialized graph processing systems and APIs exist
that run iterative algorithms efficiently exploiting this asymmetry.
However, their functionality is sometimes vaguely defined and due
to their different programming models and terminology used, it is
often challenging to derive equivalence between them.

We describe an optimization framework for iterative graph pro-
cessing, which utilizes dataset dependencies. We explain several
optimization techniques that exploit asymmetrical behavior of graph
algorithms. We formally specify the conditions under which, an
algorithm can use a certain technique. We also design template
execution plans, using a canonical set of dataflow operators and
we evaluate them using real-world datasets and applications. Our
experiments show that optimized plans can significantly reduce ex-
ecution time, often by an order of magnitude. Based on our ex-
periments, we identify a trade-off that can be easily captured and
could serve as the basis for automatic optimization of large-scale
graph-processing applications.

1. INTRODUCTION
Iterations are inevitably in the heart of many graph-parallel al-

gorithms. Commonly, in these algorithms, the task is to iteratively
refine the values of the graph vertices, until a termination condition
is satisfied. In each iteration, new values of the vertices are com-
puted, using an update function. The algorithm terminates when
some convergence criterion is met.

Many iterative graph algorithms expose non-uniform behavior,
where changes propagate at different speeds across iterations. Ex-
amples include any algorithm that contains some kind of an itera-
tive refinement process. Ideally, one would like to detect this phe-
nomenon and stop the computation early for the inactive parts. This
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would allow the system to avoid redundant computation and com-
munication. Applying this simple optimization requires detecting
inactive vertices and identifying the parts for which computation
can halt. However, one must examine how, halting computation for
some vertices, could potentially affect the correctness of the com-
putation for the rest of them. In other words, even if inactive parts
can be accurately identified, it might not always be possible to halt
computation for these parts and still obtain correct results.

To clarify these issues, we use the single source shortest paths
(SSSP) algorithm. Consider the graph of Figure 1, where S is the
source, the weights on the edges represent distances, i is the iter-
ation counter and the values in the boxes show the distance com-
puted for each vertex after each iteration. In this example, the al-
gorithm is refining the distances of vertices from the source vertex
S. In each iteration, a vertex receives new candidate distances from
its incoming-neighbors, selects the minimum of these candidates
and its current value, adopts this minimum as the new value and
then propagates it to its out-going neighbors (in a vertex-centric
programming model). For this problem, it is trivial to detect the
vertices that have reached convergence; the ones whose value does
not change between two consecutive iterations (shown in gray in
Figure 1). It is also easy to see that if we halt computation for these
vertices (i.e. the vertices do not send or receive any values), the fi-
nal result will still be correct. For example, in iteration 3, the value
of A does not need to be recomputed. Moreover, A does not need
to propagate its distance to B or C again. Any future distances they
will compute can only be equal or lower than their current values.

Even though the way to apply this optimization to SSSP may
seem obvious, it cannot be easily generalized for all similar algo-
rithms. Consider that the given graph is part of a web graph and the
task is to iteratively compute PageRank on this graph. In its sim-
plest form, during one iteration of PageRank, a vertex computes its
new rank by summing up the weighted ranks of all of its incoming-
neighbors. If we try to apply the previously described optimization
in this case, and assuming that vertex A converges in iteration 3,
then during this iteration, vertex C will only receive the weighted
ranks of vertices B and D, sum them up and therefore compute an
incorrect value (missing A’s contribution).

A large number of highly-specialized systems for large-scale it-
erative and graph processing have emerged [8, 9, 11], while there
also exist general-purpose analysis systems with support for itera-
tions [6,12,13]. Specialized systems are usually designed to exploit
dataset dependencies, in order to efficiently execute applications
and avoid redundant computations. General-purpose systems of-
ten do not match the specialized systems in performance, as they
typically do not embody sophisticated optimizations for graph pro-
cessing. Each system requires computations to be expressed using
different programming abstractions and it is not always trivial to
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Figure 1: An Example Execution of SSSP

derive a mapping from one model to another. Pregel [9], for exam-
ple, uses the vertex model and defines that if a vertex does not re-
ceive any messages during an iteration, it becomes deactivated and
does not execute or produce messages in the subsequent superstep.
GraphLab [8] realizes similar behavior with its adaptive execution
mechanism. However, it is left to the developer to decide when it
is safe to deactivate vertices or halt parts of the computation. This
requires the user to understand both models and to carefully verify
the correctness of the algorithm.

In this work, we present an overview of general optimizations
for graph processing, in the presence of asymmetrical behavior in
computations. We study the characteristics of several iterative tech-
niques and we describe what these characteristics mean and how
they can be safely exploited, in order to derive optimized algo-
rithms. More importantly, we give the necessary conditions un-
der which, it is safe to apply each of the described optimizations,
by exploiting problem-specific properties. We use general-purpose
dataflow operators to create template optimized execution plans,
which can detect converged parts and avoid redundant computa-
tions, while providing functionality equivalent to this of Pregel and
GraphLab. We evaluate the optimizations using two characteristic
iterative algorithms, Connected Components and PageRank. We
present extensive experiments using real-world datasets of varying
sizes. We show that optimized algorithms can yield order of mag-
nitude gains compared to the naive execution. Our contributions
can serve as the foundation for building a cost-based optimizer that
would relieve the programmer from the burden of manually exploit-
ing asymmetry.

The contributions of this paper are the following:

1. A categorization of optimizations for fixed point iterative
graph processing, using a common mathematic model.

2. A formal description of the necessary conditions under which
the relevant optimizations can be safely applied.

3. A mapping of the optimization techniques to existing graph
processing abstractions.

4. An implementation of template optimized execution plans,
using general data-flow operators.

5. An experimental evaluation of the optimizations, using a com-
mon runtime.

The rest of this paper is organized as follows. In Section A we intro-
duce the notation used throughout this document. In Section 2 we
present four different iteration techniques. We describe the condi-
tions, under which, each technique can be used and we make a con-
nection between the described optimizations and existing graph-
processing systems. We also describe the implementation of each
technique as a template execution plan, while we present our ex-
perimental results in Section 3. We discuss related work in Section
4 and conclude in Section 5.

2. GRAPH ITERATION TECHNIQUES
We use common graph notation to explain the different iteration

techniques. Let G (V,E) be an invariant directed graph, where V
is the set of vertices and E is the set of directed edges. We also
define the following auxiliary problem constructs:

• the solution set, containing the values of all vertices in V .

• the dependency set, containing the in-neighbors of a vertex
vj and

• the out-dependency set, containing the out-neighbors of vj .

In the SSSP example of Figure 1, the initial solution set would
be S1 = {0, na, na, na, na} and the final solution set would be
S4 = {0, 3, 4, 6, 7}. The dependency sets for each vertex would
be DS = ∅, DA = {S}, DB = {S,A}, DC = {A,B,D} and
DD = {B} and the out-dependency sets US = {A,B}, UA =
{B,C}, UB = {C,D}, UC = ∅ and UD = {C}, respectively.

If F is the update function defined over the domain of the values
of the vertices of the iteration graph, F is decomposable and has a
fixed point, then we can compute the fixed point by executing the
following procedure: Si+1 := F (Si, D) until Si+1 = Si.

Next, we describe four graph iteration techniques. We introduce
the general bulk technique and then describe three possible opti-
mizations. For each optimization, we give the necessary condi-
tions, under which the optimization is safe. We provide a proof of
equivalence with the general-purpose technique in the Appendix.

2.1 The Bulk Technique
During a bulk iteration, all the elements of the solution set S are

recomputed, by applying the update function f to the result of the
previous iteration. In the end of each iteration, S is updated with
the newly computed values. The algorithm terminates when none
of the values of the solution set changes, i.e. the newly computed S
in iteration i is identical to the solution set of the previous iteration.

An implementation of the bulk processing model, using com-
mon data-flow operators is shown in Figure 2(a). The solution set
S contains the vertices of the input graph and the dependency setD
contains directed edges (in case of an undirected graph, each edge
appears twice, covering both dependencies). In each iteration, the
set of vertices is joined with the set of edges to produce the de-
pendencies of each vertex. For each match, a record is emitted,
having the target vertex as key. Then, records with the same key
are grouped together and the update function is applied. The newly
computed values are emitted and then joined with the previous val-
ues in order to update the solution set and check the convergence
criterion.

2.2 The Dependency Technique
In the bulk case, a value of a vertex, when recomputed, may pro-

duce the same result as the one of the previous iteration. This may
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Figure 2: Graph processing techniques as data flow plans.

Iteration Technique Equivalent to Bulk? Vertex Activation Vertex Update
Bulk n/a always using values of all in-neighbors
Dependency always if any in-neighbor is updated using values of all in-neighbors
Incremental f idempotent and weakly monotonic if any in-neighbor is updated using values of changed in-neighbors
Delta f is linear over composition operator if any in-neighbor is updated using values of changed in-neighbors

Table 1: Iteration Techniques Equivalence

happen because (a) either none of the values in the dependency set
of the vertex has changed since the previous iteration or (b) apply-
ing the update function to the changed values happens to return an
identical result. Ideally, we would like to only recompute the values
of the vertices that are guaranteed to change value during an itera-
tion. Instead, we can exploit the dependency set to safely select the
vertices that are likely to change value in the next iteration.

We introduce two auxiliary sets, the workset W and the candi-
date set Z. In each iteration, W stores the vertices which have
changed value since the last iteration and Z stores the candidate
vertices for recomputation. In other words, Z contains the vertices
whose at least one in-neighbor has changed value during the last
iteration. Z is essentially an overestimation of the ideal set of ver-
tices that are guaranteed to require recomputation.

The intuition behind this algorithm is that if a vertex of the itera-
tion graph changes value, then, all its out-neighbors are likely to be
affected by this change. On the other hand, if none of the depen-
dencies of a vertex changes value, it is safe to exclude this vertex
from the next computation, since recomputing the update function
on the same arguments, would return an identical result.

An implementation of the dependency processing model is shown
in 2(b). The worksetW is isomorphic to the solution set S and con-
tains only the records corresponding to the vertices that changed
value during the previous iteration. W is joined with the depen-
dency set to generate candidates, emitting a record with the target
vertex id as the key for each match. The candidate vertices for re-
computation are grouped to remove duplicates and joined with the
dependency set on target vertex id, producing a subset of the depen-
dency set. The resulting set serves as input to a subplan equivalent
to the previously described bulk model, which only recomputes the
new values of the vertices, whose at least one input changed during
the previous iteration. The last join operator, only emits records
containing vertices that changed values back to the workset.

2.3 The Incremental Technique
In some cases, the dependency technique can be further opti-

mized. Specifically, if the function fj is of the form fj = t1 t
t2 t · · · t · · · tn, where t1, t2, · · · tn represent independent contri-
butions and fj is distributive over the combination operator t, then
we can optimize by only computing fj on the changed values of the
dependency set in each iteration and then, combine the result with
the previous value. For example, if t is the identity function and
the combination operator isminimum, then fj = min(t(Dj)) =
t(min(Dj)). In the graph of Figure 1, the value of node B depends
on the values of nodes S and A, thus, DB = {S,A}. Then, fB =
min(t(value(S)), t(value(A))) = t(min(value(S), value(A))) =
min(value(S), value(A)). In the Appendix, we prove that, if f is
also idempotent and weakly monotonic, then the combination can
be reduced to applying fj to the previous value and the partial re-
sult. Returning to the SSSP example, minimum is also idempo-
tent (min(a, a) = a) and also weakly monotonic, since, for a ≤ a′
and b ≤ b′, min(a, b) ≤ min(a′, b′).

The incremental technique uses the introduced above workset
W , which, in every iteration, contains the elements of S that changed
value since the last iteration and the candidates set Z, which con-
tains the candidate elements for recomputation. Its implementation
using common data-flow operators is shown in Figure 2(c). This
execution plan takes W as input, which stores only the vertices
with changed values. First, the workset is joined with the depen-
dency set to generate the candidate set Z. The result is grouped by
key and the update function is applied to each group. After the new
values have been computed, only the parameters whose value has
changed are emitted into the workset.

2.4 The Delta Technique
Ideally, for each change δx in the input, we would like to have an

efficient function δF , such that: F (x⊕ δx) = F (x)⊕ δF (x, δx)
where ⊕ is a binary composition operator. In this ideal scenario,



we could propagate only the differences of values, or deltas, from
each iteration to the next one. That would potentially decrease the
communication costs and make the execution more efficient. How-
ever, there are two major factors one has to consider. First, it might
not always be the case that computing δF (x, δx) is more efficient
than simply computing F (x ⊕ δx). Moreover, even if we are able
to find an efficient δF , combining its result with F (x) could still
prove to be a costly operation. In the special case where the up-
date function f is linear over the composition operator ⊕, then
F (x ⊕ δx) = F (x) ⊕ F (δx), in which case we can use the same
function f in the place of δf .

For example, if f = sum(D), this optimization is applicable.
Let us assume that Di = {a, b} and Di+1 = {a′, b}, where a′ =
a+ δa. Then, f i+1 = sum(a′, b)⇒ f i+1 = sum(a+ δa, b)⇒
f i+1 = sum(a, b, δa) = sum(f i + δa).

A data-flow execution plan implementing the delta technique is
shown in Figure 2(d). In this plan, only the differences of values
are propagated to the workset.

Table 1 summarizes the equivalence among the different tech-
niques and the conditions for safely applying each optimization.

2.5 Iteration Techniques in Iterative and Graph
Processing Systems

In the Pregel [9] model, an iteration corresponds to one super-
step. The vertex-centric Pregel model naturally translates to the in-
cremental iteration technique. The vertices receive messages from
neighboring vertices and compute their new value using those mes-
sages only. The candidates set Z can be seen as maintaining the
subset of the active vertices for the next superstep. The delta it-
eration technique can be easily expressed using the vertex-centric-
model, if vertices produce deltas as messages for their neighbors.
To emulate a bulk iteration in the Pregel model, vertices simply
need to transfer their state to all their neighbors, in every iteration.
Vertices would remain active and not vote to halt, even if they do
not have an updated state. Finally, emulating the dependency iter-
ation in Pregel is not that trivial, since vertices in Pregel can only
send messages to their out-neighbors. However, in the dependency
technique, if a vertex is candidate for recomputation, it needs to ac-
tivate all its in-coming vertices, therefore, it needs to send them a
message. A way around this would be to add a pre-processing step,
where all vertices send their ids to their out-neighbors. Then, when
a vertex receives messages from the in-neighbors, it can use the
ids to create auxiliary out-going edges to them. The computation
could then proceed by using a three-step superstep as one depen-
dency iteration: during the first step, vertices with changed values
produce messages for their out-neighbors. During the second step,
vertices that receive at least one message are candidates for recom-
putation and produce messages for all their in-neighbors, while the
rest of the vertices become inactive. In the third step, the candidates
for recomputation receive messages from all their in-neighbors and
update their value.

GraphLab’s [8] programming abstraction consists of the data
graph, an update function and the sync operation. The data graph
structure is static, similar to what we assume for the dependency
set. GraphLab introduces the concept of the scope of a vertex,
which is explicitly declared and refers to the set of values of a ver-
tex and its neighbors. This scope corresponds to the dependency set
in the bulk and dependency techniques and to the intersection of the
dependency set of a vertex and the workset, in the incremental and
delta iterations. Therefore, all four algorithms can be implemented
by GraphLab, by computing the appropriate scopes.

PowerGraph [7] is a graph processing system for computation
on natural graphs. It introduces the Gather-Apply-Scatter (GAS)

System Bulk Dependency Incremental Delta
Pregel ** *** * **
GraphLab * * ** **
GraphX ** *** * **
Powergraph * *** * *
Stratosphere * ** * **

Table 2: Iteration Techniques in Graph and Iterative systems.
*: provided by default, **: can be easily implemented, ***:
possible, but non-intuitive

abstraction, which splits a program into these three phases. During
the gather phase, a vertex collects information from its neighbor-
hood, which then uses during the apply phase to update its value.
During the scatter phase, the newly computed values are used to up-
date the state of adjacent vertices. The GAS abstraction can be used
to implement both the Bulk and the Incremental iteration plans,
while the Delta plan is equivalent to PowerGraph’s delta caching
mechanism. The model does not intuitively support the dependency
technique. However, it can be implemented in a similar way to the
three-step superstep described for Pregel.

GraphX [12] is a graph processing library built on top of Spark
[13], in order to efficiently support graph construction and transfor-
mation, as well as graph parallel computations. The programming
model of GraphX is equivalent to that of Pregel and PowerGraph.

Stratosphere [2, 3] supports flexible plans in the form of a Di-
rected Acyclic Graph (DAG) of operators. Iterations are imple-
mented in Stratosphere as composite operators, which encapsulate
the step function and the termination criterion. The implementation
of the Bulk and the Incremental algorithms are described in [6].
Nevertheless, all of the algorithms described above can be easily
implemented in Stratosphere.

Table 2 summarizes the support of each technique in popular
graph processing and iterative systems. Most of the existing sys-
tems implement the bulk technique by default and special imple-
mentations of operators to support the delta optimization. These
models assume that the update function has the required charac-
teristics, or that it can be easily re-written, in order to fulfill the
required conditions and, therefore, usually do not expose the im-
plementation of an equivalent to the more general dependency tech-
nique. Indeed, it is usually trivial to derive an incremental or delta
version of a typical aggregate update function. Apart from the cases
when an incremental/delta version of the update function cannot be
easily derived, the dependency technique can prove to be beneficial
in cases when the properties of the update function are not known
to the user, for example, if the function used belongs to an external
library and the user has no access to its source code.

3. EXPERIMENTS
In this Section, we evaluate optimization strategies for graph

processing, by examining two popular iterative algorithms. We
implement the applications in Stratosphere [2, 3], an open-source
general-purpose framework for large-scale data analysis, which has
operators for common processing tasks, such as mapping, group
and join. In [6], it is shown that Stratosphere iterations are com-
parable in performance with Spark and Giraph, even without using
the optimizations discussed in this paper.

Our setup consists of an OpenStack cluster, using 9 virtual ma-
chines, each having 8 virtual CPUs, 16 GB of memory and 170 GB
of disk space. Nodes run Linux Ubuntu 12.04.2 LTS OS.

We evaluate the performance of two iterative algorithms, Con-
nected Components and PageRank. The update function of the
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Connected Components algorithm (minimum) satisfies the condi-
tions of the incremental technique. Therefore, we implement this
application using the Bulk, Incremental and Dependency plans. We
execute the Connected Components plans using datasets from [1].
The update function of PageRank (summation of partial ranks) sat-
isfies the conditions of the delta technique. Therefore, we imple-
ment this application using the Bulk, Delta and Dependency plans.
Initial deltas can be derived from the difference between the uni-
form initial rank and the in-degree proportional rank. We execute
the PageRank plans using datasets from SNAP [1] and the Labora-
tory for Web Algorithmics respectively [4, 5].

3.1 Results
Figure 3 shows the number of elements that actually change

value in each iteration, for both the Connected Components and
PageRank experiments. If this behavior is not accounted for, a lot
of redundant computations will be performed. We also observe
that the intensity of the phenomenon differs among datasets and
depends on the dependency graph properties and the algorithm.

In Figures 4 and 5, we present execution time measurements
for the Connected Components and PageRank algorithms, respec-
tively. In each figure, we have plotted the execution time per it-
eration for the Bulk, Dependency and Incremental or Delta plan
implementations. As expected, the time for all Bulk iterations is
quite stable throughout the execution, for all the cases examined.
Regarding the Dependency plan, we observe that in the first few
iterations, it is consistently less efficient than the Bulk plan. This
is due to the fact that the Dependency plan first needs to identify
the candidate elements for recomputation and retrieve their depen-
dencies. This pre-processing step imposes an overhead compared
to the Bulk execution. When the amount of elements in the work-
set is close to the total amount of elements in the solution set, the
overhead of the pre-processing is larger than the time saved by up-
dating less elements. In the case of the Connected Components,
the Dependency plan outperforms the Bulk plan in later iterations,
for both the Livejournal and Friendster datasets. For the Livejour-
nal dataset (Figure 4(a)), the execution time of the Dependency
plan drops significantly after iteration 7. As seen in Figure 3, it is
this iteration that the elements in the workset also greatly decrease.
Regarding the Friendster dataset (Figure 4(b)), the execution time
of the Dependency plan outperforms the Bulk plan after iteration
8, but its cost remains more or less stable until convergence, due
to the much slower decrease rate of the workset elements, as seen
in Figure 3. In the case of PageRank, we observe similar behav-
ior for the Livejournal and Wikipedia datasets in Figures 5(a) and
5(b). The Dependency plan cost keeps decreasing as the workset
is shrinking across iterations. Regarding the Twitter dataset, Fig-
ure 5(c) shows that the overhead of the pre-processing step remains
dominant in the Dependency execution, during all iterations. This

is in accordance to Figure 3, where we observe a much smaller de-
cline in the workset size of the Twitter dataset, compared with the
other datasets.

Unsurprisingly, the Incremental and Delta plans match the Bulk
plan performance during the first iterations, while they significantly
outperform it as the workset shrinks. In all cases, the optimized
plans outperform the Bulk plan by an order of magnitude or more,
as iterations proceed. Finally, we observe that the Delta plan always
performs better than both the Bulk and the Dependency plans and
its cost continuously decreases.

Our experiments show that the Incremental and Delta plans save
a lot of redundant computations and should always be preferred
over Bulk plans. However, these plans can be used only when the
update function of the algorithm satisfies the conditions described
in Section 2 for the incremental and the delta techniques respec-
tively. What is more interesting to examine is when and how the
more general Dependency plan can be used to speed up total exe-
cution time. Our results show that there is a trade-off that depends
on the size of the workset. We intend to build a cost model that
will be able to capture the overhead of the Dependency plan over
the Bulk plan. We plan to use this cost model and the results of our
analysis to build a cost-based optimizer to choose the most efficient
iteration plan, at runtime.

4. RELATED WORK
To the best of our knowledge, no directly related work exists

that categorizes and formalizes optimizations for large-scale graph
processing. GraphX [12] is the work closest to ours. Like us,
the authors realize that graph computations can be expressed us-
ing common relational operators, including joins and aggregations.
Regarding optimizations, the system supports incremental compu-
tation, by maintaining a replicated vertex view, in memory. Our
proposed execution plans are more general and do not rely on main-
taining views, in order to implement incrementalization.

Delta and Incremental optimizations have been used in several
other systems as well. REX [10] is a system for recursive, delta-
based data-centric computation, which uses user-defined annota-
tions to support incremental updates. It allows explicit creation of
custom delta operations and lets nodes maintain unchanged state
and only compute and propagate deltas. The system optimizer
discovers incrementalization possibilities during plan optimization,
while the user can also manually add delta functions to wrap oper-
ators, candidates for incrementalization. Naiad [11] is a stream
processing framework which supports computation on arbitrarily
nested fixed points. Naiad assumes a partial order, keeps a times-
tamped full-version history and responds to additions and subtrac-
tions of records by maintaining state.

5. CONCLUSIONS AND FUTURE WORK
In this work, we present a taxonomy of optimizations for iter-

ative fixpoint algorithms. We describe ways to exploit asymmet-
rical behavior to implement optimized execution plans. We offer
proof of equivalence between different approaches and we provide
a mapping to existing iterative and graph processing programming
models. We implement template execution plans, using common
dataflow operators and we present experimental evaluation, using
a common runtime. Our results demonstrate order of magnitude
gains in execution time, when the optimized plans are used.

In the future, we plan to design a cost model to accurately predict
the cost of subsequent iterations. Then, using information about the
changed elements in the current iteration, a cost-based optimizer
could be used to choose the most efficient execution plan, at run-
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time. We also intend to extend our proposed iteration plans to more
general iterative algorithms. We plan to implement a set of itera-
tive applications and compare performance with other iterative and
graph processing systems.
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APPENDIX
A. NOTATION

An instance of a fixed point iteration problem consists of the
following constructs:
• A solution set S = {x1, x2, ..., xn}, which contains a finite

number of variables xj , for which we want to reach conver-
gence. The problem is considered solved when all variables
converge to their final values, so that none of the values in the
set is affected by a subsequent iteration.
• An update function F : domain(xj) → domain(xj), de-

composable to partial functions f1, f2, ...fn, for computing
each xj ∈ S, where domain(xj) is the domain of values in
which xj are defined and j ∈ [1, n].
• A dependency set D = {D1, D2, ..., Dn}, where Dj ⊆ S,

describes the dependency relation of element xj on other el-
ements of S and j ∈ [1, n]. Dj therefore contains the ele-
ments of S on which the computation of xj’s value depends.
In other words, Dj contains the elements of S which appear
on the right hand side of the function f j .

From the dependency setD, we derive the auxiliary out-dependency
set, U = {U1, U2, ..., Un}, where U j ⊆ S. U contains the ele-
ments of S whose values depend on xj and is formally defined as
U j = {xk | xk ∈ S andxj ∈ Dk}, j, k ∈ [1, n]. In the rest of
this paper we assume familiarity with standard set notation. In-
dices k, j are used to refer to elements of S and its subsets, while
index i is used to denote an instance of a construct during the i-th
iteration.

B. PROOFS
PROPOSITION 1. The Dependency Algorithm is equivalent to

the Bulk Algorithm.
PROOF. We prove this statement using the method of contra-

diction. Let us assume that the two algorithms are not equivalent.
Then, there exists an initial input set S0 and a function f for which
the two algorithms converge to different solution sets. Let us as-
sume that the algorithms give identical partial solution sets until
iteration i, but the results diverge in iteration i + 1. If Si+1

b is
the partial solution set produced by the execution of the Bulk Algo-
rithm and Si+1

w is the partial solution set produced by the execution
of the Dependency Algorithm after iteration i+1, there should exist
at least one element that is different in the two sets.

Since W is a subset of S, that would mean that the Dependency
Algorithm failed in identifying all the vertices that required recom-
putation during iteration i, i.e. there exist xij,b ∈ Si

b, xi+1
j,b ∈ S

i+1
b ,

xij,z ∈ Si
w, xi+1

j,w ∈ S
i+1
w , such that

xij,b 6= xi+1
j,b (1)

and

xij,w = xi+1
j,w (2)

From the relations 1 and (4.1.1) we can derive the following rela-
tion:

fj(D
i−1
j ) 6= fj(D

i
j)

From the relations 2 and (4.2.1) we can derive the following rela-
tion:

fj(D
i−1
j ) = fj(D

i
j)

and we have therefore arrived at a contradiction.

PROPOSITION 2. If fj is of the form fj = t1 t t2 t · · · t
· · · tn, where t1, t2, · · · tn represent independent contributions to
the value of fj , i.e. fj is distributive over the combination oper-
ator t and fj is also idempotent and weakly monotonic, then the
Incremental Algorithm is equivalent to the Bulk Algorithm.

PROOF. Let xij be the value of an element of S in iteration i.
Since fj is distributive over t and idempotent then xij = fj(t1 t
t2t· · ·t· · · tn) = fj(T ttn), where T = t1 t t2t· · ·t· · · tn−1.
Let us assume that during iteration i, only tn changed value and
therefore

xi+1
j = fj(T t t′n) (3)

Since fj is idempotent,

fj(tn, tn) = tn

and

fj(t
′
n, t
′
n) = t′n

Let us also assume that fj is weakly increasing (the case of de-
creasing is analogous). Then, we have the following two cases:

• Case 1: t′n < tn : fj(T t t′n) ≤ fj(T t tn)⇒

fj(T t t′n) ≤ fj(T t tn t t′n) (4)

• Case 2: t′n > tn : fj(T t t′n) ≥ fj(T t tn)⇒

fj(T t t′n) ≥ fj(T t tn t t′n) (5)

From equations 4 and 5 we conclude that

fj(T t t′n) = fj(T t tn t t′n)

Consequently, equation 3 becomes: xi+1
j = fj(T t tn t t′n) ⇒

xi+1
j = fj(x

i
j t t′n).


