

2nd International Workshop on Graph Data Management Experiences and Systems (GRADES 2014)

Asymmetry in Large-Scale Graph Analysis, Explained

Vasiliki Kalavri¹, Stephan Ewen², Kostas Tzoumas³, Vladimir Vlassov⁴, Volker Markl⁵, Seif Haridi⁶

^{1, 4, 6} KTH Royal Institute of Technology, ^{2, 3, 5} Technical University of Berlin ^{1, 4, 6}{kalavri, vladv, haridi}@kth.se ^{2, 3, 5}{firstname.lastname}@tu-berlin.de

Motivation

 Many of large-scale data processing applications include fixed point iterations social network analysis • web graph analysis • machine learning

Asymmetrical Convergence

- Often, in fixed point iterations, some elements converge faster than others
 Not all elements
- Not all elements require an update in ^{os} every iteration

Can we detect the elements that require recomputation and avoid redundant computations?

Contributions

- A categorization of optimizations for fixed point iterative graph processing
- Necessary conditions under which, it is safe to apply optimizations
- A mapping of existing techniques to graph processing abstractions
- An implementation of template execution plans
 Optimized algorithms yield order of magnitude gains!

Asymmetry in Connected Components

Iterative Plans - Bulk

- In each iteration, all elements are computed
 Always applicable
- Always applicable

Iterative Plans - Dependency

- In each iteration, only elements whose at least one neighbor has changed are computed
- The state is computed using the values of all neighbors
- Always applicable

Iterative Plans - Incremental

- In each iteration, only elements whose at least one neighbor has changed are computed
- The state is computed using only the values of updated neighbors
- Applicable when the update function is **idempotent and weakly monotonic** (e.g. min)

Iterative Plans - Delta

- In each iteration, only elements whose at least one neighbor has changed are computed
- The state is computed using only the *deltas* of updated neighbors
- Applicable when the update function is **linear over the composition operator** (e.g. sum)

Iteration Techniques Support in Graph Processing Systems

System	Bulk	Dependency	Incremental	Delta
Pregel	X	X	X	X
GraphLab	X	X	X	X
GraphX	X	X	X	X
Powergraph	X	X	X	X
Stratosphere	X	X	X	X

- : provided by default
 - : can be easily implemented
 - : possible, but non-intuitive

Performance - Connected Components

Execution Time

Performance - PageRank

Conclusions & Future Work

- Exploiting asymmetrical convergence can lead to order of magnitude performance gains
- In the future, we plan to
 - Use cost-based optimization, to automatically select the most efficient iterative plan, at runtime.
 - Implement a set of representative applications and compare performance with iterative and graph-processing systems.