
SPARQLing Kleene – Fast Property Paths in
RDF-3X

Andrey Gubichev, TU Munich
Stephan Seufert, MPI

Srikanta Bedathur, IIIT-Delhi

June 23, 2013

1 / 21



Motivation

I RDF data is a graph

I SPARQL 1.1 has introduced the property paths

I select * where {Munich yago:isLocatedIn* ?place }
I What entities are reached from Munich via

yago:isLocatedIn?

I We could use joins and unions over the triple store to answer it

I Can we do better with a bit of indexing?

2 / 21



Motivation

I RDF data is a graph

I SPARQL 1.1 has introduced the property paths

I select * where {Munich yago:isLocatedIn* ?place }
I What entities are reached from Munich via

yago:isLocatedIn?

I We could use joins and unions over the triple store to answer it

I Can we do better with a bit of indexing?

3 / 21



Semantics of Property Paths

I Originally, one could also count the number of paths between
start and end point

I However, this semantics leads to #P-hard problems
(M.Arenas, WWW’12)

I Now, W3C standard only allows to check for reachability, not
counting paths

4 / 21



Previous Work: RDF-3X

I a triple store

I extensive indexing

I join ordering with Dynamic Programming

I accurate cardinality estimation for common types of queries

I T.Neumann et al, SIGMOD 2009

5 / 21



Previous Work: Reachability Index FERRARI

I FERRARI index: based on tree interval labeling, assigns exact
and approximate labels to nodes (ICDE’2013)

I Runtime: use index plus limited DFS
I FERRARI:

I indexes 100 Mln triples of YAGO in 90 sec
I takes 210 Mb
I answers a reachability query for (start,end) in microseconds

I (all the numbers: off-the-shelf laptop)

6 / 21



Our Contribution

How to use FERRARI in RDF-3X

I Query optimization

I Runtime technique to speed up query execution

7 / 21



QO: Getting the Logical Operator

Property path triple may correspond to:
I a filter (if one of subject or object is constant)

I select * where {Munich yago:isLocatedIn* ?place }
I a scan, if one of subject of object is not bound

I select * where {?city yago:isLocatedIn* ?place }
I a join, otherwise

I Reachability Join: similar to Hash Join (build and probe part)
I select * where {?city yago:isLocatedIn* ?place.

?city hasName "Munich".

?place type ?type. }

In the last case, there is one more join opportunity (reflected in the
Query Graph)

8 / 21



QO: Plan generation

In order to use Dynamic Programming, we extend the cost model

I Estimated cardinality of the scan is provided by the index
immideately

I Cardinality estimation for the join: independence assumption
+ index information

9 / 21



Runtime: A typical execution plan

select ?city ?p ?type where { ?city hasName "Munich".

?city hasPopulation ?p. ?city locatedIn*/type ?type. }

onR (?c , ?o)

onMJ
c1=c2

index scan PS index scan POS

index scan

(?c1,name,Munich) (?c2,population,?p)

(?o, type, ?type)

I Individual triple patterns are very unselective

I We can pass gap information between different index scans, so
that most part of the data can be skipped (indirectly)

I (With some restrictions) this idea extends to Reachability
Joins

10 / 21



Runtime: A typical execution plan

select ?city ?p ?type where { ?city hasName "Munich".

?city hasPopulation ?p. ?city locatedIn*/type ?type. }

onR (?c , ?o)

onMJ
c1=c2

index scan PS index scan POS

index scan

(?c1,name,Munich) (?c2,population,?p)

(?o, type, ?type)

I Individual triple patterns are very unselective

I We can pass gap information between different index scans, so
that most part of the data can be skipped (indirectly)

I (With some restrictions) this idea extends to Reachability
Joins

11 / 21



Sideways Information Passing for Property Paths

Build phase: construct domain filters for observed attribute
values, using approx intervals from FERRARI:

min max Bloom filter (1024 bytes)

Probe phase: pass the bloome filter to the right index scan; it can
skip values

onRJ
x1=x2

x1

3
4

x2

1

�3

�4

�6
8

12 / 21



Sideways Information Passing for Property Paths

Build phase: construct domain filters for observed attribute
values, using approx intervals from FERRARI:

min max Bloom filter (1024 bytes)

Probe phase: pass the bloome filter to the right index scan; it can
skip values

onRJ
x1=x2

x1
3

4

x2

1

�3

�4

�6
8

13 / 21



Sideways Information Passing for Property Paths

Build phase: construct domain filters for observed attribute
values, using approx intervals from FERRARI:

min max Bloom filter (1024 bytes)

Probe phase: pass the bloome filter to the right index scan; it can
skip values

onRJ
x1=x2

x1
3
4

x2

1

�3

�4

�6
8

FERRARI Index

ID Intervals

3 [1, 1]
4 [8, 8], [9, 9]

Domain for ?o

min max Bloom

1 9 011000

hash function: v mod 7

14 / 21



Sideways Information Passing for Property Paths

Build phase: construct domain filters for observed attribute
values, using approx intervals from FERRARI:

min max Bloom filter (1024 bytes)

Probe phase: pass the bloome filter to the right index scan; it can
skip values

onRJ
x1=x2

x1
3
4

x2
1

�3

�4

�6
8

FERRARI Index

ID Intervals

3 [1, 1]
4 [8, 8], [9, 9]

Domain for ?o

min max Bloom

1 9 011000

hash function: v mod 7

15 / 21



Sideways Information Passing for Property Paths

Build phase: construct domain filters for observed attribute
values, using approx intervals from FERRARI:

min max Bloom filter (1024 bytes)

Probe phase: pass the bloome filter to the right index scan; it can
skip values

onRJ
x1=x2

x1
3
4

x2
1

�3

�4

�6
8

FERRARI Index

ID Intervals

3 [1, 1]
4 [8, 8], [9, 9]

Domain for ?o

min max Bloom

1 9 011000

hash function: v mod 7

16 / 21



Sideways Information Passing for Property Paths

Build phase: construct domain filters for observed attribute
values, using approx intervals from FERRARI:

min max Bloom filter (1024 bytes)

Probe phase: pass the bloome filter to the right index scan; it can
skip values

onRJ
x1=x2

x1
3
4

x2
1

�3

�4

�6
8

FERRARI Index

ID Intervals

3 [1, 1]
4 [8, 8], [9, 9]

Domain for ?o

min max Bloom

1 9 011000

hash function: v mod 7

17 / 21



Sideways Information Passing for Property Paths

Build phase: construct domain filters for observed attribute
values, using approx intervals from FERRARI:

min max Bloom filter (1024 bytes)

Probe phase: pass the bloome filter to the right index scan; it can
skip values

onRJ
x1=x2

x1
3
4

x2
1

�3

�4

�6

8

FERRARI Index

ID Intervals

3 [1, 1]
4 [8, 8], [9, 9]

Domain for ?o

min max Bloom

1 9 011000

hash function: v mod 7

18 / 21



Sideways Information Passing for Property Paths

Build phase: construct domain filters for observed attribute
values, using approx intervals from FERRARI:

min max Bloom filter (1024 bytes)

Probe phase: pass the bloome filter to the right index scan; it can
skip values

onRJ
x1=x2

x1
3
4

x2
1

�3

�4

�6
8

FERRARI Index

ID Intervals

3 [1, 1]
4 [8, 8], [9, 9]

Domain for ?o

min max Bloom

1 9 011000

hash function: v mod 7

19 / 21



Choke points

How to formulate interesting queries to test property path
support? What are the hard things?

I Choosing the right build part

I Compare cardinalities of different property paths

I Compare cardinalities of property paths vs index scans

We suggested some queries and evaluated our solution (against
Virtuoso)

20 / 21



Conclusions

We have:

I Support for property paths in RDF-3X

I Full-fledged system: query optimization, sideways information
passing

I Choke points and queries and evaluation

Future Work:

I Updates

21 / 21


