
Leveraging Flexible Data Management
with Graph Databases

Elena Vasilyeva1 Maik Thiele2 Christof Bornhövd3 Wolfgang Lehner2

1SAP AG 2Database Technology Group 3SAP Labs, LLC
Dresden, Germany Technische Universität Dresden, Germany Palo Alto, CA 94304, USA

elena.vasilyeva@sap.com firstname.lastname@tu-dresden.de christof.bornhoevd@sap.com

ABSTRACT
Integrating up-to-date information into databases from dif-
ferent heterogeneous data sources is still a time-consuming
and mostly manual job that can only be accomplished by
skilled experts. For this reason, enterprises often lack infor-
mation regarding the current market situation, preventing a
holistic view that is needed to conduct sound data analysis
and market predictions. Ironically, the Web consists of a
huge and growing number of valuable information from di-
verse organizations and data providers, such as the Linked
Open Data cloud, common knowledge sources like Freebase,
and social networks. One desirable usage scenario for this
kind of data is its integration into a single database in order
to apply data analytics. However, in today’s business intel-
ligence tools there is an evident lack of support for so-called
situational or ad-hoc data integration. What we need is a
system which 1) provides a flexible storage of heterogeneous
information of different degrees of structure in an ad-hoc
manner, and 2) supports mass data operations suited for
data analytics. In this paper, we will provide our vision of
such a system and describe an extension of the well-studied
property graph model that allows to “integrate and analyze
as you go” external data exposed in the RDF format in a
seamless manner. The proposed integration approach ex-
tends the internal graph model with external data from the
Linked Open Data cloud, which stores over 31 billion RDF
triples (September 2011) from a variety of domains.

Categories and Subject Descriptors
H.2.1 [Logical Design]: Data models, Normal forms, Schema
and subschema; H.2.5 [Heterogeneous Databases]: Data
translation

General Terms
Algorithms, Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the First International Workshop on Graph Data Manage-
ment Experiences and Systems (GRADES 2013), June 23, 2013, New York,
NY, USA.
Copyright 2013 ACM 978-1-4503-2188-4 ...$15.00.

Keywords
Graph Database, Linked Open Data, Property Graph

1. INTRODUCTION
Data analytics and business intelligence have enjoyed im-

mense popularity and success over the last ten years and now
play a key role in corporate decision-making. However, due
to the ubiquitous presence of data residing beyond the cor-
porate boundaries, the requirements posed to data analytics
have changed toward more agile and situational analytics. In
contrast to conventional data warehouses approaches where
all datasets are known at design time, situational analytics
demands data provisioning, integration, transformation, and
consolidation in an ad-hoc fashion. One popular example of
such an external and very valuable data source is the Linked
Open Data (LOD) cloud which offers billions of structured
and irregularly structured information pieces. To make pro-
ductive use of the variety of LOD, two things are required:
first, a powerful schema-flexible data store and, second, a
way to integrate and analyze external data to bring it into a
new context, to mix it with other data sources, and to gain
knowledge and insights from it.

The call for a timely integration of new data sources, how-
ever, confronts today’s data models and architectures with
a serious problem. Its integration is typically prevented by
heterogeneous data formats and data of different structure
and meaning. A traditional approach requires a global rigid
schema considering all possible types and formats making
the method too inflexible and cost-inefficient. Therefore, we
propose an ad-hoc data integration engine on top of SAP’s
Active Information Store (AIS) that is able to augment the
AIS data store by data from LOD in a seamless manner. In
this way, we want to bridge the gap between the analyti-
cal world and LOD and want to show the value of LOD for
business analytics in general.

The rest of this paper is organized as follows: we will
start by presenting a use case in Section 2 that motivates
the need for a flexible and extensible data model suited for
ad-hoc data analytics. We then outline in Section 3.1 the
core features of the SAP Active Information Store as well as
the underlying data model that allows data integration in a
“pay as you go” manner. Additionally, we briefly review the
principles of the RDF data model in Section 3.2 and compare
both models in Section 3.3. This comparison forms the basis
of our architecture which is outlined in Section 4. Finally, we
summarize our findings and point out directions for future
work in Section 5.

(a) The AIS data model

(b) The RDF/RDFS data model

Figure 1: Graph data models

2. ENRICHMENT OF BUSINESS ANALY-
TICS WITH MARKET INSIGHTS

In the following, we want to give an example on how inte-
gration of external information can extend internal business
analytics and enrich it with additional insights. Therefore,
let us imagine a manager of a software company that re-
cently launched a new mobile application that was widely
advertised by the marketing department. After a good start
and a lot of sales in the first month, the manager recognizes
a steep decline in the second month. To analyze the rea-
sons for that decline and to predict future sales, the man-
ager has to conduct a what-if analysis. For this purpose,
he requires a clear picture of the market state, information
about promotions and the competing products as well as all
additional data like user comments, sentiment information
etc. Whereas a small part of this information is already
available in corporate databases or is stored in well-defined
and structured datasets, the majority has to be obtained
from external sources, for example, the Linked Open Data
cloud (see Section 3.2). This data must be provided dur-
ing runtime in an ad-hoc manner leading to schema changes
and modifications that cannot be anticipated during design
time. In addition, due to the explorative nature of data an-
alytics, the user should be able to stepwise integrate, mix,
and analyze local and external data. As we can see, there
are several issues to be solved in order to support users in
performing data analysis in today’s dynamic business en-
vironments. In detail, we need a platform that provides a
flexible data model, supporting the co-existence of struc-
tured as well as irregularly structured information with a
unified representation and access, allows ad-hoc queries to
multiple sources and performs schema matching and inte-
gration between external and internal data models.

3. GRAPH DATA MODELS
In this section we present two underlying models that we

use in our approach. These are the graph data model of the

SAP HANA database, providing a flexible way of storing
and using heterogeneous information, and the RDF-model
of the publicly available Linked Open Data cloud.

3.1 The AIS Data Model
Modern business processes are characterized by an in-

creasing number of participants and their heterogeneous data.
To support such dynamic processes, we need a data model
that is able to integrate information with varying degree
of structure (structured, irregularly structured and unstruc-
tured data) and allowing its uniform handling. Such a flex-
ible storage is introduced by the Active Information Store
(AIS) [3], a schema-flexible graph data store provided by the
SAP HANA database.

As it can be seen in Figure 1(a), the AIS data model
consists of two parts: a core component and its semantic
extension. The core component represents the data in the
form of property graphs [17] constructed from vertices and
edges between them. Vertices introduce entities, which are
described with a number of attributes and corresponding
values. Relationships between entities are drawn by directed
edges together with their attributes.

Entities are represented by Info Items, which are basic
processing units of storage, retrieval, extraction, and inter-
relation of data in the AIS data model. An Info Item has a
set of Properties that are denoted in the form of Attributes or
Associations. While an Attribute assigns a value to an Info
Item, an Association is a unidirectional relationship between
two Info Items and represents an edge in a graph. Proper-
ties are classified into three groups: mandatory (assigned to
each Info Item), expected (available for most Info Items),
and optional Properties (provided for some Info Items).

Figure 2: An example of a property graph

The example in Figure 2 shows a simple graph consist-
ing of six nodes with different numbers of Properties. For
example, the Info Item with the name “Sandra” has three
Properties: its Name and two Associations. Associations
bind Info Items in a graph and introduce relationships be-
tween them, for example, Julia married to Andreas.

The extension of the AIS data model describes a prop-
erty graph semantically. A semantic type (Term) is as-
signed to each Info Item and its Properties. Terms are Info
Items themselves that enables their processing as metadata
or as actual data. Terms are connected with each other in
a hierarchical Taxonomy, which describes a particular do-
main. The Terms can be obtained from domain-specific
Taxonomies [3] and then be extended as needed.

The AIS data model presents a flexible data model in the
form of an extended version of a property graph and sup-

ports the integration of data of different degrees of structure.
It does not insist on the use of a common structure but it
provides a way of co-usage of different information in a uni-
form way. The schema does not have to be determined at
the beginning of a process, but it can easily evolve over time.

To allow flexible storing of heterogeneously structured in-
formation, the AIS data model supports the following key
aspects:

• Uniform information representation: Different kinds
of information can be presented in the AIS data model
in the form of entities with attributes and relations be-
tween them. To distinguish between entities, objects’
types (Terms) are introduced.

• Schema flexibility : The AIS data model does not en-
force a static schema. The schema can evolve: new
nodes, attributes, and associations can be added.

• Support of continuous data integration: Specific oper-
ators in the graph query and manipulation language
WIPE [3] support stepwise data integration, give op-
portunities to change already stored information and
to enhance it with additional characteristics.

• Uniform handling of data and its metadata: While the
AIS data model distinguishes between semantic infor-
mation (Terms) and actual data via their types, their
handling is done in the same way. Therefore, they can
be treated as metadata as well as actual data depend-
ing on the application at hand.

To query and manipulate data in AIS, we use the WIPE
language [3], which offers standard operations like INSERT,
UPDATE, DELETE, and LOAD at the level of Info Items
and their Properties. In addition, WIPE supports graph
traversal for resolving of Associations and Attributes.

In summary, the AIS provides a schema-flexible data store,
which is additionally supported by powerful analytical func-
tions of the SAP HANA database.

3.2 The RDF/RDFS Data Model
While an internal graph model is used only inside a com-

pany and its data is typically not available for a third party,
Linked Open Data (LOD) is freely available in the Inter-
net and can be legally reused by everybody. According to
[2], “Linked data is a set of best practices for publishing
and connecting structured data on the Web”. These prin-
ciples were applied to the LOD project that aims to make
open data sets available for use. For this purpose, the data
is converted into Resource Data Framework Format (RDF)
and published on the web.

The Resource Description Framework [9] has been devel-
oped for describing metadata about web resources by repre-
senting properties and relationships between them. The re-
lationships can be interpreted as graphs where nodes stand
for web resources and properties and their relationships are
drawn by edges. The basic structure of the RDF data model
is a statement consisting of three parts: a subject, a pred-
icate, and an object (see Figure 1(b)). While the first two
parts have to be unique identifiers, an object can be a unique
identifier or literal. Unique identifier (URI) is “a compact
sequence of characters that identifies an abstract or physi-
cal resource” [12]. It combines a location of a resource and a
name that remains unchanged over time. For example, the

Figure 3: An example of a property graph with an
RDFS extension

RDF statement “The car has color red” has a subject “the
car”, a predicate “has color”, and an object “red”.

RDF nodes without URI or literal, called blank nodes
or anonymous nodes, are used to describe multivalued re-
sources. For example, a person can have two living addresses
consisting of a street and a house number. Therefore, each
address can be described by a specific blank node. Mul-
tivalued objects can also be introduced by lists, which are
classified in containers and collections. While containers are
extensible, collections are closed lists. Due to the used order,
collections can be of three types. A Bag represents an un-
ordered set of elements, a Seq is an ordered set of elements,
and an Alt provides alternatives of elements.

To express the example in Figure 2 in RDF, we have to
create a set of statements for each Info Item and its Prop-
erties, and assign labels to the nodes. Then the Info Item,
which Property “Name” has a value “Sandra”, can be de-
scribed by the following RDF Statements:

1: URI:personA URI:hasName Sandra
2: URI:personA URI:friend URI:personB
3: URI:personA URI:borrow URI:personC
4: URI:borrow URI:hasValue 300e

As we can see, to define one entity, we need multiple state-
ments. Additionally, we have to create URIs that are unique
inside an application. Moreover, to use them among nodes
in the LOD cloud, we have to follow the general rules for
publishing linked information.

To enable an entity construction and to establish classes
and relationships, the RDF Schema (RDFS) [4] and OWL [7]
can be used. While the RDFS is an extension of RDF, OWL
is an extension of the RDFS. In Figure 1(b) the RDFS part is
represented by the dark area outside the dashed box for the
RDF data model. While a RDF statement shows a triple on
an instance level, RDFS allows to go to an upper level and
to describe which classes RDF parts relate to. The RDFS
defines a data model for creation of RDF statements. With
the RDFS we can define classes, relationships between them,
their properties and build class and property hierarchies.

Figure 3 presents an RDFS-extension of the example from
Figure 2. It is completed with a class structure: Sandra is of
a class Woman and Robert is of a class Man, where Woman
and Man are subclasses of a class Person.

RDF/RDFS data can be accessed via SPARQL [15], which
supports queries among diverse sources of data in the RDF
format. It allows querying of triple patterns, conjunction,
disjunction, and optional patterns. Many data sets from the
LOD cloud provide interfaces, called SPARQL endpoints, for
querying their knowledge bases via the SPARQL language.

3.3 Comparing the AIS and RDF data models

Feature AIS RDF/RDFS

Graph type Property graph Labeled graph

Entity integrity Guaranteed No guarantee

Metadata Special type No strong separation
from actual data

Technical types Defined by
semantic types

No data model
support

Table 1: Comparison of graph data models

Although data can be converted easily between the AIS
and RDF data models, there are several differences between
them that have to be considered. While the AIS data model
is an extended version of a property graph, the RDF graph
is a labeled graph. The first one is a network of entities;
the second one is a network of values. Therefore, we have to
figure out which RDF statements relate to which entity and
re-construct corresponding entities. In addition, multiple
URIs can be assigned to the same entity. In this case an
additional recognition step has to take place that cannot
guarantee that all attributes and associations are discovered.
For this purpose, synonym vocabularies can be used.

The RDF format does not distinguish precisely between
meta information and actual data. Therefore, we have to use
standards like OWL [7], RDFS [4], and application specific
knowledge for correct storing data in the AIS data model.

In conclusion, the AIS data model expresses well an entity
as a unit, supports technical types, and keeps meta informa-
tion together with actual data, while the RDF/RDFS data
model is very general and relies on a lot of conventions that
prevent it from the usage as an internal business data model.

4. INTEGRATION APPROACH

Figure 4: System architecture

To conduct graph extension in the AIS data model, we
propose the creation of an intermediate data layer between
the LOD cloud and the internal AIS data model (see Figure
4). This extension of the AIS data model can be integrated
more tightly into the AIS engine in the future.

Triggering Graph Extension.
There are two ways to trigger graph extension with data

from external sources: offline and online. An offline method
means continuous graph extension. It does not depend on

any incoming queries and it is not limited in time. The of-
fline process is applied when general stable information is
required for the analysis, e.g., geoinformation. Such data
evolves slowly over time and typically stays unchanged dur-
ing analysis.

By contrast to the offline procedure, the online process
has a time threshold and an answer has to be provided to
a user in realtime. Data to be integrated immediately can
describe a current state of a market and can evolve over time
dramatically. Therefore, this information has to be retrieved
immediately and has to be kept only for the current analy-
sis. An online method implies “on-the-fly” graph extension
and is triggered explicitly by a user query “Extend a graph”
or implicitly by the system. A query “Extend a graph” con-
tains entities or their properties that have to be completed.
The implicit online method can detect, whether the available
information might not be sufficient to respond to a user’s re-
quest: the answer has null values for some attributes or is
empty. In this case, if a query starts with the “EXTEND”
keyword, the online graph extension is launched.

Ad-hoc queries (online mode) for integration of exter-
nal information are studied in [5]. The proposed system
is able to process open-world queries: an extended version
of PostgreSQL asks open data sources for the missing infor-
mation. Although the presented solution is similar to our
problem, it differs in the underlying model and, therefore,
corresponding problems to be solved. While the authors use
a RDBMS and open data sets, we focus on a graph data
model and the LOD cloud, and on how to construct enti-
ties, compare them and to integrate then into a dynamic
analytical process over graph data.

Some of the techniques proposed in this paper are similar
to the methods presented in [18], where LDIF framework
collects Linked Data from the web and put it into local rep-
resentation. In comparison, our system works with two dif-
ferent models (RDF and AIS graph data model). In addi-
tion, we integrate not all data into an internal data model,
but rather choose only relevant data and integrate it in an
ad-hoc manner that requires user participation, query re-
composition, and answer analysis.

Index Module.
To look for information, we have to decide, what, where

and how deep to search. We introduce a single point of
integration with external sources, the Index Module. It is
responsible for the registration of SPARQL endpoints and
the discovery of new information required for internal data
analysis from the LOD cloud. Registration data is com-
posed from addresses of SPARQL endpoints, their domains
and ratings. Addresses and domain descriptions of these
endpoints are available at system initialization and can be
modified as needed. Ratings are derived from ratings of
previously obtained results calculated by the Graph Match-
ing Module, the number of triples of a corresponding triple
store, and the source availability:

rating = ratingaverage +Ntriples/Nall +A (1)

Each component in the equation has a value between 0 and
1. The first component is calculated by the Graph Match-
ing Module as described later in the paper. The amount of
data stored by a triple store is provided by its semantic de-
scription. The availability of a source for the last seven days
can be aquired from the publicly available list of SPARQL

endpoints [1]. The Index Module chooses the SPARQL end-
point with the highest score for the rating function. If it is
unavailable, the next endpoint on the ranked list is queried.

In [13] a strategy for selecting endpoints is studied. The
presented approach heuristically selects only those endpoints
that are able to process a triple pattern and provide relevant
data. A given query is then decomposed into few subqueries,
and each of them is sent to a corresponding endpoint. Al-
though this approach enhances federated queries to the LOD
cloud, relevant endpoints can be missed. In comparison, our
approach chooses relevant sources based on the application
domain and the context of a current query. In addition, end-
points are queried stepwise, which reduces the overhead of
federated queries and guarantees the stepwise integration of
only required information. Relevant sources are searched not
only for querying but also for interlinking of a new repos-
itory with them. For this purpose, a semantic web index
can be used [14], where a set of labels is extracted and used
for keyword search over the LOD. Chosen sources are then
refined with ontology matching methods. This approach
presents a powerful search and classification of sources, but
it is time-consuming, which makes it impossible to use for
ad-hoc queries and incremental data integration.

In [10] the authors evaluate several strategies of source
discovery and ranking. Some endpoints are known in ad-
vance to the system, others are discovered at runtime. The
sources are ranked based on the triple pattern cardinality
and specificity, join pattern cardinality, links to results, and
retrieval costs. To apply it for our online method, it has to
be adapted from triples to the corresponding entities, which
requires cross-calculation of resource ratings.

Entity Construction.
After a SPARQL endpoint provided some results, we have

to prepare the obtained triples for the internal data analysis
using the Entity Construction Module. It is responsible for
building entities from the LOD cloud. The component has
to understand which subjects and objects are entities, which
attributes they have and which relationships connect them.
In other words, we have to distinguish between Info Items,
their Attributes, and their Associations.

In the first step, we classify all triples into groups accord-
ing to their subjects. All subjects with the same URI rep-
resent the same entity. In the second step, we create Prop-
erties: predicates and objects are stored as an Info Item’s
Properties. Finally, we have to determine, which Properties
are Associations. The last step queries a SPARQL endpoint
about its description and used RDFS. First, we construct
queries with predicates corresponding to the RDFS, for ex-
ample: predicates are “rdfs:Class” or “rdfs:Property”. Then
we substitute a subject or an object with an available URI
from the Entity Construction Module.

After a SPARQL endpoint responded, we align the RDFS
with the internal Taxonomy. The mapping can be done
manually, automatically, or semiautomatically. In the first
case, a user has to determine connections between Terms
and Classes. In the second case, we propose to use synonym
vocabularies. If a Term and a Class are synonyms then they
potentially describe the same entity. Assuming we received
a set of synonyms and there are two Classes that correspond
to these synonyms. To choose the right one, we ask the user
or we use the context information that is provided by the
internal system for the mapping between the RDFS and the

internal Taxonomy. All undiscovered Properties have to be
processed as additional Attributes.

The discovered entities can be completed with more in-
formation from the LOD cloud. For this purpose, we can
continue querying a SPARQL endpoint about all discovered
URIs to the degree defined by a user. Then the process is
done as in the first iteration with the original URI.

Graph Matching.
After the entities have been constructed, the Graph Match-

ing Module starts to determine an optimal connection point
for the data integration by matching constructed entities
with entities from the internal graph. This component looks
for connection points in the existing graph, whether there
are same or similar entities. In our study we use the classifi-
cation of schema-based matching techniques from [16],[19].

String-based similarity. String-based similarity is defined
on the element level. It corresponds to the mapping between
two entities on the level of Properties and their values. Prop-
erties are compared in isolation, no relationships are taken
into account. They are considered as sequences of characters
and can be compared based on their prefices, suffices, and
the edit distance between them, or on calculated common
n-grams [19]. Of course, several algorithms can be combined
to increase the accuracy of the mapping.

Structure-level similarity. On this level we distinguish,
whether entities have the same structure. The matcher con-
siders a schema-level description without any instance data.
We examine only mandatory Properties during matching.

Match cardinality. In addition to structural and string
similarity, we consider the match cardinality [16]. The align-
ment between two Properties can have several mapping res-
olutions: the relationship can be one to zero, one to one,
or one to many values. Then the integration of multivalued
Properties leads to the extension of a Property’s values.

Entity pairs are compared with an overall similarity mea-
sure, which comprises structural and string similarities with
the weight of α and (1 − α), where α is an application-
specific weight. This measure is combined from all URIs,
which characterize an entity. After all entities are qualified,
weighted ratings for the same URIs are summed up and sent
to the Index Module for their incorporation into ratings of
SPARQL endpoints (see Equation 1). Matching results typ-
ically contain not a single mapping, but a set of possible
mappings between two graphs. To determine the final solu-
tion, the first matching result is used or a semi-automatic
approach is applied where the decision is done by a user.

Graph Integration.
The last step, graph integration, is conducted by the Graph

Integration Module. According to the mode of graph exten-
sion, online or offline, we distinguish between two ways to
storing information. In the offline mode we propose stor-
ing data into the internal graph with additional information
like a timestamp, URI, and the address of a contributing
SPARQL endpoint. To inspect an evolving entity, we keep
a sequence of its historical states. If a new value becomes
available, we record it with time information and activate
it. The size of a window for keeping values is user-specified.

In the online mode we keep data in the graph during the
current analysis and provide linking for the future analy-
sis. The linking means the use of pointers to a data source
where the actual data can be obtained from. A linking Info

Item inherits Properties of its original entity. The Attribute
values contain corresponding URIs with a timestamp.

A timestamp corresponds to a specific entity’s state de-
scribing some changes. Therefore, to analyze the evolution
of an entity, its states can be interlinked with each other with
the help of a time decay and a clustering technique, like for
example, in [11]. Although this method supports an entity’s
evolution and can be used for comparing with the current
entity’s state, it does not solve the problem of keeping an
entity up to date. In comparison, in [6] constant monitoring
of entities can be applied. Here, when a new twitter message
arises, it is sent directly to the system. Our study focusses
on the big LOD cloud; therefore, the constant monitoring of
records will create intolerable overhead.

A scalable and novel solution is presented in [8], where
new data is integrated during query processing. For this
purpose, mapping rules are introduced at the schema level
and at the instance level, which complete the data with ad-
ditional information. The data is taken from local as well as
remote sources of XML documents. Therefore, it does not
take into consideration URI linking as proposed by the W3C
Consortium or sophisticated construction of LOD entities.

5. CONCLUSION
In this paper we presented our project for enrichment of

internal business data with heterogeneous external informa-
tion provided in the RDF format from the LOD cloud. We
presented 1) a system, which provides a schema-flexible data
store of differently structured information and analytical ca-
pabilities of the SAP HANA database and proposed 2) an
ad-hoc approach for the integration of external information
into an internal graph. The system supports the offline ex-
tension of an internal graph as well as ad-hoc queries with
missing information. The integration approach provides in-
cremental and flexible data integration. The schema does
not have to be defined at the beginning of the analysis, but
rather evolves over time. After the decision to integrate new
data has been taken, relevant external sources are queried.
Then entities are created from obtained RDF triples and in-
tegrated into the internal graph by storing of a correspond-
ing URI or values with time and source information. In
detail, our work is distinguished by three key contributions.
The first is the novel method for choosing relevant SPARQL
endpoints based on their domain description and ratings of
previous results. The second is the entity construction strat-
egy that aligns external RDF information with the internal
property graph. The third contribution is the integration
strategy allowing direct access to a SPARQL endpoint for
querying of up-to-date information. Future work is planned
to implement the proposed solution and evaluate it using
several business-related data sets.

6. ACKNOWLEDGMENT
This work has been supported by the FP7 EU projects

ROBUST (grant agreement no. 257859) and LinkedDesign
(grant agreement no. 284613).

7. REFERENCES
[1] SPARQL Endpoints Status.

http://labs.mondeca.com/sparqlEndpointsStatus/.

[2] C. Bizer, T. Heath, and T. Berners-Lee. Linked
data-the story so far. IJSWIS, 5(3):1–22, 2009.

[3] C. Bornhövd, R. Kubis, W. Lehner, H. Voigt, and
H. Werner. Flexible Information Management,
Exploration and Analysis in SAP HANA. In DATA,
pages 15–28, 2012.

[4] D. Brickley and G. R.V. RDF Vocabulary Description
Language 1.0: RDF Schema. W3C Recommendation,
February 2004.

[5] J. Eberius, M. Thiele, K. Braunschweig, and
W. Lehner. DrillBeyond: enabling business analysts to
explore the web of open data. Proceedings of the
VLDB Endowment, 5(12):1978–1981, 2012.

[6] M. Grinev, M. Grineva, M. Hentschel, and
D. Kossmann. Analytics for the real-time web.
Proceedings of the VLDB Endowment,
4(12):1391–1394, 2011.

[7] W. O. W. Group. OWL 2 Web Ontology Language.
W3C Recommendation, December 2012.

[8] M. Hentschel, L. Haas, and R. J. Miller. Just-in-time
data integration in action. Proceedings of the VLDB
Endowment, 3(1-2):1621–1624, 2010.

[9] G. Klyne and J. J. Carroll. Resource Description
Framework (RDF): Concepts and Abstract Syntax.
W3C Recommendation, February 2004.

[10] G. Ladwig and T. Tran. Linked Data Query
Processing Strategies. In The Semantic Web – ISWC
2010, volume 6496 of Lecture Notes in Computer
Science, pages 453–469. Springer, 2010.

[11] P. Li, X. Dong, A. Maurino, and D. Srivastava.
Linking temporal records. Proceedings of the VLDB
Endowment, 4(11):956–967, 2011.

[12] L. Masinter, T. Berners-Lee, and R. T. Fielding.
Uniform resource identifier (URI): Generic syntax.
2005.

[13] G. Montoya, M.-E. Vidal, and M. Acosta. A
Heuristic-Based Approach for Planning Federated
SPARQL Queries. In Proceedings of the 3rd
International Workshop on Consuming Linked Data
(COLD2012), 2012.

[14] A. Nikolov and M. d’Aquin. Identifying relevant
sources for data linking using a semantic web index. In
Proceedings of the 4th Workshop on Linked Data on
the Web (LDOW 2011), 2011.

[15] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF. W3C Recommendation, January
2008.

[16] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. The VLDB Journal,
10(4):334–350, 2001.

[17] M. A. Rodriguez and P. Neubauer. Constructions from
dots and lines. Bulletin of the American Society for
Information Science and Technology, 36(6):35–41,
2010.

[18] A. Schultz, A. Matteini, R. Isele, P. N. Mendes,
C. Bizer, and C. Becker. LDIF-A Framework for
Large-Scale Linked Data Integration. In 21st
International World Wide Web Conference (WWW
2012), Developers Track, Lyon, France, 2012.

[19] P. Shvaiko and J. Euzenat. A survey of schema-based
matching approaches. In Journal on Data Semantics
IV, pages 146–171. Springer, 2005.

