
Partial View Selection
for Evolving Social

Graphs

Georgia Koloniari and Evaggelia Pitoura

University of Macedonia University of Ioannina
Greece

Introduction

 Social networks represented as graphs
 G(V,E): V set of users and E set of edges

representing the social relationships
between users
 Large scale
 Very dynamic: evolving through time

 Users query the social network graph,
eg. Facebook Graph Search
 Friends of my friends who visited

NYC, New York
 My friends who live in Thessaloniki

and visited NYC, New York

Can we add time to graph
search?
Historical Queries:
Queries about the state of the graph in the past

Examples:

 Friends of my friends who visited NYC, New York last
year?

 My friends in May 2010 who have
visited NYC, New York

 My friends in May 2013?
 Who are the new friends I acquired from March 2013 to

June 2013?
But also…

 What was the diameter of the social graph in March 2013?

How do we capture graph
evolution?

 Graph Snapshot + Graph Log

 Graph snapshot SGt: snapshot frozen at time t
 Graph Log: update operation + timestamp

 Add/remove node - Add/remove edge

We require for the graph log to be:
 Complete: maintains all the necessary information to

construct a snapshot
 Invertible: can be used for both forward and backward

snapshot construction in time

We prove that by storing one snapshot and the graph log for a time

interval we can construct any other snapshot in this time interval

Thus, we only store:

 Graph log for time interval [t0, tcur]
 Current Graph Snapshot SGtcur

How do we evaluate queries on
evolving graphs?
 Usually, two steps:

1. Construct the graph snapshots required for query
evaluation

2. Evaluate the query on the snapshots

 Snapshot construction is expensive
 Apply the related parts of the graph log on the

current snapshot to retrieve the past snapshots

Query Types
 Global queries

 compute global properties of G -- traverse the entire graph
 Examples:

 What is the diameter of G?
 What is the degree distribution in G?, etc..

 Targeted queries
 User-centric queries – traverse only a specific subgraph of G
 Examples: Queries similar to Facebook graph search

 Find my friends that live in NY
 Find the friends of my friends that are interested in graph

management, etc…

Basic Idea

 For targeted queries, full snapshot construction
is redundant

 Instead, construct only the specific subgraph
targeted by the query

⇒ Construct the appropriate partial view!

Partial Views
 Partial Views modeled

as Egonets
 Egonet(v, R, t)

 Node v center of the
egonet

 R radius of the induced
subgraph

 t time point at which the
egonet is valid (i.e.
Egonet a subgraph of SGt)

v

Egonet of v with R=1

Egonet of v with R=2

How can we use a partial view?
 Model targeted queries as egonets similar to

partial views
 Given a query q, construct the partial view the

query requires
 view construction: apply only the related parts of

the log file

 Evaluate the query on the derived partial view

Can we reuse materialized views?
 Determine when a materialized partial view (egonet)

can be used to evaluate a query
 We define view subsumption between partial views

Also:
 Derive new views from materialized views
 Define view extension:

 In radius
 In time

Given two partial views, EG1 and EG2, EG1 subsumes EG2, if the result
of the evaluation of any targeted query q on EG2 is equal to the result
of evaluating q on EG1.

Which views should we
materialize?

Given the current graph snapshot, the graph log and a set of N targeted
queries, select from the set of corresponding query egonets a set C of K
egonets, K < N, such that, if the egonets in C are materialized, the total
evaluation cost of the query workload is minimized.

 Exhaustive: considers all possible subsets of K egonets
 Random: randomly select K egonets
 Greedy: at each step, select to materialize the egonet with the

maximum construction cost

Selection Algorithms:

The View Selection Problem

We propose two-phase greedy selection

Two-Phase Greedy Selection
 Group egonets according to their center
 At each iteration

 For each group
 Select the egonet with the greatest construction cost
 Re-evaluate the total construction cost of the group
 Compute the benefit for materializing the egonet

 Select the group with the greatest benefit
 Update all costs
 Proceed to next iteration until K egonets are

selected

View Selection
Comparison
 Measure total view

construction cost for a given
query workload

 Data from New Orleans
Facebook Network
(Viswanath et al, WOSN 2009)

 x-axis: overlap among
queries (% queries with the
same center)

 y-axis: construction cost The more overlap, the best
performance for the two-
phase greedy selection Cache size 10

Query Workload 100

Query Time random

Nodes 500

R 1

Conclusions

 We deal with the problem of supporting
historical queries on evolving graphs

 Avoid full snapshot construction for targeted
queries. Instead, use partial views defined as
egonets

 Define view subsumption and view extension
 Address the view selection problem
 Introduce a two-phase greedy selection

algorithm

Thank you!
Questions?

	Partial View Selection for Evolving Social Graphs
	Introduction
	Can we add time to graph search?
	How do we capture graph evolution?
	How do we evaluate queries on evolving graphs?
	Query Types
	Basic Idea
	Partial Views
	How can we use a partial view?
	Can we reuse materialized views?
	Which views should we materialize?
	Two-Phase Greedy Selection
	View Selection �Comparison
	Conclusions
	Thank you!

