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ABSTRACT
As distributed systems become more ubiquitous and more com-
plex, the need for efficient, scalable tools to analyze these systems
increases. Network provenance graphs offer a rich framework for
this task, mapping dependencies between system states and allow-
ing one to explain these states. In this paper, we investigate meth-
ods for more efficient substructure mining in the context of network
provenance graphs. Specifically, we are interested in identifying
frequent substructures that can be used as a feature set for model-
ing common execution patterns. Knowing these will help network
administrators detect nodes in the distributed system that are mis-
behaving. Therefore, this paper focuses on applying and scaling
up substructure mining for network provenance graphs by incorpo-
rating a graph database (neo4j) into the substructure mining pro-
cess and implementing optimizations that improve the efficiency of
the substructure mining task. Our results show that the use of the
neo4j graph database combined with our algorithmic optimizations
greatly improves the run time of our algorithm while not signifi-
cantly affecting the quality of the substructures returned.

1. INTRODUCTION
The past decade has witnessed the huge success of distributed

systems that are deployed for a variety of applications, ranging
from cloud computing platforms deployed at data centers, to global-
scale peer-to-peer systems. Given their pervasive usage that is
closely coupled with daily lives, faults (or misbehavior) of dis-
tributed systems can be costly. A large body of research has been
dedicated to help system administrators understand and analyze the
behavior of distributed systems [6, 9]. Among other proposals, net-
work provenance [18, 19, 20] presents an approach that provides
the fundamental functionality required for performing such man-
agerial tasks – the capability to “explain" the existence and changes
of system state.

Network provenance captures direct and indirect dependency re-
lationships among system states as a graph, where a system state is
modeled as a vertex and dependencies between states are modeled
as edges. It reveals the dependencies between system states, and
permits system administrators to transitively tie observed faults to
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their potential causes, and to assess the damage that these faults
may have caused to the rest of the system.

While network provenance proves to be useful to determine the
origins/causes and effects of specific system state, we envision it
offering insights into the overall system execution that can be lever-
aged to answer questions, such as “Are there parts of the protocol
that are not executing correctly?”, “Are there system invariants that
can be inferred from the execution?”, “Is the protocol executing
efficiently?” As an initial step towards this vision, we explore a
systematic approach to identify potential misbehaviors in a system
execution by studying the structural features based on common ex-
ecution patterns from its corresponding network provenance graph.

Our approach for identifying common execution paths involves
discovering interesting (or frequent) substructures in a network prove-
nance graph and using these substructures as the feature set for a
basic model to determine if nodes in the network are misbehaving.
The intuition of our approach is that network provenance can be
viewed as an instantiation of the execution logic (or control flow)
of a distributed system; the substructures that yield high compres-
sion rates are likely to give insights into the dynamics of the ex-
ecution logic. For instance, one can use the mined substructures
to determine common execution patterns, and using these execu-
tion patterns, find nodes in the network which may be executing
the protocol improperly. Like in other domains, such as social
networkings and scientific workflows, the size of network prove-
nance graphs can be large. As a result, performing analysis on
these graphs is becoming more and more difficult. In this paper, we
focus on applying and scaling up substructure mining for network
provenance graphs by incorporating a graph database into the sub-
structure mining process and implementing algorithmic optimiza-
tions that reduce the complexity of substructure mining.

We find it helpful to think about substructure mining as two sub-
problems: (1) identifying possible substructures that may be inter-
esting, and (2) efficiently finding all instances of these substructures
in the graph. Many techniques have been developed for substruc-
ture mining, each trying to improve on at least one of these two sub-
problems. Previous work, such as Subdue[5, 8] and gspan[14], ex-
plored ways to efficiently traverse the search space, while using dif-
ferent methods, compression and support respectively, to measure
the interestingness of substructures. While these methods reduce
the search space considerably, they still do not scale well in terms
of graph size because both finding a single substructure is difficult
and the number of possible substructures to search is very large.
A large body of work investigates efficient indexing strategies for
subgraph matching [2, 4, 7, 15, 16, 17, 21]. Our approach is to not
build an external index, but to use existing database technologies
and algorithmic optimizations to improve the performance. Begin-
ning with a well known substructure mining algorithm, we leverage



  

Graph 
Database

Graph
Statistics

Subdue
Beam Search

Sub-
structure

Check Early
Termination

Substructure 
Instance Count

Pattern
Match

Generate
Substructure

Network

Provenance
Logs

Use Frequent 
Substructures 
to Monitor 
Network

Figure 1: Architectural Overview.

a graph database to improve the performance of the search, and pro-
pose simple heuristics that improve the performance in the context
of network provenance graphs.

2. SYSTEM DESIGN
Figure 1 presents the architectural overview of our system. It

takes as input the network provenance graph generated from the
execution of a distributed system, and performs substructure min-
ing using statistics from the network provenance graph and previ-
ously discovered interesting substructures. Our system is designed
to consider the network provenance graph when the system has
reached a stable state. We leave as future work the analysis on
network provenance graphs that constantly evolve during the ex-
ecution of a dynamic system. Because these provenance graphs
can be large (100,000s of nodes), we develop an approach to sub-
structure mining that integrates a graph database, taking advantage
of its search, indexing, and statistics collection functionality. The
identified substructures are then used to provide insights into the
execution of the distributed system.

The remainder of this section describes in detail the network
provenance model and our approach for substructure mining using
a graph database.

2.1 Network Provenance
System Model. For ease of exposition, we adopt a system model
that is commonly used in database systems to reason about prove-
nance [20]. In this model, the state of the primary system is rep-
resented as tuples, and the algorithm which describes how tuples
are derived from the system’s inputs is represented as derivation
rules [20]1.

Each node in a distributed system has its own set of tuples, and
derivation rules can span multiple nodes. For example, the state of
a router r might consist of tuples such as link(@r,a) to show that
r has a link to a, or path(@r,b,c) to show that r knows a path
to b with cost c. Here, link and path are the names of specific
relations, and @r indicates that the tuple is maintained on r in the
path relation.

Tuples can either be base tuples or derived tuples. Base tu-
ples correspond to local inputs that are assumed to be true without
derivations, e.g., a list of physical links that is input to a routing
protocol. Derived tuples are obtained from other tuples through a
derivation rule of the form τ@n :- τ1@n1 ∧ τ2@n2 ∧ · · · ∧ τk@nk.
This is interpreted as a conjunction: tuple τ should be derived on

1Few practical systems are explicitly built in terms of tuples and
derivation rules. Prior work [18] has described general techniques
for extracting tuples and derivation rules from existing systems.

n whenever all τi exist on their respective nodes ni. Having ex-
plicit derivation rules makes it very easy to explain the existence of
a tuple.
Provenance Model. We can define a provenance graph G =
(V,E) in which each vertex v ∈ V corresponds to a tuple and
each edge (v1, v2) indicates that v2 was derived from v1. A com-
plete explanation for the existence of τ would be a subtree that is
embedded in G and rooted at τ ; the leaves consist of base tuples,
which require no further explanation.
Example. To illustrate the provenance model, we consider a sim-
ple program MinCost that computes the shortest path between ev-
ery pair of nodes in a network. The expected execution logic is
captured as the following derivation rules:
r1 path(@S,D,C) :- link(@S,D,C).
r2 path(@S,D,C1+C2) :- link(@Z,S,C1), bestpath(@Z,D,C2).
r3 bestpath(@S,D,MIN<C>) :- path(@S,D,C).

Rule r1 computes single-hop paths from direct links: “if there is a
link between node S and D with cost C, then there is a path between
these two nodes with cost C”. Rule r2 computes a multi-hop path by
expanding existing paths: “if node Z has a direct link to its neighbor
S with cost C1, and Z has path to D with cost C2, then there is a
path between S and D with cost C1+C2.” Rule r3 computes the best
paths (with minimal costs) by performing aggregation on the path
relation.

Consider the example execution on the network topology shown
in Figure 2(a), where nodes a and b faithfully follow the MinCost
program, and node c is misbehaving as it does not compute multi-
hop paths (by applying rule r2) and send them to its neighbors.
There could be multiple reasons why node c misbehaves, for in-
stance, node c could be selfish and not willing to carry traffic for
other nodes (by not including itself as an intermediate node in a
path), or c could simply encounter software bugs.

Figure 2(c) shows the provenance for the execution of the Min-
Cost program. It encodes the dependency relationship between
system states distributed across the nodes. For instance, the best
path (a→ b) between node a and b (denoted bestpath(@a,b,4)))
is derived from the direct link between these two nodes (denoted as
link(@a,b,4)) by applying derivation rule r1 and rule r3, and
it is then combined with the direct link between node a and c (de-
noted as link(@a,c,1)) to generate a two-hop path c → a → b
(denoted as path(@c,b,5)) that is sent to node c.

Figure 2(b) shows two frequent substructures of the provenance
graph. Substructure 1 encodes a common pattern of generating one-
hop best paths, and Substructure 2 encodes how multi-hop paths
(not necessarily with minimal cost) are generated. Note that each
of these substructures is a combination of multiple derivation rules,
and gives insights on how different parts of the execution logic in-
teract with each other. While Substructure 1 manifests multiple
times in the provenance graph for each of the three nodes, no in-
stance of Substructure 2 appear on the provenance graph for node
c. This corresponds to the misbehavior of node c since c does not
perform the computation of multi-hop paths. A network adminis-
trator can use the frequent substructures to focus in on which nodes
are missing expected behavior and which nodes have unusual, non-
frequent behavior in an effort to identify potential misbehavior.

2.2 Substructure Mining
Let G = (V,E) represent a graph, where each vertex in V and

each edge in E has a semantic label that is not unique. Let H
represent a substructure in G, where V (H) ⊂ V (G), E(H) ⊂
E(G) and there is a function f : V (H) ⇒ V (G) st ∀vi, vj ∈
V (H), (vivj) ∈ E(H), (f(vi), f(vj)) ∈ E(G) maps labels to
each vertex and edge in G. A substructure H can appear multiple
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Figure 2: An example provenance graph for an execution of the MinCost program. Figure (a) shows the example network topology,
where the misbehaving node is shaded; Figure (b) presents two frequent patterns in the provenance graph, which can be used as the
features of the execution of the MinCost program; Figure (c) denotes a (partial) provenance graph of the program execution. Note
the differences of the structure features between the provenance graphs for node c and the other two nodes (e.g., the provenance
graph for node c does not contain instances of Substructure 2).

times in G using different functions which correspond to different
vertices and edges inG and will be referred to as different instances
of H in G. H ′ is an extension of substructure H that contains
V (H) and E(H) along with one or more additional vertices and
edges not in H .
Problem. Given a graph G = (V,E), identify the set of sub-
structures H = {H1, H2, ...Hn} that are frequent and lead to the
highest compression rate. Here, a frequent substructure is one that
appears often in G. If every instance of Hi in G is reduced to a
single vertex, we define the compression rate as φ(G)

φ(Hi)+φ(G|Hi)
,

where φ(G) is the description length of G, Hi is the substructure,
and G|Hi is G after being compressed based on Hi (see Figure 3
for detailed equation).
Approach. We use a graph database to store the full graph and the
label index to take advantage of the database’s optimizations.For
large graphs, we surmise that the database will improve the perfor-
mance over a memory-based implementation.

Algorithm 1 shows the high-level algorithm for substructure min-
ing that incorporates the use of a graph database. Given a graph
G, the algorithm begins by identifying a substructure to search
for (identify_initial_candidate_substructures()). The database is
then queried for those substructures and all the matching substruc-
tures are returned (find_matches()). If the substructures are fre-
quent and lead to high compression (compress > 1), they are
maintained in H and in the temporary possible candidate set (C′).
The top candidate_set_size substructure matches based on com-
pression (get_top_matches()) are maintained. These substruc-
tures are extended in all directions to generate more substructures
to search for (extend_substructure()). This process continues un-
til the maximum number of expansions specified by the user is
reached. Finally, the substructures that are most frequent and lead
to the highest compression are returned as the result set (H).

Note that different stopping criteria can be used for substructure
mining, such as criteria defined on the maximum size of the sub-
structure, the maximum number of iterations, or the expected gain
if the search is continued. One of the challenges of substructure
mining is that each iteration involves searching the graph for a can-
didate subgraph, which corresponds to the subgraph isomorphism
problem that has been shown to be NP-Complete [3].

A number of different algorithms have been proposed that are
variants of the basic algorithm described in Algorithm 1. While
any of these algorithms are a reasonable starting point, we choose
to use Subdue [5] as our base algorithm because it follows the min-

Algorithm 1 High Level Substructure Mining
1: Input: G, candidate_set_size, max_nbr_expansions
2: Output: H
3:
4: H = ∅, C = ∅, nbr_expansions = 0
5:
6: C = identify_initial_candidate_substructures(G)
7: while nbr_expansions < max_nbr_expansions do
8: C′ = ∅
9: for all c in C do

10: instanceCount = find_matches(G, c)
11: if compress > 1 then
12: H = H ∪ c
13: C′ = C′ ∪ c
14: C′ = get_top_matches(C′, candidate_set_size)
15: C = ∅
16: for all c′ in C′ do
17: C = C ∪ extend_substructure(c′)
18: nbr_expansions ++
19: return H

imum description length (MDL) principle, which we use to theo-
retically ground our work. The MDL principle states that “the best
theory to describe a set of data is that theory which minimizes the
description length of the entire data set" [5]. Using the MDL prin-
ciple, the substructures that are found can be ranked based on how
well they compress the overall graph. In addition, Subdue allows us
to successfully limit the complexity of both aspects of substructure
mining — the search space of substructures and the complexity of
finding substructure instances within a graph.

compress =
φ(G)

φ(H) + φ(G|H)

φ(G) = |V (G)|+ |E(G)|
φ(H) = |V (H)|+ |E(H)|

φ(G|H) = (|V (G)− |V (H)| ∗ instanceCnt+ instanceCnt)

+ (|E(G)− |E(H)| ∗ instanceCnt)

Figure 3: Calculation of compression rate [1]. Here,
instanctCnt is the number of times substructure H appears
in G and φ represents the description length
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3. OPTIMIZATIONS
In this section we present a number of optimizations for reduc-

ing the cost of each of the subgraph mining subproblems: identify-
ing candidate substructures that may be interesting and efficiently
finding all instances of H in G. While these optimizations do im-
prove the efficiency of the basic graph mining algorithm, they can
also lead to missing interesting substructures. However, we show
in the evaluation section that for provenance graphs, our accuracy
remains high.

3.1 Finding Interesting Substructures
As mentioned in the previous section, to find high compression

substructures, we iteratively expand a fixed number of high com-
pression substructures, i.e. we perform a beam search. Two heuris-
tics that improve our basic search follow.
Duplicate Substructure Reduction (DUP-REDUCE). One prob-
lem with our basic algorithm is that during the substructure expan-
sion, it is possible to generate duplicate substructures during one it-
eration of the expansion, as well as across multiple iterations. The
mining efficiency can be significantly improved by reducing (or
eliminating) the duplicates. Therefore, the subgraph duplication
reduction heuristic augments the beam search with the canonical
labeling of substructures and the closed subgraph concept used in
gspan and closegraph [14]. Instead of expanding all possible paths,
this heuristic only expands substructures along a specific path of a
spanning tree of the substructure. Also, if the instance count re-
mains the same when a vertex is added to the substructure, the sub-
structure is considered “closed” because any other expansion on
that substructure will be the same as expanding the new larger sub-
structure. However, because this method uses instance count as its
metric rather than description length, it is possible that the search
may miss substructures that have higher compression. Our results
show that this is not the case for our network provenance graphs.
Outward Expansion (EXPAND-OUT). This heuristic focuses on
limiting the types of edges used during substructure expansion.
Because we are working with directed provenance graphs, and a
provenance graph models a process of data dependencies, expand-
ing substructures using only outgoing edges is meaningful in the
context of rule execution. While this limits the types of substruc-
tures that will be found, it answers the question "Given this piece
of information, what execution patterns can be derived from it?".
Therefore, this optimization expands substructures using only out-
going edges, thereby reducing the number of substructures that
must be compared to the original graph.

3.2 Query Graph Matching
While the number of substructures that are considered improves

the performance of the basic substructure mining algorithm, the
query graph matching subproblem is the more costly step. There-
fore, improving the efficiency of this subproblem will have a larger
impact on the overall runtime.

Figure 4 shows an example of a small graph (right) and a corre-
sponding substructure (left). For this small example, there are

(
10
4

)
= 5040 possible instances of this substructure. While this type of
structure may be uncommon for social networks, it is not unusual
for network provenance graphs to have a large number of overlap-
ping matches within a small graph, e.g. a single vertex can have 50
or more edges to vertices with the same label. To help reduce the
impact of overlaps, we use a set of start nodes to focus our search.
To get this set, a vertex in the candidate substructure is chosen, and
all nodes in the full graph with the same label as that vertex are se-
lected as the set of start nodes. Each start node is a possible starting
point for a substructure instance. Once a single match is found for
a start node, we move on to the next start node. We propose two
different heuristics which take advantage of this set of start nodes:
Infrequent Start Vertex (LESS-FREQ). Deciding which vertex
of the substructure to start with will impact the size of the set of
start nodes. For example, if a frequent vertex is selected as the start
vertex, then there is a higher number of candidate instances in G
that the substructure needs to be compared against. On the other
hand, if the vertex that starts the search is infrequent, then the num-
ber of candidates to compare against is lower. Therefore, this op-
timization uses the vertex with a label that appears least frequently
in G as the start vertex for subgraph matching.
Start Vertex Reuse (REUSE). All substructures are extended ver-
sions of substructures that have already been examined. This heuris-
tic uses knowledge about the matched instances of Hi as a starting
point when searching for instances of query substructure H ′

i . The
intuition is that since H ′

i is extended from and therefore contains
Hi, starting with the instances of Hi as candidate matches will fo-
cus the search for instances of H ′

i to the candidates that are most
likely to be a match. Since maintaining all the instances of Hi can
be expensive in terms of memory usage, we only reuse the start
vertex of the instances of Hi. In other words, we reuse the start
vertices from Hi during our match search for instances of H ′

i .

4. PRELIMINARY EVALUATION

4.1 Prototype Implementation
We implemented two optimized versions of our algorithm, an

in-memory version (MEM-OPTMIZED) and a graph database ver-
sion (DB-OPTIMIZED) using the neo4j graph database. We repre-
sented our graphs and substructures as lists of vertices, where each
vertex had a list of adjacent edges associated with it. We built an
external index that mapped a vertex label to the set of vertices with
that label. (For the neo4j implementation, we also used its auto-
indexing feature). Traversals for substructure matching were per-
formed using the vertex index for the initial lookup, and then using
the edge lists for each vertex to traverse the graph for matches.

Since the neo4j query language, Cypher, did not support return-
ing only a single instance of a substructure without finding all the
other instances (this is important for finding non-overlapping sub-
structures), we used a depreciated set of neo4j classes for substruc-
ture matching and modified them to take advantage of the heuristics
mentioned in Section 3.

Because we were interested in identifying non-overlapping in-
stances of a substructure, we maintained a hash table of used ver-
tices in memory. 2 We then explicitly checked each matching in-
stance returned to see if it contained used vertices, removing those
that did. We also adjusted our substructure matching to improve
the runtime of matching. Our approach was to partition a large
2We attempted to keep track of this efficiently within neo4j, but we
were unable to find an efficient option.
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Dataset ASN Nodes Links |V (G)| |E(G)|
1 1221 108 306 16,227 28,090
2 1755 87 322 23,015 40,725
3 3257 161 656 52,848 94,568
4 6461 141 748 73,316 134,072
5 1239 315 1,944 317,066 592,038

Table 1: RocketFuel Topologies

substructure into small substructure pieces (or patterns), similar in
principle to the idea used in [17]. Each vertex v adjacent to the
start vertex was considered to belong to a separate pattern, and all
other vertices, reachable from v without traversing the start vertex,
were part of that pattern (or path). We then performed substructure
matching for each of the patterns individually. This improved the
efficiency because it was faster to search for smaller substructures
and easier to identify overlaps with previous patterns.

4.2 Performance Evaluation
We performed experimental evaluations to study the performance

of substructure mining on network provenance graphs and the ef-
fectiveness of our proposed optimizations.
Experimental Setup. Our experiments were performed on a ma-
chine with two 2.13 GHz Intel Pentium P6200 and 4 GB of mem-
ory. We derive our test provenance graphs from executions of the
MinCost protocol, on several inferred intra-domain topologies re-
ported in the RocketFuel project [11]. The topologies and the gen-
erated provenance graphs are summarized in Table 1. All of our
evaluations were performed 11 times, with the first result being dis-
carded to account for warm up time. Our results show the average
of the 10 remaining runs.
Methods. MEM-OPTIMIZED and DB-OPTIMIZED are the in-
memory and neo4j-based implementations with all the optimiza-
tions presented in Section 3. We compare these two methods with
neo4j-based implementation that did not apply any of the optimiza-
tions (BASELINE). To validate the effectiveness of each individ-
ual optimization, we additionally evaluate three methods: For “No-
REUSE", we maintain all the optimizations except the “Start Vertex
Reuse" optimization. For “No-EXPAND-OUT", we maintain all
the optimizations except the “Outward Expansion" heuristic. And
for “No-DUP-REDUCE", we do not use the “Substructure Dupli-
cation Reduction" heuristic.
Evaluation Results. We now present our evaluation results in
terms of the completion time and compression rate to study the
trade offs between efficiency and accuracy when different opti-
mizations were applied. We also studied the sensitivity of the re-
sults to the beam size (nbr_expansions) during each iteration.

• Completion time. The evaluation results are presented in Fig-
ure 5. All of our evaluations perform 100 substructure expan-
sions of the best substructures. Our results clearly show that not

only do our optimized methods perform best, but also the ab-
sence of even a single heuristic affects the runtime greatly. The
“Start Vertex Reuse” heuristic is the biggest time saver for most
graphs, and “Outward Expansion” also makes a large contribu-
tion. Finally, it is notable that the optimized implementation us-
ing the database outperforms the in-memory version.

• Compression rate. Figure 6 summarizes compression rates for
the best substructure (top 1), the 10th best (top 10), and the 20th
best (top 20) across the 5 data sets. We did not observe any
difference in compression rates for No-REUSE and No-DUP-
REDUCE, and omitted them from the figure to reduce complex-
ity. From this figure, we can see that for our graphs and settings,
the top 1 is always the same across methods. No-EXPAND-OUT
and BASELINE perform better at 10 and 20 for some graphs and
worse for others.

We observed that DB-OPTIMIZED performed worse as it missed
one type of substructure which was found by No-EXPAND-OUT
and BASELINE. This is understandable, as the “Outward Ex-
pansion” heuristic restricts the types of candidates substructures.
DB-OPTIMIZED performed better in data set 5, because the No-
EXPAND-OUT and BASELINE methods did not reach the same
size of substructures as DB-OPTIMIZED. This occurred because
those methods considered smaller substructures and reached the
100 expansions limit (beam size) before they reached the larger
substructures. This result emphasizes the trade off between com-
pression rate, efficiency, and the top substructures returned.

• Sensitivity to beam size. In Figure 7 we show the change in
compression when varying the beam size from 5 to 30. Our eval-
uation was performed using the largest graph (Dataset 5) and
with the number of expansions set to 100. We observed that
varying the beam size generally did not have a large effect on
the final compression results. Only changing from beam size
5 to beam size 10 had an effect on the compression, and only
for the BASELINE and No-EXPAND-OUT methods. Compar-
ing the returned substructures, we noticed that the BASELINE
and No-EXPAND-OUT did not reach large substructures with
beam sizes 10 and 30. This case was mentioned previously -
these methods analyzed smaller substructures and reached the
100 expansion limit before analyzing any larger substructures.
A smaller beam size allowed us to reach larger substructures
quicker, searching fewer substructures, while a larger beam al-
lows us to consider more substructures during each iteration.

5. DISCUSSION
Our results provide initial evidence that it is possible to find high-

compression substructures in network provenance graphs, even as
the graphs become very large. Being able to leverage these high-
compression substructures in analyzing the execution of a network
protocol should enable us to identify malicious behavior for nodes



in a network. Our algorithm allows us to search many possible
substructures within the full provenance graphs to find those that
are most indicative of normal behavior. Also, once a common set
of substructures are found, this methodology will further allow us
to quickly query a provenance graph for a specific network node to
determine if it is exhibiting malicious behavior.

We are also encouraged by our results using the graph database
neo4j. The run times for the large graphs we tested are acceptable
for our application. We are surprised that the database version con-
sistently outperforms our memory algorithm. Our initial analysis
has not shown conclusively why this is the case, or what aspects
of neo4j gives it an advantage in our implementation. We leave a
more detailed analysis for future work. To get this performance, we
explicitly used many parts of the neo4j API, including some depri-
cated classes and methods. It seems that at least some of what we
have implemented could be included as part of a graph database to
facilitate frequent substructure mining. Some additional database
functions that would support this include:

• Returning only non-overlapping instances of substructures.
• Returning a single instance of a substructure.
• Having a caching mechanism that stores information about

intermediate substructure instances to aid expanded substruc-
ture matching.

For our application of frequent substructure mining, and possibly
substructure mining in other domains, these improvements would
make this type of analysis with a graph database much easier. While
frequent substructure mining is only a single application for graph
databases, it is an important one, and improving how graph databases
handle substructure mining would increase their overall usefulness.

6. RELATED WORK
Given the increasing size and complexity of graphs, taking ad-

vantage of database technologies and methodologies for frequent
substructure mining is an important direction of research. A num-
ber of memory based substructure mining algorithms have been
proposed in the literature [5, 8, 14]. Gspan and closegraph [14] use
the apriori-like idea of minimum support to bound the search space
and identify frequent subgraphs. Subdue [5, 8] uses the principle of
MDL to identify substructures that compress the graph. While we
utilize components of each of these algorithms in our work, we aug-
ment them to 1) identify only non-overlapping frequent substruc-
tures; and 2) incorporate the use of a graph database. Padmanabhan
and Chakravarthy propose an implementation of Subdue in a rela-
tional database [10]. However, because new tables are created for
each interesting substructure, the number of tables increases rapidly
for data sets with a large number of frequent substructures. To the
best of our knowlede, we are the first to investigate this problem
using an existing graph database.

One of the subproblems in frequent substructure mining is sub-
graph matching. Approaches for subgraph matching can be divided
into two categories, those that propose new indexing strategies [2,
4, 7, 15, 16, 17, 21] and those that do not build an index structure
[12, 13]. We focus on those methods that do not build an exter-
nal index since our focus is on in-memory solutions and solutions
using a database’s existing infrastructure. Tian et. al [13] propose
SAGA, a subgraph matching tool for biological graphs. They focus
on approximate matches using a graph distance metric to measure
similarity between graphs. Our focus differs since we are interested
in exact matches using larger graphs stored in a graph database. In
a tangential approach to our work, Sun et. al [12] handle very large

graphs using a distributed memory store, partitioning the graph and
the query, and parallelizing the query processing.

7. CONCLUSION
This paper presents a method for quickly finding high compres-

sion substructures within provenance graphs with the explicit pur-
pose of identifying common execution patterns for network proto-
cols and using these patterns to identify malicious nodes in a net-
work. We demonstrate that it is possible to use some simple heuris-
tics to speed up the substructure mining process, and that using a
graph database like neo4j can lead to improvements in the perfor-
mance of the substructure mining algorithm. Future work will fo-
cus on testing these methods against provenance graphs created by
different protocols and with different malicious behavior. Consid-
ering other graph databases, particularly ones that support hypern-
odes and hyperedges, is also an important direction. Another pos-
sible extension involves studying the mining of provenance graphs
which are dynamically changing in a live environment rather than
in a static offline state. Frequent substructures are just one facet
of the rich set of features which network provenance graphs offer.
Pairing these graphs with the expanding functionality and analyti-
cal promise of graph databases should lead to interesting research
opportunities.
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