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Worst-Case Complexity 

Worst case complexity is by far the most 
cited, most researched, best understood, 
approach to analyzing the difficulty of 
computational tasks.  
 
However, it’s focus on hard, possibly rare, 
instances, makes it excessively pessimistic  
 



Theoretically hard 
Practically feasible 

•   Propositional Satisfiability   (SAT) 

•  Linear Programming 

•  Neural Network Training 

•  K-means clustering 



 For many practical computation tasks,  
“naturally arising” inputs are considerably 
easier than the worst-case instances. 
 
Example: SAT solvers run efficiently in 

practice 
 
Major challenge: How can such inputs be 

defined?  



1) Are there properties that distinguish 
naturally occurring inputs? 

2)  May such inputs be easy to solve? 

3) Can such inputs be formally distinguished 
for some specific tasks? 
 
4)  Can there be a generic definition that 

holds across many computational tasks? 



Focus on clustering 

   The most common clustering objectives  
   are NP-hard to optimize (e.g., k-means). 
 
 Does this hardness still apply when we 
 restrict our attention to “clusterable” inputs? 
 
Is it the case that “Clustering is Difficult only 
when it Does Not Matter” (CDNM thesis)? 



Outline of the talk 

1)  I will start by listing requirements on notions 
of clusterability aiming to sustain the CDNM 
thesis. 

2)  List various clusterability notions that have 
been recently proposed in this context. 

3)  Examine those notions in view of the above 
requirements. 

4)  Conclusions, open problems and directions 
for further research. 



Desiderata for  
notion of “Clusterable” inputs 

1.  It is reasonable to assume that most (or at 
least a significant proportion) of the inputs 
one may care about in practice are 
“clusterable”.  

•  While there is no way to guarantee that the property 
will be satisfied by future meaningful inputs, it can 
serve to eliminate too restrictive notions. 

•  Maybe checked against common generative models. 



Desiderata for  
notion of “Clusterable” inputs 

2. There should be efficient algorithms that 
are guaranteed to find a good clusterings for 
any input “clusterable” input. 
 
 
(we will have to be more specific about the 
meaning of “efficient”. In particular, the 
dependence on number of clusters) 



Further requirements  
3. There should be an efficient algorithm 
that, given an input, figures out whether the 
input is “clusterable” or not. 
 
Note that in contrast to other computational 
tasks, checking if a given clustering is 
indeed optimal is generally not feasible. 
  
 



Last requirement 

4. Some commonly used practical algorithm 
can be guaranteed to perform well (i.e., run 
in polytime and find close-to-optimal 
solutions) on all clusterable instances. 
 
This requirement is important when our goal 
is to understand what we witness in practice. 



The main open question 

Can we come up with a notion of clusterability 
that meets the above requirements (or even 
just the first two)? 



How does our “Additive 
Perturbation Robustness” fare? 

1.  I believe that the APR meets the “realistic 
inputs” requirement – small feature-
measurements inaccuracies should not 
have dramatic effect on solutions. 

2.  The resulting algorithm is polytime but not 
practically efficient. 

3.  We have no way of testing inputs. 
4.  The algorithm is not practically common 



Recently proposed clusterability 
notions 

1. Perturbation Robustness(PR) – data set I 
is robust if small perturbations of I do not 
result in changes to its optimal clustering. 

1a. Additive PR [Ackerman-BD 2009]  - the 
perturbation may move every point in I by some 
bounded distance. 
1b. Multiplicative PR [Bilu-Lineal 2010]   - the 
perturbation may change every pairwise point 
distance my a bounded multiplicative factor. 



2. Significant loss when 
reducing the number of clusters 

2a. ε -Separatedness [Ostrovsky et al. 2012]: 
an input data set (X, d) to be ε-separated for k 
if the k-means cost of the optimal k-clustering 
of (X, d) is less then ε2 times the cost of its 
optimal (k − 1)-clustering. 
 
 



More notion of “well behaved” 
clustering inputs 

Uniqueness of optimum [Balcan et al. 2013]: 
(X,d) is (c, ε)-approximation- stable if every 
clustering C of X whose objective cost over (X, 
d) is within a factor c of that the optimal 
clustering, is ε-close to OPT(X) w.r.t. some 
natural notion of between-clusterings distance.  



More notion of “well behaved” 
clustering inputs 

α-center stability: [Awasthi et al. 2012]: 
instance (X,d) is α-center stable (with 
respect to some center based clustering 
objective) if for any optimal clustering with 
centers c1, . . . ck, for every i ≤ k and every  
x∈ Ci, and every j ≠ i, αd(x,ci) < d(x,cj).  
Namely, points are closer to their own 
cluster center by a factor α more than to any 
other cluster center.  



How do these notions fare w.r.t. 
the list of desirable properties? 

1)  All of these notions imply the existence of 
efficient clustering algorithms (weaker 
efficiency for APR). 

2)  None of them can be efficiently verified. 
3)  Only the ε -Separatedness gets efficiency 

for a (semi-) practical algorithms. 
4)  However, all (except maybe APR) seem 

to fail the requirement of being realistic. 



What do I mean by “not a realistic 
clusterability requirement”?  

•  ε -Separatedness [Ostrovsky et al. 2012] 
Implies polytime clustering only when the 
minimal between-cluster-centers distance is 
> 200 times the average distance from a 
point to its cluster center. 

> 200  



What do I mean by “not a realistic 
clusterability requirement”?  

For Uniqueness of optimum [Balcan et al. 
2013]: The parameter values sufficient for  
showing efficiency of clustering imply that 
the distance of a point to any “foreign” 
cluster center is larger that its distance to its 
own cluster center by at least 20 times the 
average point-to-its-cluster-center distance. 



Provable reason for concern 

•  The proofs of efficiency for all of the 
notions (except the APR), rely on showing 
that they imply α-center stability for some 
large α. 

•  However, [Ben-David, Reyzin 2014] show 
that for any α>2, solving α-center stable 
inputs is NP-hard. 

•  2-center stable data sets are still 
“unrealistically nice” 



The bottom line 

The proposed notions provably detects 
easy-to-cluster instances,  
but those are not really the “realistic” inputs. 
 
The current approach to define input 
niceness that will render efficiency as a 
function of the number of clusters, k, seems 
to be inherently too restrictive. 



Alternative directions (1) 

•  All the current approaches that try to 
tackle the exponential dependence on the 
number of clusters are based on 
formalizing large between-clusters 
separation. 

•  It seems that substantiating the CDNM 
thesis will require a different approach. 



A different type of “clusterability” 

  There is a lower bound D*(X), on the k-
means cost that can be efficiently computed 
by a spectral method.  
M. Meila (2006) showed that if the cost of an 
optimal clustering for an input X is close 
enough to D*(X), then one can efficiently 
check whether a given clustering is close to 
optimal. 



Easy clustering under the Meila 
condition. 

•  [BD, unpublished]: Under that condition, 
k-means can be efficiently approximated. 

  Intuitively, the condition states that:  
The volume spanned by the optimal cluster 
centers is much larger than the k-means 
cost. 
 
 



Alternative directions (2) 

•  All the current approaches that try to 
tackle the hardness of finding a minimal 
cost clustering. 

•  Is that what is really required in practice? 



Alternative directions (3) 
Should one really care about an exact 
number of clusters when that number is 
high? 
 
Consider the common task of clustering for 
record de-duplication in data repositories. 
Clustering is a common tool. 
 
The number of resulting clusters is huge, but 
it is not set in advance. 



1. Can similar approaches be applied to 
other worst-case hard problems that are 
being routinely solved in practice? 

2.  In particular, can we find a notion of 
“input niceness” that will explain the 
practice of Propositional SAT problem? 

3.  Will the new analyses lead to new useful 
    algorithms? 



ρ
We say that an input, I, is ρ- robust for a 
problem P, if, for every input 
   I’ such that d(I, I’)≤ρ,   
                                P(I)=P(I’). 
 
(where d is some metric over the space of 
inputs for the problem P). 
 



We will show that, for many NP-hard problems 
in machine learning and computational 
geometry, there exists a polynomial time 
algorithm that finds the optimal solution for 
any robust input. 
 
(However, the complexity of these 
algorithms has exponential dependency on 
the robustness parameter, ρ). 
 



For each of the above classes, for every 
ρ>0, there exists a polynomial time 
algorithm that finds the optimal solution for 
all ρ-robust inputs. 
 
(However, the complexity of these 
algorithms has exponential dependence on 
the robustness parameter, ρ). 
 



 Background: Combinatorial Optimization 
problems are defined via an “cost 
function”, assigning a real number π(I,T), 
for every input I and a solution T for it. 

 
   An algorithm, A, is an ε-approximation 
  if, for all input, I,  
            π(I, A(I)) ≤ π(I, Opt(I))(1+ ε) 
             



Towards a new notion of 
approximation 

For an input instance, I, and a cost function π, 
define, 
 
 λρ(I) =  

Sup{I’ : d(I, I’) < ρ} {|π(I, Opt(I)) - π(I’, Opt(I)) |  ⁄  π(I, Opt(I))} 
 
This parameter models how sensitive is the input I to 

small perturbations (w.r.t. the given optimization 
problem) 



New measure of approximation 
quality 

An algorithm is a ρ approximation if for every input I 
 
                   π(I, A(I)) ≤ π(I, Opt(I))(1+ λρ (I)) 
 
Note that if the instance I is ρ-robust, the algorithm A is 

required to output a (fully) optimal solution. 
 
Recall that the common notion of approximation requires 
                  π(I, A(I)) ≤ π(I, Opt(I))(1+ ε) 
 
 



 
Ø  For inputs that have highly irregular  behavior of the  
    cost, the new measure is less demanding. 
 
Ø  For tamed/robust/regular inputs, 
    (I.e. inputs, I, for which utility function is smooth in the 

neighborhood of optimal solutions for an input I), 
    success under the new measure implies success under 
    the usual measure 
  
        Hopefully real-life inputs are like that.  
     



Theorem 1: For each of the problems mentioned 
above (BSH, BSHH, DOB, k-means), 

For every ρ, there exist an efficient (poly-time) ρ- 
approximation algorithm.  

More precisely, the algorithm is polynomial in the 
input size, n and the Euclidean dimension, but 
exponential in 1/ρ2	


 
Theorem 2: Unless P=NP, there exist no 
ρ- approximation scheme that runs in time 
polynomial in 1/ρ	




  
 Input:  A finite set  P  of points on the unit 

   sphere  Sd-1 . 

 Output:  An open Ball  B  of radius  1  so that   
  |B ∩ P|  is maximized. 

  

   

 

The Densest Open Ball Problem 

Sn-1 

B 



 Algorithms for the Densest Open Ball 
Problem 

   
 Alg. 1.  For every  x1, …xd+1  ∈ P ,  
 
          • find the center of their minimal enclosing Ball,  

                    Z(x1, …, xd+1)   
     
          • Check  |B[Z(x1, …, xd+1), 1] ∩ P| 
       
      
            Output the ball with maximum intersection with P 

 
 
 

 Running time:  ~|P|d+1   exponential in  d. 
  



Another Algorithm (for the Densest Open 
Ball Problem) 

   
 Fix a parameter  k << d , 

 
 Alg. 2. Apply Alg. 1 only for subsets of size  < k , i.e.,  

 
      For every  x1, …xk  ∈ P ,  
 
          • find the center of their minimal  enclosing Ball,  

                      Z(x1, …, xk)   
     
          • Check  |B[Z(x1, …, xk), 1] ∩ P| 
   
      Output the ball with maximum intersection with P 

 
     Running time:  ~|P|k  

 
     But, does it output a good hypothesis? 



 Our Core Geometric Result 
  
 The following result shows that computations from local 

    data (k-size subsets) can approximate global 
computations, with precision guarantee depending only 
on the local parameter, k. 
     

 Theorem (folklore?): For every   k < n  , d, subset S of the 
d-dimensional unit ball, and every y in the convex hull of 
S, there exist a subset, x1,…xk   
  

     So that 
   

 
    k
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Theorem: For each of the problems mentioned above  
(BSH, BSHH, DOB, k-means), 
for every ρ>0, there exist a ρ-approximation algorithm that 
runs in time 
 
(As opposed to the NP-hardness of ε0 – approximation, 
 for some ε0 >0, for the common definition of approximation 
 complexity). 
                  

)(
2−ρnO



Theorem: For each of the problems mentioned above  
(BSH, BSHH, DOB, k-means), 
for every ρ>0, there exist a learning algorithm that 
achieves error at most ε above that of the ρ – margin error 

of the best classifier in the class in time 
 
 
 
(Since (ερ)-2  examples suffice for getting the required 

generalization error). 
                  

O((ερ)−2−2ρ
−2

)



I.  Use the above argument to replace the 
exponential dependence on d by 
(exponential) dependence on ρ.  	


ΙΙ.   Apply the definition of – approximation, 
         to replace approximation in the space of 

solutions by approximation in terms of risk 
(the objective function). 	


	




  Smoothed Analysis (Spielman and Teng) 
   addresses the same type of problem. 
 
Ø They analyze specific algorithms, while 
   we consider the complexity of the problem. 
 
Ø They “smoothen” the inputs by taking 
   averages over random perturbations of  input points, 

and then take worst case over all points. 
   Here we consider the worst-case bounded-average 

perturbation. 
 
 


