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ONLINE LEARNING PROTOCOL

Fort=1ton
Receive input instance x; € X

Learner picks randomized prediction g; € A())
Receive outcome y; € V

Learner draws prediction #; ~ g; and suffers loss £(i;, y;)

End

Goal: Minimize regret w.r.t. any f € F

Reg, (X1, Y1nif) = t_ile@t,y» : t_ilaf(xt),yt)
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ADAPTIVE REGRET BOUNDS

Adaptive regret bound:

Vf € f, Regn(xlzn, yl;n;f) < B(f1 X1:m ylzn)

Examples:

@ Gradient descent B(f; Vin) = C\/ Z?:l H th% e.g. [McMahan-Streeter’10]

@ Exponential weights

B(f; X1, Y1:0) = C\/log|F| X4y (f (x2), y1) + Klog | F| es.
[Cesa-Bianchi-Lugosi‘06]

@ ..many more!
Cesa-Bianchi-Mansour-Stoltz’07], [Even-Dar-Kearns-Mansour-Wortman’08]
Chaudhuri-Freund-Hsu’09], [Duchi-Hazan-Singer11]

Rakhlin-Sridharan’13], [McMahan-Orabona‘14],
Luo-Schapire15], [Koolen-van Erven’15]
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ADAPTIVE REGRET BOUNDS

Adaptive regret bound:

\V/f € f, Regn(xlzmyl:n;f) < B(fv xl:nvylin)

What we want from B
@ More likely models enjoy smaller regret
@ Instances easier to deal with enjoy better bound

@ Retain worst case guarantee, that is

sup B(f; X121, Y1.n) = O(Optimal uniform rate, )
f;x1:n1y1:n

What adaptive rates, B’s, are achievable?
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ACHIEVABLE ADAPTIVE BOUNDS

Adaptive rate B is said to be achievable it

Ap:= min  max Esup|Reg, (X1, V1n:f) — B(f; X1, Y1) | < 0
Randomized instances feF
Algorithms

@ To show that a rate ~ B, is achievable we need to prove A, is
bounded by a constant or o(B;,) bound.

@ We analyze A, by going to dual game and using idea ot
symmetrization.



SEQUENTIAL RADEMACHER COMPLEXITY

Sequential Rademacher complexity: [Rakhlin, Sridharan, Tewari’10]
B ) -
Ru(F):=supEe | =sup > ef (xe(€1:4-1))
X N feF =1 ]

where x = (xq, .. ., x,,) is X-valued tree. (each x; : {1}/ > X)



SEQUENTIAL RADEMACHER COMPLEXITY

Sequential Rademacher complexity: [Rakhlin, Sridharan, Tewari’10]
B ) -
Ru(F):=supEe | =sup > ef (xe(€1:4-1))
X N feF =1 ]
where x = (xq, .. ., x,) is X-valued tree. (each x; : {£1}/7! = X)
+1

—~

TLLLL -




SEQUENTIAL RADEMACHER COMPLEXITY

Sequential Rademacher complexity: [Rakhlin, Sridharan, Tewari’10]
B ) -
Ru(F):=supEe | =sup > ef (xe(€1:4-1))
X N feF =1 ]
where x = (xq, .. ., x,) is X-valued tree. (each x; : {£1}/7! = X)
7~ — S\
T LU -
1 j \/ _ —— ~
0 I
= +1
X
—1 +1

1 41 —141-1+41 -1 41



SEQUENTIAL RADEMACHER COMPLEXITY

Sequential Rademacher complexity: [Rakhlin, Sridharan, Tewari’10]

p— -

2 n
Ru(F):=supEe | =sup > ef (xe(€1:4-1))
X N feF =1

—

where x = (xq, .. ., x,) is X-valued tree. (each x; : {£1}/7! = X)

+1——¥ o~ .~

AL -
LTSN~
@ 1

W% e=(+1,-1,—1,...,1)

1 41 —141-1+41 -1 41



SEQUENTIAL RADEMACHER COMPLEXITY

Sequential Rademacher complexity: [Rakhlin, Sridharan, Tewari’10]

p— -

2 n
Ru(F):=supEe | =sup > ef (xe(€1:4-1))
X N feF =1

—

where x = (xq, .. ., x,) is X-valued tree. (each x; : {£1}/7! = X)

L — S\
TLLYT -

-1 = 7 = vﬁml —

@ 1

W% e=(+1,-1,—1,...,1)

1 41 —141-1+41 -1 41



SEQUENTIAL RADEMACHER COMPLEXITY

Sequential Rademacher complexity: [Rakhlin, Sridharan, Tewari’10]
B ) -
Ru(F) =supEe [ =sup |} ef (xe(€1:-1))
X N feF =1 ]
where x = (xq, .. ., x,) is X-valued tree. (each x; : {£1}/7! = X)
T~ —
TLLCL -
1 j \/ _ —— 7 ~
0 1

1 41 —141-1+41 -1 41



SEQUENTIAL RADEMACHER COMPLEXITY

Sequential Rademacher complexity: [Rakhlin, Sridharan, Tewari’10]
B ) -
Ru(F):=supEe | =sup > ef (xe(€1:4-1))
X N feF =1 ]
where x = (xq, .. ., x,) is X-valued tree. (each x; : {£1}/7! = X)
T~ —
T 0L -
1 j v — — €T ~—
0 ) 1

1 41 —141-1+41 -1 41



SEQUENTIAL RADEMACHER COMPLEXITY

Sequential Rademacher complexity: [Rakhlin, Sridharan, Tewari’10]
B ) -
Ru(F):=supEe | =sup > ef (xe(€1:4-1))
X N feF =1 ]
where x = (xq, .. ., x,) is X-valued tree. (each x; : {£1}/7! = X)
T~ —
LU -
1, A AN — tl/

1 41 —141-1+41 -1 41



SEQUENTIAL RADEMACHER COMPLEXITY

Sequential Rademacher complexity: [Rakhlin, Sridharan, Tewari’10]
B ) -
Ru(F):=supEe | =sup > ef (xe(€1:4-1))
X N feF =1 ]
where x = (xq, .. ., x,) is X-valued tree. (each x; : {£1}/7! = X)
T~ —
LY -
-1 0 — V — €y v_l/

1 41 —141-1+41 -1 41



SEQUENTIAL RADEMACHER COMPLEXITY

Sequential Rademacher complexity: [Rakhlin, Sridharan, Tewari’10]
B ) -
Ru(F):=supEe | =sup > ef (xe(€1:4-1))
X N feF =1 ]
where x = (xq, .. ., x,) is X-valued tree. (each x; : {£1}/7! = X)
T~ —
T LLL -
-1 0 — W — €y tl/

1 41 —14+1-1+41 -1 41



SEQUENTIAL RADEMACHER COMPLEXITY

Sequential Rademacher complexity: [Rakhlin, Sridharan, Tewari’10]
B ) -
Ru(F):=supEe | =sup > ef (xe(€1:4-1))
X N feF =1 ]
where x = (xq, .. ., x,) is X-valued tree. (each x; : {£1}/7! = X)
+1

1 41 —14+1-1+41 -1 41



SEQUENTIAL RADEMACHER COMPLEXITY

Sequential Rademacher complexity:

where x = (x1

Ru(F) =supE.

B—

%sup
e

'Rakhlin, Srid

i eif (xe(€1:4-1))

t=1

haran, Tewari’10)

—

X, ) is X-valued tree. (each x; : {1}/ = X)



SEQUENTIAL RADEMACHER COMPLEXITY

Sequential Rademacher complexity:

'Rakhlin, Srid

haran, Tewari’10)

2 n
Ru(F):=supEc | =sup|) ef (xe(€1:4-1))
X M feF =1 ]
where x = (xq, ..., X, ) is A/-valued tree. (each xp< {£1}71 = X)
tree random signs max correlation

on drawn path



SEQUENTIAL RADEMACHER COMPLEXITY

Sequential Rademacher complexity: [Rakhlin, Sridharan, Tewari’10]
B ) -
Ru(F):=supEc | =sup|) ef (xe(€1:4-1))
X M feF =1 ]
where x = (xq, ..., X, ) is X-valued tree. (each x; : {1}/ = X)

Theorem [Rakhlin, S., Tewari’10]

For any class of predictors F c R™ and appropriate loss :

F is online learnable (ie. V,,(F) — 0) if and only if R,,(F) — 0




SEQUENTIAL RADEMACHER COMPLEXITY

Sequential Rademacher complexity: [Rakhlin, Sridharan, Tewari’10]
B ) -
Ru(F):=supEc | =sup|) ef (xe(€1:4-1))
X M feF =1 ]
where x = (xq, ..., X, ) is X-valued tree. (each x; : {1}/ = X)

Theorem [Rakhlin, S., Tewari’10]

For any class of predictors F c R™ and appropriate loss :

F is online learnable (ie. V,,(F) — 0) if and only if R,,(F) — 0

For absolute loss %Rn(]-') <Vu(F) < Ru(F)




SEQUENTIAL RADEMACHER COMPLEXITY

Sequential Rademacher complexity: [Rakhlin, Sridharan, Tewari’10]
B ) -
Ru(F):=supEc | =sup|) ef (xe(€1:4-1))
X M feF =1 ]
where x = (xq, ..., X, ) is X-valued tree. (each x; : {1}/ = X)

Theorem [Rakhlin, S., Tewari’10]

For any class of predictors F c R™ and appropriate loss :

F is online learnable (ie. V,,(F) — 0) if and only if R,,(F) — 0

For absolute loss %Rn(]-') <Vu(F) < Ru(F)

VC or PAC theory for online learning !






VC or PAC style theory for adaptive online learning?



SUFFICIENT CONDITION FOR ACHIEVABILITY

Lemma

Convex and L-Lipschitz supervised learning loss (or 0-1 loss):

— . \

sup, e [sups.z1 2L Xiy esf (xi(€)) = |-

L \

Rademacher average




SUFFICIENT CONDITION FOR ACHIEVABILITY

Lemma

Convex and L-Lipschitz supervised learning loss (or 0-1 loss):

— . \

An <sup, o Ee|supe 1 2L Y, ef (xe(€)) - ?n(f; X1:1(€), Y1:n(€))J

L \

-~

~" y i
Rademacher average Offset




SUFFICIENT CONDITION FOR ACHIEVABILITY

Lemma

Convex and L-Lipschitz supervised learning loss (or 0-1 loss):

— . \ )

An <sup, o Ee|supe 1 2L Y, ef (xe(€)) - ?n(f; X1:1(€), Y1:n(€))J

L \

-~

~" y i
Rademacher average Offset

@ Similar bounds hold for more general settings.



SUFFICIENT CONDITION FOR ACHIEVABILITY

Lemma

Convex and L-Lipschitz supervised learning loss (or 0-1 loss):

— . \ )

An <sup, o Ee|supe 1 2L Y, ef (xe(€)) - ?n(f; X1:1(€), Y1:n(€))J

L \

-~

~" y i
Rademacher average Offset

@ Similar bounds hold for more general settings.

@ When B, is a uniform rate, recovers sequential Rademacher
complexity bound [Rakhlin-Sridharan-Tewari‘10].



SUFFICIENT CONDITION FOR ACHIEVABILITY

Lemma

Convex and L-Lipschitz supervised learning loss (or 0-1 loss):

— . \ )

An <sup, o Ee|supe 1 2L Y, ef (xe(€)) - ?n(f; X1:1(€), Y1:n(€))J

L \

-~

~" y i
Rademacher average Offset

@ Similar bounds hold for more general settings.

@ When B, is a uniform rate, recovers sequential Rademacher
complexity bound [Rakhlin-Sridharan-Tewari‘10].

@ Specific settings have matching lower bound.
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EXAMPLE

@ To check the adaptive bound from gradient descent, we need to
ensure

p— —

sup Ee 2 Z €Yt —C\ Z HYtHZ <0.
t=1 2 =1
Offset

y

= —

- _/

~

Rademacher average

@ Jensen + Pythagoras: Sufficient to take C = 2.

@ Takeaway: To show achievability we need to bound expected
random process.
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ONLINE MODEL SELECTION

Uniform Rate,, (F) is large
F=JF
R(f)=inf{r: f € F.}

If R(f) is known in advance,

Reg,,(f) < Ru(Fr(p)

How well can we adapt to not knowing R(f)?

In statistical learning: [Birge-Massart98|, [Lugosi-Nobel‘99], [Bartlett-Boucheron-Lugosi‘2002]
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MODEL ADAPTATION

Corollary

For any class of predictors F with JF (1) non-empty, for 1-Lipschitz loss {, the

following rate is achievable:

B.(f) = O (Ra(F(2R()\/10g(R(F)))
where R(f) = min{r: f € F(r)}.

Example: unconstrained linear optimization [McMahan-Orabona‘14]
F=R%,Y={x:|x|, <1}, 1loss {(§,y) = (1}, y). Define
F(R) ={f:|f], <R}, then,

Ba(f) = DV {81f1, {1+ \/log(2 fl) + loglog (2 1)} +12}.



MODEL ADAPTATION

Strategy for showing achievability:
@ Define collection of RVs in terms of complexity radius:
R; = Supfe]-"(ri) 2 Z?:l €tf(Xt(€)).
@ Establish tail bounds showing R; < B;, e.g. B; = R,,(F(ri)).
@ Dilate B; to B;0; and appeal to maximal inequality to bound
Esup, [R; - B;0;].

Linear example R; = 2r; | X}, erye(€)|,, Bi = O(ri/n), 6; = O(y/log(r)).
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A SIMPLE PROBABILISTIC TOOL

Let (R;)icr be a sequence of random variables satisfying: for any t > 0,

P(R;-B;>T) <Ciexp (—Tz/(ZO'ZZ))

Then ¥ 0 < 07,

E|sup{R; - BG} <3Ci0

| 1€l

where 0; = '\/2log(Z ) +4log(i) + 1.

@ Model selection example: o 10g3/ (MR (F(1)).



MOTIVATION: PREDICTABLE SEQUENCES

@ Sequence M; is our guess for what a good hypothesis looks like.

@ Want low regret against hypotheses close to M;.



GENERALIZED PREDICTABLE SEQUENCES

Lemma

Online supervised learning problem with a convex 1-Lipschitz loss. Let
(M} )s»1 be any predictable sequence:

!
Bu(f: X1as) = infy | Kiy flog - log Na(F,v/2.m) - (SiLy (F(xe) - M)?)
\

+Kologn [, \/nlog No(F, 8,n)ds .

y,

N> (F,v,n) is sequential analogue of {, covering number.



E.G. REGRET TO FIXED VS REGRET TO BEST

(SUPERVISED LEARNING)

[Even-Dar-Kearns-Mansour-Wortman‘08]

Experts setting: Let f* € F be a fixed expert chosen in advance:

Bu(f x1:) = O (log (logNé(f(xt) —f*(xt))z) \ logNé(f(xt) —f*(xt))2) -

In particular, against f* we have B, (f*, x1.,) = O(1), and against an
arbitrary expert we have B, (f, x1.,) = O (y/nlog N (log (n-logN))).

Achieve by taking pred. sequence M; =" (x;).



OPTIMISTIC ONLINE PAC-BAYES

@ Online version of PAC Bayes theorem [McAllester98].

@ F set of distributions over class of experts, 7t is some prior over
experts

Bu(fiy1n) = O (\ 50 (KL(f|7r) + log(n))é te~f€(e'yt)2)

Related to [Luo-Schapire’15], [Koolen-van Erven’15]



OPTIMISTIC ONLINE PAC-BAYES

@ Online version of PAC Bayes theorem [McAllester98].

@ F set of distributions over class of experts, 7t is some prior over
experts

Bu(fiy1n) = O (\ 50 (KL(f|7r) + log(n))é te~f€(e'yt)2)

Related to [Luo-Schapire’15], [Koolen-van Erven’15]

@ We also recover [Chaudhuri-Freund-Hsu’09]:

Ve >0, Regret against top €|F| experts < \/ nloge-!



ADAPTIVE RELAXATION FOR ALGORITHMS

Extends [Rakhlin-Shamir-Sridharan’12]
o Find mapping Rel, : UL, (X x V) > R satisfying initial condition:

Reln (xl;n, ylzn) > sup {— iﬁ(f(xt),yt) — Bn(f; xl:ruyl:n)}

feF =1

@ Admissibility condition,

Rel,, (x1:4-1,Y1:¢-1) > sup i?f sup Ky, [€(71, yi) + Rely (x1:4, Y1) |
xe 1ty

@ Algorithm:

q; = argminq sup Eg, .4 [€(it, vr) + Rely, (x1:4, Y1) |
Yt

@ Algorithm achieves the following bound:

Regn < Bn (f; X1:m ylzn) + Reln ()



SUMMARY

@ Sufficient condition for establishing achievability of adaptive rate.
@ For specific settings condition also necessary.

@ Obtain unconstrained optimization, model adaptation, optimistic
PAC Bayes, quantile bound etc.

@ Sketch of schema for deriving adaptive algorithms.



FURTHER DIRECTIONS

@ More general techniques for going from bounds to algorithms?
e Apply to game theory.
@ Apply to approximation algorithms.

@ Further explore data and model priors.



