Adaptive Online Learning

Dylan Foster Cornell University

- Joint work with Alexander Rakhlin and Karthik Sridharan

For
$$t = 1$$
 to n

```
For t = 1 to n
Receive input instance x_t \in \mathcal{X}
```

```
For t=1 to n
Receive input instance x_t \in \mathcal{X}
Learner picks randomized prediction q_t \in \Delta(\mathcal{Y})
```

ONLINE LEARNING PROTOCOL

```
For t=1 to n

Receive input instance x_t \in \mathcal{X}

Learner picks randomized prediction q_t \in \Delta(\mathcal{Y})

Receive outcome y_t \in \mathcal{Y}
```

```
For t=1 to n

Receive input instance x_t \in \mathcal{X}

Learner picks randomized prediction q_t \in \Delta(\mathcal{Y})

Receive outcome y_t \in \mathcal{Y}

Learner draws prediction \hat{y}_t \sim q_t and suffers loss \ell(\hat{y}_t, y_t)

End
```

```
For t = 1 to n
```

Receive input instance $x_t \in \mathcal{X}$

Learner picks randomized prediction $q_t \in \Delta(\mathcal{Y})$

Receive outcome $y_t \in \mathcal{Y}$

Learner draws prediction $\hat{y}_t \sim q_t$ and suffers loss $\ell(\hat{y}_t, y_t)$

End

Goal: Minimize regret w.r.t. any $f \in \mathcal{F}$

$$\mathbf{Reg}_{n}(x_{1:n}, y_{1:n}; f) = \sum_{t=1}^{n} \ell(\hat{y}_{t}, y_{t}) - \sum_{t=1}^{n} \ell(f(x_{t}), y_{t})$$

Easy Data

Worst-Case Data

Uniform Regret Bounds

Uniform bound on regret:

$$\forall f \in \mathcal{F}, \quad \mathbf{Reg}_n(x_{1:n}, y_{1:n}; f) \leq B(n)$$

Examples:

Uniform Regret Bounds

Uniform bound on regret:

$$\forall f \in \mathcal{F}, \quad \mathbf{Reg}_n(x_{1:n}, y_{1:n}; f) \leq B(n)$$

Examples:

• Gradient descent $B(n) = \sqrt{n}$ [Zinkevich'03]

Uniform Regret Bounds

Uniform bound on regret:

$$\forall f \in \mathcal{F}, \quad \mathbf{Reg}_n(x_{1:n}, y_{1:n}; f) \leq B(n)$$

Examples:

- Gradient descent $B(n) = \sqrt{n}$ [Zinkevich'03]
- Exponential weights $B(n) = \sqrt{n \log |\mathcal{F}|}$ [Littlestone-Warmuth'94], [Vovk'98]

Adaptive regret bound:

$$\forall f \in \mathcal{F}, \ \mathbf{Reg}_n(x_{1:n}, y_{1:n}; f) \leq B(f; x_{1:n}, y_{1:n})$$

Examples:

Adaptive regret bound:

$$\forall f \in \mathcal{F}, \ \mathbf{Reg}_n(x_{1:n}, y_{1:n}; f) \leq B(f; x_{1:n}, y_{1:n})$$

Examples:

• Gradient descent $B(f; \nabla_{1:n}) = C\sqrt{\sum_{t=1}^{n} \|\nabla_t\|_2^2}$ e.g. [McMahan-Streeter'10]

Adaptive regret bound:

$$\forall f \in \mathcal{F}, \ \mathbf{Reg}_n(x_{1:n}, y_{1:n}; f) \leq B(f; x_{1:n}, y_{1:n})$$

Examples:

- Gradient descent $B(f; \nabla_{1:n}) = C\sqrt{\sum_{t=1}^{n} \|\nabla_t\|_2^2}$ e.g. [McMahan-Streeter'10]
- Exponential weights $B(f; x_{1:n}, y_{1:n}) = C\sqrt{\log |\mathcal{F}|} \sum_{t=1}^{n} \ell(f(x_t), y_t) + K\log |\mathcal{F}| \text{ e.g.}$ [Cesa-Bianchi-Lugosi'06]

Adaptive regret bound:

$$\forall f \in \mathcal{F}, \ \mathbf{Reg}_n(x_{1:n}, y_{1:n}; f) \leq B(f; x_{1:n}, y_{1:n})$$

Examples:

- Gradient descent $B(f; \nabla_{1:n}) = C\sqrt{\sum_{t=1}^{n} \|\nabla_t\|_2^2}$ e.g. [McMahan-Streeter'10]
- Exponential weights $B(f; x_{1:n}, y_{1:n}) = C\sqrt{\log |\mathcal{F}|} \sum_{t=1}^{n} \ell(f(x_t), y_t) + K\log |\mathcal{F}| \text{ e.g.}$ [Cesa-Bianchi-Lugosi'06]
- ...many more!

```
[Cesa-Bianchi-Mansour-Stoltz'07], [Even-Dar-Kearns-Mansour-Wortman'08] [Chaudhuri-Freund-Hsu'09], [Duchi-Hazan-Singer'11] [Rakhlin-Sridharan'13], [McMahan-Orabona'14], [Luo-Schapire'15], [Koolen-van Erven'15]
```

Adaptive regret bound:

$$\forall f \in \mathcal{F}, \ \mathbf{Reg}_n(x_{1:n}, y_{1:n}; f) \leq B(f; x_{1:n}, y_{1:n})$$

What we want from **B**

Adaptive regret bound:

$$\forall f \in \mathcal{F}, \ \mathbf{Reg}_n(x_{1:n}, y_{1:n}; f) \leq B(f; x_{1:n}, y_{1:n})$$

What we want from **B**

More likely models enjoy smaller regret

Adaptive regret bound:

$$\forall f \in \mathcal{F}, \ \mathbf{Reg}_n(x_{1:n}, y_{1:n}; f) \leq B(f; x_{1:n}, y_{1:n})$$

What we want from B

- More likely models enjoy smaller regret
- Instances easier to deal with enjoy better bound

Adaptive regret bound:

$$\forall f \in \mathcal{F}, \ \mathbf{Reg}_n(x_{1:n}, y_{1:n}; f) \leq B(f; x_{1:n}, y_{1:n})$$

What we want from B

- More likely models enjoy smaller regret
- Instances easier to deal with enjoy better bound
- Retain worst case guarantee, that is

$$\sup_{f;x_{1:n},y_{1:n}} B(f;x_{1:n},y_{1:n}) = \tilde{O}(\text{Optimal uniform rate}_n)$$

Adaptive regret bound:

$$\forall f \in \mathcal{F}, \ \mathbf{Reg}_n(x_{1:n}, y_{1:n}; f) \leq B(f; x_{1:n}, y_{1:n})$$

What we want from B

- More likely models enjoy smaller regret
- Instances easier to deal with enjoy better bound
- Retain worst case guarantee, that is

$$\sup_{f;x_{1:n},y_{1:n}} B(f;x_{1:n},y_{1:n}) = \tilde{O}(\text{Optimal uniform rate}_n)$$

What adaptive rates, B's, are achievable?

$$\left[\mathbf{Reg}_{n}(x_{1:n}, y_{1:n}; f) - B(f; x_{1:n}, y_{1:n}) \right] \leq 0$$

$$\sup_{f \in \mathcal{F}} \left[\mathbf{Reg}_n(x_{1:n}, y_{1:n}; f) - B(f; x_{1:n}, y_{1:n}) \right] \le 0$$

$$\max_{f \in \mathcal{F}} \left[\mathbf{Reg}_n(x_{1:n}, y_{1:n}; f) - B(f; x_{1:n}, y_{1:n}) \right] \leq 0$$

$$\mathcal{A}_n \coloneqq \min_{\substack{\text{Randomized instances} \\ \text{Algorithms}}} \max_{f \in \mathcal{F}} \left[\mathbf{Reg}_n(x_{1:n}, y_{1:n}; f) - B(f; x_{1:n}, y_{1:n}) \right] \le 0$$

Adaptive rate B is said to be achievable if

$$\mathcal{A}_n \coloneqq \min_{\substack{\text{Randomized instances} \\ \text{Algorithms}}} \max_{\substack{f \in \mathcal{F}}} \mathbb{E} \sup_{f \in \mathcal{F}} \left[\mathbf{Reg}_n(x_{1:n}, y_{1:n}; f) - B(f; x_{1:n}, y_{1:n}) \right] \le 0$$

• To show that a rate $\approx B_n$ is achievable we need to prove A_n is bounded by a constant or $o(B_n)$ bound.

$$\mathcal{A}_n \coloneqq \min_{\substack{\text{Randomized instances} \\ \text{Algorithms}}} \max_{\substack{f \in \mathcal{F}}} \mathbb{E} \sup_{f \in \mathcal{F}} \left[\mathbf{Reg}_n(x_{1:n}, y_{1:n}; f) - B(f; x_{1:n}, y_{1:n}) \right] \le 0$$

- To show that a rate $\approx B_n$ is achievable we need to prove A_n is bounded by a constant or $o(B_n)$ bound.
- We analyze A_n by going to dual game and using idea of symmetrization.

Sequential Rademacher complexity:

[Rakhlin, Sridharan, Tewari'10]

$$\mathcal{R}_{n}(\mathcal{F}) := \sup_{\mathbf{x}} \mathbb{E}_{\epsilon} \left[\frac{2}{n} \sup_{f \in \mathcal{F}} \left| \sum_{t=1}^{n} \epsilon_{t} f(\mathbf{x}_{t}(\epsilon_{1:t-1})) \right| \right]$$

Sequential Rademacher complexity:

[Rakhlin, Sridharan, Tewari'10]

$$\mathcal{R}_n(\mathcal{F}) := \sup_{\mathbf{x}} \mathbb{E}_{\boldsymbol{\epsilon}} \left[\frac{2}{n} \sup_{f \in \mathcal{F}} \left| \sum_{t=1}^n \boldsymbol{\epsilon}_t f(\mathbf{x}_t(\boldsymbol{\epsilon}_{1:t-1})) \right| \right]$$

Sequential Rademacher complexity:

[Rakhlin, Sridharan, Tewari'10]

$$\mathcal{R}_n(\mathcal{F}) := \sup_{\mathbf{x}} \mathbb{E}_{\boldsymbol{\epsilon}} \left[\frac{2}{n} \sup_{f \in \mathcal{F}} \left| \sum_{t=1}^n \boldsymbol{\epsilon}_t f(\mathbf{x}_t(\boldsymbol{\epsilon}_{1:t-1})) \right| \right]$$

Sequential Rademacher complexity:

[Rakhlin, Sridharan, Tewari'10]

$$\mathcal{R}_n(\mathcal{F}) \coloneqq \sup_{\mathbf{x}} \mathbb{E}_{\boldsymbol{\epsilon}} \left[\frac{2}{n} \sup_{f \in \mathcal{F}} \left| \sum_{t=1}^n \boldsymbol{\epsilon}_t f(\mathbf{x}_t(\boldsymbol{\epsilon}_{1:t-1})) \right| \right]$$

Sequential Rademacher complexity:

[Rakhlin, Sridharan, Tewari'10]

$$\mathcal{R}_{n}(\mathcal{F}) \coloneqq \sup_{\mathbf{x}} \mathbb{E}_{\epsilon} \left[\frac{2}{n} \sup_{f \in \mathcal{F}} \left| \sum_{t=1}^{n} \epsilon_{t} f(\mathbf{x}_{t}(\epsilon_{1:t-1})) \right| \right]$$

Sequential Rademacher complexity:

[Rakhlin, Sridharan, Tewari'10]

$$\mathcal{R}_{n}(\mathcal{F}) \coloneqq \sup_{\mathbf{x}} \mathbb{E}_{\epsilon} \left[\frac{2}{n} \sup_{f \in \mathcal{F}} \left| \sum_{t=1}^{n} \epsilon_{t} f(\mathbf{x}_{t}(\epsilon_{1:t-1})) \right| \right]$$

Sequential Rademacher complexity:

[Rakhlin, Sridharan, Tewari'10]

$$\mathcal{R}_n(\mathcal{F}) \coloneqq \sup_{\mathbf{x}} \mathbb{E}_{\epsilon} \left[\frac{2}{n} \sup_{f \in \mathcal{F}} \left| \sum_{t=1}^n \epsilon_t f(\mathbf{x}_t(\epsilon_{1:t-1})) \right| \right]$$

Sequential Rademacher complexity:

[Rakhlin, Sridharan, Tewari'10]

$$\mathcal{R}_n(\mathcal{F}) \coloneqq \sup_{\mathbf{x}} \mathbb{E}_{\boldsymbol{\epsilon}} \left[\frac{2}{n} \sup_{f \in \mathcal{F}} \left| \sum_{t=1}^n \boldsymbol{\epsilon}_t f(\mathbf{x}_t(\boldsymbol{\epsilon}_{1:t-1})) \right| \right]$$

Sequential Rademacher complexity:

[Rakhlin, Sridharan, Tewari'10]

$$\mathcal{R}_n(\mathcal{F}) \coloneqq \sup_{\mathbf{x}} \mathbb{E}_{\boldsymbol{\epsilon}} \left[\frac{2}{n} \sup_{f \in \mathcal{F}} \left| \sum_{t=1}^n \boldsymbol{\epsilon}_t f(\mathbf{x}_t(\boldsymbol{\epsilon}_{1:t-1})) \right| \right]$$

Sequential Rademacher complexity:

[Rakhlin, Sridharan, Tewari'10]

$$\mathcal{R}_n(\mathcal{F}) \coloneqq \sup_{\mathbf{x}} \mathbb{E}_{\boldsymbol{\epsilon}} \left[\frac{2}{n} \sup_{f \in \mathcal{F}} \left| \sum_{t=1}^n \boldsymbol{\epsilon}_t f(\mathbf{x}_t(\boldsymbol{\epsilon}_{1:t-1})) \right| \right]$$

Sequential Rademacher complexity:

[Rakhlin, Sridharan, Tewari'10]

$$\mathcal{R}_n(\mathcal{F}) \coloneqq \sup_{\mathbf{x}} \mathbb{E}_{\boldsymbol{\epsilon}} \left[\frac{2}{n} \sup_{f \in \mathcal{F}} \left| \sum_{t=1}^n \boldsymbol{\epsilon}_t f(\mathbf{x}_t(\boldsymbol{\epsilon}_{1:t-1})) \right| \right]$$

Sequential Rademacher complexity:

[Rakhlin, Sridharan, Tewari'10]

$$\mathcal{R}_{n}(\mathcal{F}) \coloneqq \sup_{\mathbf{x}} \mathbb{E}_{\boldsymbol{\epsilon}} \left[\frac{2}{n} \sup_{f \in \mathcal{F}} \left| \sum_{t=1}^{n} \boldsymbol{\epsilon}_{t} f(\mathbf{x}_{t}(\boldsymbol{\epsilon}_{1:t-1})) \right| \right]$$

Sequential Rademacher complexity: [Rakhlin, Sridharan, Tewari'10]

$$\mathcal{R}_{n}(\mathcal{F}) \coloneqq \sup_{\mathbf{x}} \mathbb{E}_{\epsilon} \left[\frac{2}{n} \sup_{f \in \mathcal{F}} \left| \sum_{t=1}^{n} \epsilon_{t} f(\mathbf{x}_{t}(\epsilon_{1:t-1})) \right| \right]$$
 where $\mathbf{x} = (\mathbf{x}_{1}, \dots, \mathbf{x}_{n})$ is \mathcal{X} -valued tree. (each $\mathbf{x}_{t} : \{\pm 1\}^{t-1} \mapsto \mathcal{X}$)
$$\text{tree} \quad \text{random signs} \quad \max_{\mathbf{x} \in \mathcal{X}} \text{correlation}$$
 on drawn path

Sequential Rademacher complexity:

[Rakhlin, Sridharan, Tewari'10]

$$\mathcal{R}_{n}(\mathcal{F}) \coloneqq \sup_{\mathbf{x}} \mathbb{E}_{\boldsymbol{\epsilon}} \left[\frac{2}{n} \sup_{f \in \mathcal{F}} \left| \sum_{t=1}^{n} \boldsymbol{\epsilon}_{t} f(\mathbf{x}_{t}(\boldsymbol{\epsilon}_{1:t-1})) \right| \right]$$

where $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ is \mathcal{X} -valued tree. (each $\mathbf{x}_t : \{\pm 1\}^{t-1} \mapsto \mathcal{X}$)

Theorem [Rakhlin, S., Tewari'10]

For any class of predictors $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ and appropriate loss :

 \mathcal{F} is online learnable (ie. $\mathcal{V}_n(\mathcal{F}) \to 0$) if and only if $\mathcal{R}_n(\mathcal{F}) \to 0$

Sequential Rademacher complexity:

[Rakhlin, Sridharan, Tewari'10]

$$\mathcal{R}_{n}(\mathcal{F}) \coloneqq \sup_{\mathbf{x}} \mathbb{E}_{\boldsymbol{\epsilon}} \left[\frac{2}{n} \sup_{f \in \mathcal{F}} \left| \sum_{t=1}^{n} \boldsymbol{\epsilon}_{t} f(\mathbf{x}_{t}(\boldsymbol{\epsilon}_{1:t-1})) \right| \right]$$

where $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ is \mathcal{X} -valued tree. (each $\mathbf{x}_t : \{\pm 1\}^{t-1} \mapsto \mathcal{X}$)

Theorem [Rakhlin, S., Tewari'10]

For any class of predictors $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ and appropriate loss :

 \mathcal{F} is online learnable (ie. $\mathcal{V}_n(\mathcal{F}) \to 0$) if and only if $\mathcal{R}_n(\mathcal{F}) \to 0$

For absolute loss,
$$\frac{1}{2}\mathcal{R}_n(\mathcal{F}) \leq \mathcal{V}_n(\mathcal{F}) \leq \mathcal{R}_n(\mathcal{F})$$

Sequential Rademacher complexity:

[Rakhlin, Sridharan, Tewari'10]

$$\mathcal{R}_{n}(\mathcal{F}) \coloneqq \sup_{\mathbf{x}} \mathbb{E}_{\boldsymbol{\epsilon}} \left[\frac{2}{n} \sup_{f \in \mathcal{F}} \left| \sum_{t=1}^{n} \boldsymbol{\epsilon}_{t} f(\mathbf{x}_{t}(\boldsymbol{\epsilon}_{1:t-1})) \right| \right]$$

where $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ is \mathcal{X} -valued tree. (each $\mathbf{x}_t : \{\pm 1\}^{t-1} \mapsto \mathcal{X}$)

Theorem [Rakhlin, S., Tewari'10]

For any class of predictors $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ and appropriate loss :

 \mathcal{F} is online learnable (ie. $\mathcal{V}_n(\mathcal{F}) \to 0$) if and only if $\mathcal{R}_n(\mathcal{F}) \to 0$

For absolute loss, $\frac{1}{2}\mathcal{R}_n(\mathcal{F}) \leq \mathcal{V}_n(\mathcal{F}) \leq \mathcal{R}_n(\mathcal{F})$

VC or PAC theory for online learning!

Lemma

Convex and L-Lipschitz supervised learning loss (or 0-1 loss):

$$\sup_{\mathbf{x},\mathbf{y}} \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \left\{ \underbrace{2L \sum_{t=1}^{n} \epsilon_{t} f(\mathbf{x}_{t}(\epsilon))}_{Rademacher \ average} - \right] \right]$$

Lemma

Convex and L-Lipschitz supervised learning loss (or 0-1 loss):

$$\mathcal{A}_{n} \leq \sup_{\mathbf{x}, \mathbf{y}} \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \left\{ \underbrace{2L \sum_{t=1}^{n} \epsilon_{t} f(\mathbf{x}_{t}(\epsilon))}_{Rademacher \ average} - \underbrace{B_{n}(f; \mathbf{x}_{1:n}(\epsilon), \mathbf{y}_{1:n}(\epsilon))}_{Offset} \right\} \right].$$

Lemma

Convex and L-Lipschitz supervised learning loss (or 0-1 loss):

$$\mathcal{A}_{n} \leq \sup_{\mathbf{x}, \mathbf{y}} \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \left\{ \underbrace{2L \sum_{t=1}^{n} \epsilon_{t} f(\mathbf{x}_{t}(\epsilon))}_{Rademacher \ average} - \underbrace{B_{n}(f; \mathbf{x}_{1:n}(\epsilon), \mathbf{y}_{1:n}(\epsilon))}_{Offset} \right\} \right].$$

Similar bounds hold for more general settings.

Lemma

Convex and L-Lipschitz supervised learning loss (or 0-1 loss):

$$\mathcal{A}_{n} \leq \sup_{\mathbf{x}, \mathbf{y}} \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \left\{ \underbrace{2L \sum_{t=1}^{n} \epsilon_{t} f(\mathbf{x}_{t}(\epsilon))}_{Rademacher \ average} - \underbrace{B_{n}(f; \mathbf{x}_{1:n}(\epsilon), \mathbf{y}_{1:n}(\epsilon))}_{Offset} \right\} \right].$$

- Similar bounds hold for more general settings.
- When B_n is a uniform rate, recovers sequential Rademacher complexity bound [Rakhlin-Sridharan-Tewari'10].

Lemma

Convex and L-Lipschitz supervised learning loss (or 0-1 loss):

$$\mathcal{A}_{n} \leq \sup_{\mathbf{x}, \mathbf{y}} \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \left\{ \underbrace{2L \sum_{t=1}^{n} \epsilon_{t} f(\mathbf{x}_{t}(\epsilon))}_{Rademacher \ average} - \underbrace{B_{n}(f; \mathbf{x}_{1:n}(\epsilon), \mathbf{y}_{1:n}(\epsilon))}_{Offset} \right\} \right].$$

- Similar bounds hold for more general settings.
- When B_n is a uniform rate, recovers sequential Rademacher complexity bound [Rakhlin-Sridharan-Tewari'10].
- Specific settings have matching lower bound.

EXAMPLE

 To check the adaptive bound from gradient descent, we need to ensure

$$\sup_{\mathbf{y}} \mathbb{E}_{\epsilon} \left[2 \left\| \sum_{t=1}^{n} \epsilon_{t} \mathbf{y}_{t} \right\|_{2} - C \sqrt{\sum_{t=1}^{n} \left\| \mathbf{y}_{t} \right\|_{2}^{2}} \right] \leq 0.$$
Rademacher average Offset

• Jensen + Pythagoras: Sufficient to take C = 2.

EXAMPLE

 To check the adaptive bound from gradient descent, we need to ensure

$$\sup_{\mathbf{y}} \mathbb{E}_{\epsilon} \left[2 \left\| \sum_{t=1}^{n} \epsilon_{t} \mathbf{y}_{t} \right\|_{2} - C \sqrt{\sum_{t=1}^{n} \left\| \mathbf{y}_{t} \right\|_{2}^{2}} \right] \leq 0.$$
Rademacher average Offset

- Jensen + Pythagoras: Sufficient to take C = 2.
- Takeaway: To show achievability we need to bound expected random process.

Online Model Selection

Online Model Selection

ONLINE MODEL SELECTION

$$\mathcal{F} = igcup_r \mathcal{F}_r$$

ONLINE MODEL SELECTION

$$\mathcal{F} = igcup_r \mathcal{F}_r$$

ONLINE MODEL SELECTION

$$\mathcal{F} = \bigcup_r \mathcal{F}_r$$

$$R(f) = \inf \{r : f \in \mathcal{F}_r\}$$

Online Model Selection

Uniform Rate_n(\mathcal{F}) is large

$$\mathcal{F} = \bigcup_r \mathcal{F}_r$$

$$R(f) = \inf \{r : f \in \mathcal{F}_r\}$$

If R(f) is known in advance,

$$\mathbf{Reg}_n(f) \leq \mathcal{R}_n(\mathcal{F}_{R(f)})$$

Online Model Selection

Uniform $Rate_n(\mathcal{F})$ is large

$$\mathcal{F} = \bigcup_r \mathcal{F}_r$$

$$R(f) = \inf \{r : f \in \mathcal{F}_r\}$$

If R(f) is known in advance,

$$\mathbf{Reg}_n(f) \leq \mathcal{R}_n(\mathcal{F}_{R(f)})$$

How well can we adapt to not knowing R(f)?

MODEL ADAPTATION

Corollary

For any class of predictors \mathcal{F} with $\mathcal{F}(1)$ non-empty, for 1-Lipschitz loss ℓ , the following rate is achievable:

$$B_n(f) = \tilde{O}\left(\mathcal{R}_n(\mathcal{F}(2R(f))\sqrt{\log(R(f))}\right)$$

where $R(f) = \min\{r : f \in \mathcal{F}(r)\}.$

MODEL ADAPTATION

Corollary

For any class of predictors \mathcal{F} with $\mathcal{F}(1)$ non-empty, for 1-Lipschitz loss ℓ , the following rate is achievable:

$$B_n(f) = \tilde{O}\left(\mathcal{R}_n(\mathcal{F}(2R(f))\sqrt{\log(R(f))}\right)$$

where $R(f) = \min\{r : f \in \mathcal{F}(r)\}.$

Example: unconstrained linear optimization [McMahan-Orabona'14]

$$\mathcal{F} = \mathbb{R}^d$$
, $\mathcal{Y} = \{\mathbf{x} : \|\mathbf{x}\|_2 \le 1\}$, loss $\ell(\hat{\mathbf{y}}, \mathbf{y}) = \langle \hat{y}, y \rangle$. Define $\mathcal{F}(R) = \{f : \|f\|_2 \le R\}$, then,

$$B_n(f) = D\sqrt{n} \left\{ 8 \|f\|_2 \left\{ 1 + \sqrt{\log(2 \|f\|_2) + \log\log(2 \|f\|_2)} \right\} + 12 \right\}.$$

MODEL ADAPTATION

Strategy for showing achievability:

- Define collection of RVs in terms of complexity radius: $R_i = \sup_{f \in \mathcal{F}(r_i)} 2 \sum_{t=1}^n \epsilon_t f(\mathbf{x}_t(\epsilon)).$
- Establish tail bounds showing $R_i \lesssim B_i$, e.g. $B_i = \mathcal{R}_n(\mathcal{F}(r_i))$.
- Dilate B_i to $B_i\theta_i$ and appeal to **maximal inequality** to bound $\mathbb{E}\sup_i [R_i B_i\theta_i]$.

Linear example $R_i = 2r_i \|\sum_{t=1}^n \epsilon_t \mathbf{y}_t(\epsilon)\|_2$, $B_i = O(r_i \sqrt{n})$, $\theta_i = O(\sqrt{\log(r_i)})$.

A SIMPLE PROBABILISTIC TOOL

Proposition

Let $(R_i)_{i\in I}$ be a sequence of random variables satisfying: for any $\tau > 0$,

$$P(R_i - B_i > \tau) \le C_1 \exp\left(-\tau^2/(2\sigma_i^2)\right)$$

Then $\forall \ \overline{\sigma} \leq \sigma_1$,

$$\mathbb{E}\left[\sup_{i\in I}\left\{R_i-B_i\theta_i\right\}\right]\leq 3C_1\bar{\sigma}$$

where $\theta_i = \frac{\sigma_i}{B_i} \sqrt{2 \log(\frac{\sigma_i}{\overline{\sigma}}) + 4 \log(i)} + 1$.

A SIMPLE PROBABILISTIC TOOL

Proposition

Let $(R_i)_{i\in I}$ be a sequence of random variables satisfying: for any $\tau > 0$,

$$P(R_i - B_i > \tau) \le C_1 \exp\left(-\tau^2/(2\sigma_i^2)\right)$$

Then $\forall \ \overline{\sigma} \leq \sigma_1$,

$$\mathbb{E}\left[\sup_{i\in I}\left\{R_i-B_i\theta_i\right\}\right]\leq 3C_1\bar{\sigma}$$

where
$$\theta_i = \frac{\sigma_i}{B_i} \sqrt{2 \log(\frac{\sigma_i}{\bar{\sigma}}) + 4 \log(i)} + 1$$
.

• Model selection example: $\bar{\sigma} = \log^{3/2}(n)\mathcal{R}_n(\mathcal{F}(1))$.

MOTIVATION: PREDICTABLE SEQUENCES

- Sequence M_t is our guess for what a good hypothesis looks like.
- Want low regret against hypotheses close to M_t .

Generalized Predictable Sequences

Lemma

Online supervised learning problem with a convex 1-Lipschitz loss. Let $(M_t)_{t\geq 1}$ be any predictable sequence:

$$B_{n}(f; x_{1:n}) = \inf_{\gamma} \left\{ K_{1} \sqrt{\log n \cdot \log \mathcal{N}_{2}(\mathcal{F}, \gamma/2, n) \cdot \left(\sum_{t=1}^{n} (f(x_{t}) - M_{t})^{2}\right)} + K_{2} \log n \int_{1/n}^{\gamma} \sqrt{n \log \mathcal{N}_{2}(\mathcal{F}, \delta, n)} d\delta \right\},$$

 $\mathcal{N}_2(\mathcal{F}, \gamma, n)$ is sequential analogue of ℓ_2 covering number.

E.G. REGRET TO FIXED VS REGRET TO BEST (SUPERVISED LEARNING)

[Even-Dar-Kearns-Mansour-Wortman'08]

Experts setting: Let $f^* \in \mathcal{F}$ be a fixed expert chosen in advance:

$$B_n(f, x_{1:n}) = O\left(\log \left(\log N \sum_{t=1}^n (f(x_t) - f^*(x_t))^2\right) \sqrt{\log N \sum_{t=1}^n (f(x_t) - f^*(x_t))^2}\right).$$

In particular, against f^* we have $B_n(f^*, x_{1:n}) = O(1)$, and against an arbitrary expert we have $B_n(f, x_{1:n}) = O\left(\sqrt{n \log N} \left(\log \left(n \cdot \log N\right)\right)\right)$.

Achieve by taking pred. sequence $M_t = f^*(x_t)$.

OPTIMISTIC ONLINE PAC-BAYES

- Online version of PAC Bayes theorem [McAllester'98].
- \mathcal{F} set of distributions over class of experts, π is some prior over experts

$$B_n(f; y_{1:n}) = O\left(\sqrt{50 \left(\text{KL}(f|\pi) + \log(n)\right) \sum_{t=1}^n \mathbb{E}_{e \sim f} \ell(e, y_t)^2}\right)$$

Related to [Luo-Schapire'15], [Koolen-van Erven'15]

OPTIMISTIC ONLINE PAC-BAYES

- Online version of PAC Bayes theorem [McAllester'98].
- \mathcal{F} set of distributions over class of experts, π is some prior over experts

$$B_n(f; y_{1:n}) = O\left(\sqrt{50 \left(\text{KL}(f|\pi) + \log(n)\right) \sum_{t=1}^n \mathbb{E}_{e \sim f} \ell(e, y_t)^2}\right)$$

Related to [Luo-Schapire'15], [Koolen-van Erven'15]

• We also recover [Chaudhuri-Freund-Hsu'09]:

$$\forall \epsilon > 0$$
, Regret against top $\epsilon |\mathcal{F}|$ experts $\leq \sqrt{n \log \epsilon^{-1}}$

ADAPTIVE RELAXATION FOR ALGORITHMS

Extends [Rakhlin-Shamir-Sridharan'12]

• Find mapping $\operatorname{Rel}_n : \bigcup_{t=0}^n (\mathcal{X} \times \mathcal{Y})^t \to \mathbb{R}$ satisfying initial condition:

$$\mathbf{Rel}_{n}(x_{1:n}, y_{1:n}) \ge \sup_{f \in \mathcal{F}} \left\{ -\sum_{t=1}^{n} \ell(f(x_{t}), y_{t}) - B_{n}(f; x_{1:n}, y_{1:n}) \right\}$$

Admissibility condition,

$$\operatorname{\mathbf{Rel}}_{n}(x_{1:t-1}, y_{1:t-1}) \ge \sup_{x_{t}} \inf_{q_{t}} \sup_{y_{t}} \mathbb{E}_{\hat{y}_{t} \sim q_{t}} \left[\ell(\hat{y}_{t}, y_{t}) + \operatorname{\mathbf{Rel}}_{n}(x_{1:t}, y_{1:t}) \right]$$

• Algorithm:

$$q_t = \operatorname{argmin}_q \sup_{y_t} \mathbb{E}_{\hat{y}_t \sim q} \left[\ell(\hat{y}_t, y_t) + \operatorname{Rel}_n \left(x_{1:t}, y_{1:t} \right) \right]$$

Algorithm achieves the following bound:

$$\operatorname{Reg}_n \leq B_n(f; x_{1:n}, y_{1:n}) + \operatorname{Rel}_n(\cdot)$$

SUMMARY

- Sufficient condition for establishing achievability of adaptive rate.
- For specific settings condition also necessary.
- Obtain unconstrained optimization, model adaptation, optimistic PAC Bayes, quantile bound etc.
- Sketch of schema for deriving adaptive algorithms.

FURTHER DIRECTIONS

- More general techniques for going from bounds to algorithms?
- Apply to game theory.
- Apply to approximation algorithms.
- Further explore data and model priors.