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Streaming setting
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Streaming setting

Raw unlabeled data

» Algorithm obtains X,
sampled iid from B =
marginal distribution P, X1, X, X3, ..

Learner requests labels
for selected data

» Based on previous (X1,7)
labeled and unlabeled —
data, the algorithm ‘ (if);)
decides whether or not active learmer - oxpertiorace
to accept X, and query its I "l derormine labels

label.

> If label is queried, algorithm receives Y, sampled iid from
conditional distribution P(Y|X=X,)



Problem setup

X is d-dimensional, P, is uniform (or log-concave + isotropic)
Binary classification: Labels Y in {+1, -1}

Homogeneous linear classifiers sign(w. X)
with | |w]],=1

err(w) = P(sign(w.X) #Y)

Bayes optimal classifier is linear w*
arg maxy P(Y|X) = sign(w*. X)



Tsybakov Noise Condition

For all linear classifiers w with | |w|],=1
uB(w,w*)* <err(w) —err(w*)

where K in [1,20) is the TNC exponent and O < L < oo is a constant.

P(Y = 1]X)

K characterizes noise in label distribution
K makes problem easy or hard — small k implies easier problem



Minimax active learning rates

If Tsybakov Noise Condition (TNC) holds, then minimax optimal
active learning rate is

E[err(w;) — err(w*)] = O((d/T) */(2x-2))

K = o passive rate 1/VT
K =1 exponential rate e’

Lower bound: Castro-Nowak’06 (d=1), Hanneke-Yang'14 (d, Py),
Singh-Wang’14 (d, lower-bounded/uniform P,)

Algorithms need to know «!!

Model selection for active learning - Can we adapt to easy
cases, while being robust to worst-case?




Balcan-Broder-Zhang'07
Margin-based active learning

Input: Desired accuracy €, Failure probability 6
Initialize: E; Fore =1, ..., E: epoch budgets T, , search radii R,
acceptance regions b, , precision values €_; random classifier w,
Fore=1, .., E
Until labeled examples < T,
Obtain a sample X, from P,

If |w_ ;. X;| £b_,, query label Y,

e-1’

end
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to precision g,on the T, labeled examples among all w
s.t. O(w,w,_ ;) <R_,

* Output: w; =wg



Balcan-Broder-Zhang’'07
Margin-based active learning

* Input: Desired accuracy €, Failure probability 6

* Initialize: E; Fore =1, ..., E: epoch budgets T, , search radii R,
acceptance regions b, , precision values €_; random classifier w,

* Fore=1,..E
Until labeled examples < T, All depend on

Obtain a sample X, from P,
If [w_,.X,| <b

query label Y,

e-1/
end
Find w, that (approximately) minimizes training error up

to precision g,on the T, labeled examples among all w
s.t. B(w,w_ ) <R_,

* Output: w;=w;



Adaptive margin-based active learning

* Input: Query budget T, Failure probability o, shrink rate r

* Initialize: E=log VT; Fore =1, ..., E: epoch budgets T, = T/E, search
radius R, =11, acceptance region b, = e=; random classifier w,

* Fore=1,..,E
No knowledge
Until labeled examples < T, of 1

Obtain a sample X, from P,

If [w. . X;| <£b,, query label Y,
end

Find w, that {eppreximately}-minimizes training error on
the T, labeled examples among all w s.t. 6(w,w_ ;) <R_,

R.=rR. b, =2R.V [E(1+log(1/r))/d]
* Output: w; =wg



Adaptive margin-based active learning

LetT>4,d24,rin(0,1/2), Py is uniform on d-dim unit ball and
Py x satisfies TNC(y, k). Then the streaming adaptive active
learning algorithm achieves, with probability > 1 - 6,

err(w;) — err(w*) = O((d+log(1/8)/T) ¥/(2-2))

forall 1+ 1/(log(1/r)) £ k < .

Minimax optimal rate without knowing u, K up to log factors!!

Adapt to easy cases, while being robust to worst-case!




Why does it work? (proof sketch)

Consider shrink rate r = %.. We will argue adaptivity to K in [2,o0)

Let w_* denote the best linear classifier among all w s.t. 8(w,w__,)
< R.; in acceptance region b, ,

For all e, with high probability
err(w,) —err(w.*) = O(R_, (d/T)/2)  passive rate

For e = 1,we have (d/T)/2
For e = E we have d/T since R; = R,/2F = R,/VT. (but w*; # w*)

Therefore, there exists epoch e’ s.t. with high probability
err(w,) —err(w_*) = O((d/T) «/(2x-2))



Why does it work? (proof sketch)

Consider shrink rate r = %.. We will argue adaptivity to K in [2,o0)
Let w_* denote the best linear classifier among all w s.t. 8(w,w__,)
< R,.; in acceptance region b_,

Therefore, there exists epoch e’ s.t. with high probability

err(w,) —err(w,*) = O((d/T) */(2x2))

Also, w_* = w* (using same argument as Balcan-Broder-Zhang’07)

Point of departure: They ensure w*_ = w* for all e

we allow w*_ # w* forall e > €’
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Why does it work? (proof sketch)

Let w_* denote the best linear classifier among all ws.t. 8(w,w__,)
< R,.; in acceptance region b_,

w_* =w*

There exists epoch €’ s.t. err(w,) —err(w,*) = O((d/T) ¥/(2<2)

)
For all epochs e 2 e’, w, stays close to w,,
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Adaptive margin-based active learning

letT>4,d2>4,rin(0,1/2), P, is log-concave and isotropic on d-
dim unit ball and Py satisfies TNC(, k). Then the streaming
adaptive active learning algorithm with achieves, with b, = C

R.log T probability 21 -6,

err(wy) — err(w*) = O((d+log(1/8)/T) </2x-2)

for all 1+ 1/(log(1/r)) £ K < oo.

Minimax optimal rate without knowing u, K up to log factors!!

Adapt to easy cases, while being robust to worst-case!




Limitations/Open questions

Constants become large as k¥ tends to 1, log factors
u-l/(K—l) r-(k-2)/(k-1)

How to adapttox =1? 1+ 1/(log(1/r)) <x <

Adaptive active learning given desired accuracy € (instead of
query budget T)

Agnostic setting (Bayes optimal classifier not in hypothesis
space)



Related work

* Juditsky-Nesterov’'14 — adaptive stochastic optimization of
uniformly convex functions (K > 2)

A -
fy) = f(@)+ Vi) (v —2)+ 5z —yll"

* QOur analysis extends to achieve adaptive optimization of TNC
functions (kK > 1)

F(X)
f(@) = f(@) = Az — 2" U
%
« Ford=1 [If(@) — f(a")| = T~ %= D

Rates exactly same as 1-dim active learning!



Related work

 Same algorithm also studied by Awasthi et al’14 for a
different question:

Maximum amount of adversarial noise tolerated by
algorithm for constant excess risk and polylog sample
complexity (exponential rate for error)

We study convergence of excess risk to zero with increasing
samples not restricted to be polylog.
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