Learning From Non-iid Data: Fast Rates for the One-vs-All Multiclass Plug-in Classifiers

Vu Dinh¹ Lam Si Tung Ho² Nguyen Viet Cuong³ Duy Duc Nguyen⁴ Binh T. Nguyen⁵

¹Purdue University ²University of California, Los Angeles ³National University of Singapore
⁴University of Wisconsin-Madison ⁵University of Science, Vietnam

- Fast and super fast learning rates for plug-in classifier
 - Multiclass setting
 - Non-iid data
- Non-iid data
 - Exponentially strongly mixing data
 - Converging drifting data
- Generalization of previous result for binary-class and iid case
- Algorithm does not need to know the exponent in the margin assumption
- The rates have nice properties
 - Not depend on the number of classes
 - Retain optimal learning rate for the Hölder class in iid case

- All label distribution functions η_j(X) are Hölder continuous with exponent β.
- **2** Marginal distribution P_X satisfies strong density assumption.
 - Its density has *positive* upper and lower bounds on a compact regular set of \mathbb{R}^d .
- **O** P satisfies multiclass margin assumption.

Theorem

We can construct a one-vs-all multiclass plug-in classifier f_n that satisfies: there exist $C_1, C_2 > 0$ such that for all large enough n,

$$\mathsf{E} R(\widehat{f}_n) - R(f^*) \leq C_1 n^{-C_2\beta(1+\alpha)/(2\beta+d)}$$

- α : constant in the margin assumption
- β : exponent in the Hölder continuous assumption
- d: dimension of the input space \mathbb{R}^d
- Expected risk of plug-in classifier converges to optimal risk with rate $n^{-C_2\beta(1+\alpha)/(2\beta+d)}$.
 - Fast rate when $C_2\beta(1+\alpha)/(2\beta+d)>1/2$
 - Super fast rate when $C_2eta(1+lpha)/(2eta+d)>1$

Theorem

We can construct a one-vs-all multiclass plug-in classifier f_n that satisfies: there exists C > 0 such that for all large enough n,

$$\mathbf{E}R(\widehat{f}_n) - R(f^*) \le C n^{-\beta(1+\alpha)/(2\beta+d)}$$

- Expected risk of plug-in classifier converges to optimal risk with rate $n^{-\beta(1+\alpha)/(2\beta+d)}$.
 - Fast rate when $\beta(1+\alpha)/(2\beta+d) > 1/2$
 - Super fast rate when eta(1+lpha)/(2eta+d)>1

Thank you.