Accelerating Optimization via Adaptive Prediction

Mehryar Mohri1 Scott Yang2

1Google, New York University
2New York University

NIPS Easy Data II, Dec 10, 2015
Online Convex Optimization

- Sequential optimization problem
- $\mathcal{K} \subset \mathbb{R}^n$ compact action space, f_t convex loss functions
- At time t, learner chooses action x_t, receives loss function f_t, and suffers loss $f_t(x_t)$
- Goal: minimize regret

$$\max_{x \in \mathcal{K}} \sum_{t=1}^{T} f_t(x_t) - f_t(x)$$
Worst-case vs Data-dependent Methods

Worst-case methods:

1. Algorithms: Mirror Descent, FTRL
2. Regret bounds typically of the form $O(\sqrt{T})$
3. Algorithms do not give faster rates on “easy data”

Data-dependent methods:

1. Adaptive regularization [Duchi et al 2010]
 Easy data: sparsity
2. Predictable sequences [Rakhlin and Sridharan 2012]
 Easy data: slowly-varying gradients
Adaptive Regularization

AdaGrad algorithm of [Duchi et al 2010] (+ many others):

1. Standard Mirror Descent:
 \[x_{t+1} = \text{argmin}_{x \in \mathcal{K}} g_t \cdot x + B_{\psi}(x, x_t). \]

2. Adaptivity: change the regularizer at each time step
 \[\psi \rightarrow \psi_t. \]

3. Worst-case optimal data-dependent bound:
 \[\mathcal{O} \left(\sum_{i=1}^{n} \sqrt{\sum_{t=1}^{T} |g_{t,i}|^2} \right) \]

4. Easy data scenario: sparsity
Predictable Sequences

Optimistic FTRL algorithm of [Rakhlin and Sridharan 2012]

Idea:

- Learner should try to “predict” the next gradient
 \[M_t(g_1, \ldots, g_{t-1}) \approx g_t. \]

Consequences:

- Typical regret bound \(O \left(\sqrt{\sum_{t=1}^{T} |g_t - M_t|^2} \right) \).
- Often still worst-case optimal
- Easy data scenario: slowly varying gradients
Adaptive Predictions

Motivation:
- Adaptive regularization good for sparsity
- Predictable sequences good for slowly varying gradients

Questions:
- Can we combine both and get the best of both worlds?
- What are the easy data scenarios for such an algorithm?
Adaptive Predictions

Idea:

- Derive an adaptive norm bound for optimistic FTRL:
 \[O \left(\sum_{t=1}^{T} |g_t - M_t|(t) \right) \]
- Find “best” norm associated to gradient prediction error instead of gradient losses.

Consequences:

- Can view AdaGrad as special case of naively predicting zero
- Can view Optimistic FTRL as naive regularization
- Behaves well under sparsity
- Accelerates faster than Optimistic FTRL when predictions vary in per-coordinate accuracy
Practical Considerations

Extensions:

- Composite terms
- Proximal versus non-proximal regularization
- Large-scale optimization problems: epoch-based variants

For more details, please stop by the poster. Thank you!