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Abstract

We present a simple heuristic clustering procedure, with running time independent
of the data size, that combines random sampling with Single-Linkage (Kruskal’s
algorithm), and show that with sufficient probability, it has a constant approxi-
mation guarantee with respect to the optimal k-means cost, provided an optimal
solution satisfies a center-separability assumption. As the separation increases, it
has better performance: fix any ¢, > 0, if the center separation is sufficiently
large, it has a (1 + ¢)-approximation guarantee with probability at least 1 — .

1 Introduction

While there is a rich body of literature on approximation algorithms for the k-means clustering
problem [116, 10, 12} 8], less work has focused on proving guarantees for practically used schemes,
e.g., Lloyd’s algorithm [15] and linkage-based algorithms [7]]. Ostrovsky et al. [17] first showed that
when seeded with k-means++- [1]], a Lloyd-like algorithm efficiently finds a (1 + ¢)-approximation
to the k-means objective (i.e., a Polynomial Time Approximation Scheme, PTAS) with high prob-
ability on well-clusterable instances. With a weaker clusterability assumption, Kumar and Kannan
[11]] showed that the k-SVD + constant k-means approximation + Lloyd’s update scheme is a PTAS
for the k-means clustering problem. Subsequent analysis [4] proposed a center-separability assump-
tion as a simplification of [[L1], under which they showed that after projecting data to the subspace
obtained by k-SVD, any constant k-means approximation is a PTAS, provided the center separation
is sufficiently large (Sec. 3, [4]). A drawback of [11] 4] is that the required k-SVD step limits the
applicability of their clustering scheme to d > k. The performance of linkage-based algorithms
for center-based clustering, including k-means, on well-clusterable data were investigated by [3} 3],
where the linkage algorithms are used to find a hierarchical clustering and some smart pruning is
needed for finding the final k-clustering.

We show that a simple heuristic, one that combines random sampling with Single-Linkage (the latter
terminates when k-components are left, eliminating the need for pruning), is a PTAS for the k-means
problem with high probability when the underlying data satisfies a clusterability assumption that is
comparable to those in [17, 11} 14} 2]. Yet, its running time is independent of the data size while, to
our knowledge, this is not the case for most algorithms with such strong approximation guarantees.
We thus demonstrate a positive case of computational gain by exploiting the structure of easy data.

1.1 Preliminaries

The input of our clustering problem is a discrete dataset X, an n by d matrix with each row a data
point z € X. We assume X admits one (or more) non—degenerateﬂ optimal k-means clustering

"We say a k-clustering is degenerate if any of its & clusters are empty.



T, = {Ts, s € [k]}, which in addition satisfies d;",(f)-weak center separability, defined below. Let
ns = |Ts|, Vs € [k], and let nyiy := mingepp) ns and Npax := MaXse[i) Ns.

Mappings Fix a point set Y, we let m(Y') denote the mean of Y. In general, each clustering
assignment A := {A,,s € [k]} induces a unique set of centroids C' = {m(A4;),s € [k]}. Fora
ground-truth 7}, we denote the induced centroids by us := m(Ts),Vs € [k]. Alternatively, fix a
set of k centroids C, we let C'(-) denote a mapping C(x) := argmin. _cc ||© — ¢,||. This mapping
induces a k-clustering X, i.e., a Voronoi partition of X. We let V(c,.) denote the Voronoi region
{x eRY ||z — ¢ < ||z — s, Vs # 7).

K-means cost For any subset of points Y, with respect to an arbitrary set of k£ centroids C, we
denote its k-means cost by ¢(C.Y) == >° v [ly — C(y)||?. For a k-clustering A = {A,} of

X, we denote its k-means cost with respect to an arbitrary set of k centroids C' by ¢(C, A) :=
Zle #(C, A,) (or simply ¢(A) when ¢, = m(A,),Ve, € C,r € [k]). Welet ¢7 := o({pr},T),
and let ¢, := Zle ¢} denote the optimal k-means cost.

Characterization of (X,7T,) Three properties of (X, 7)) are useful to our analysis. We use
Pmin ‘= Min,.c[g % to characterize the fraction of the smallest cluster in 7% to the entire dataset.
We use o := min,., % to characterize the level of cluster balance in 7} (0 < o < 1 always holds;

« = 1 when the ground-truth is perfectly balanced). We let w, := % characterize the
ratio between average and maximal “spread” of cluster 7)., and we let Wiy := minre[k] w,. Note

Prin < %, so it should not be treated as a constant as k increases; o and wy,;,, on the other hand, do
not necessarily grow with &k (nor n, d), and we treat them as constants.

Our clusterability assumption We present two assumptions. The second is stronger (but within
a factor of v/k) than the first.

Definition 1 (d’,(f)-weak center separability). A dataset-solution pair (X,T) satisfies d,’ii( -
weak center separability if Vr € [k],s # 7, ||ur — psl| > dF,, where dfy = f(\/P1 + qf)z)(ﬁ +
\/%) where ¢ and ¢o are the k-means cost of the largest and second largest (w.r.t. k-means cost)

clusters in an optimal k-means solution, i.e., ¢1 := max, @, P2 := Maxy s£1 5.

This clusterability assumption is reminiscent of the mean separation assumption in the earlier work
on learning mixtures of Gaussians [9], where the means of different components are required to be
at least Q(0 4. ) apart, with 0,4, being the largest deviation of a single component. Since most of
the mass of a Gaussian component is within one standard deviation of their mean, 0,4, provides a
rough bound of “cluster width” of each component. Thus, mean separation implies that the within-
cluster distance is on average smaller than the between-cluster distance. Here, we do not have any
probabilistic assumptions, however, .., its are the empirical mean of their respective clusters. Also

note that 4/ i—l is the empirical deviation for cluster T,.. However, instead of requiring the centers

to be at least Q(\/%) apart, we need a more strict condition (/ %),Vr, due to the technical

difficulties that arise by not having measure concentration. When analyzing the performance of
Algorithm [T] together with Lloyd’s algorithm [15]], we need a stronger assumption as below, which
depends on the global k-means cost.

Definition 2 ((d},(f)-center separability). A dataset-solution pair (X, T) satisfies d: ( f)-center
separability if we redefine d; (f) above as d,(f) := f\/qb*(\/% + \/%)

Although stronger than weak center separability, (d*,(f)-center separability is implied by the as-

sumption in [I7)]. Furthermore, in the case d < k and f = O(v/k), it is implied by the assumption
in [L1]; when f = O(1), it is similar to the assumption in [4].

2  Main results

In large-scale applications, such as computer vision, clustering algorithms are often run on a random
sample of the entire data (i.e., a subset of data sampled uniformly at random) [6} [13} [14]. Our



Algorithm 1 Heuristic clustering
Input: X, m, k
Output: {Sl, ey Sk}
1: {v;,i € [m]} < sample m points from X (i.i.d.) uniformly at random with replacement

2: {S1,...,S,} <run Single-Linkage on {v;,¢ € [m]} until there are only k connected compo-
nents left -
3: Cop = {vf,r € [k]} « take the mean of the points in each connected component S,., r € [k]

4: X = S1U---USy < k-partition X according to the Voronoi region induced by C

main results provide an example where such an heuristic, as described in Algorithm[I} has provable
guarantee. In the context of k-means clustering, this leads us to the conclusion that Algorithm
is a constant approximation k-means algorithm with high probability, whose performance can be
further improved by Lloyd’s algorithm. It also suggests that if the dataset has a clusterable structure,
the sample size could be independent of the data size, a desirable property for dealing with massive
datasets.

Theorem 1. Assume T, is an optimal k-means solution with respect to X, which satisfies d}.(f)-
weak center separability with f > max{ l, 16}. If we cluster X using Algorithm then with proba-

bility at least 1 —m exp(—?(f —1)2w2,,) —k exp(—mpmin), the final solution is a 4-approximation
to the k-means objective.

The proof, similar to Theorem 3.2 of [4]], follows directly from Theorem [3|and Lemma

Proof. Consider each cluster S, in the final solution. Its k-means cost, by definition, is
o({m(Sr)} Sr) < o({ur}, Sr) = o({ur}, S N T0) + d({pr}, User S N T). By Theorem

and our assumption on center separation, 7 < vI < %, we can apply Lemma 1| to get

2f
S({prk Usr Se N 1) = Yoy Yes, o, o — wel® < sy Yaes,om, iy lle — wsll®s
by Lemma Since f > 16, we get ¢ < 4. Summing over all r € [k], ¢({S,,r € [k]}) <

1
=42
Zr ¢({/~Lr}a Sr N Tr) + Zr m Zs;érz T — /~Ls||2 S 4(Zr ¢({/~Lr}a Sr N Tr) +
2o Distr 20 J1%) =432, (2 1P+ 22 1)}

432 D ses, ||a:— C*(x)||2} = 4¢, (C, is the set of optimal centroids). O

Intuitively, we want neither under-sampling, which may fail to cover some optimal clusters, nor
over-sampling, which may include outliers. The intuition translates into the success probability of
Algorithm [T} m should be carefully chosen to be neither too large nor too small.

In Theorem|[I|we have fixed f,m as constants to get a constant approximation guarantee with proba-
bility depending on f, m. If we instead fix any approximation factor 14+-¢ > 1, and failure probability
0 > 0, then by allowing f, m to depend on these two parameters, we can achieve 1-+e-approximation
guarantee with probability at least 1 — §, as shown in the corollary below.

Corollary 1. Assume the conditions in Theorem [I| hold. For any § > 0,¢ > 0, if f =

log 1 . log sz Py f
Q(y/log(£, %) + z). and choosing > < m < Fexp{2(y — 1)2w? }, then Algorithm |l
has (1 + €)-approximation guarantee with respect to the optimal k-means objective with probability

Pmin 2 mln
at least 1 — 6.

ke
Therefore, it suffices to have m = Q(l;:i_é) (this is at least Q(klog £)). Since the algorithm is

only run on a sample of size m, as long as pyin = Q(exp(—k)), the runtime of Algorithm (1| has
polynomial dependence on k. The quadratic dependence of our assumption on % can be relaxed to

ﬁ, if we run Lloyd’s algorithm to refine the clustering and use d (f)-center separability instead.

Theorem 2. Assume T, is an optimal k-means solution with respect to X, which satisfies d*,(f)-

center separability. And for any § > 0,e > 0, if f = Q(4/log( plog 2 \/: and choosing

log %

Pmin

<m < gexp{2(£ — 1)2w? .}, then if we run Lloyd’s algorithm with seeds {v},r € [k|}



obtained from Algorithm/|l| the converged Lloyd’s solution has a (1 + €)-approximation guarantee
with respect to the optimal k-means objective with probability at least 1 — §.

Due to space limits we removed some proofsﬂ

2.1 Analysis

Lemma [T]shows when the centroids in Cy is sufficiently close to those in an optimal solution (guar-
anteed by Theorem [3), the mis-clustered points of each cluster S, must be “outliers” with respect
to its optimal cluster T, for some s # r. Consequently, assigning them to 7;. does not increase the
cost too much.

Lemma 1. Ify := max, sz, ”Z:Z” < %, thenVr € [k],Vx € V(v]),
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Our main result regarding AlgorithmT]is presented below.

Theorem 3. Assume T, is an optimal k-means solution with respect to X, which satisfies d}.(f)-
weak center separability with f > max{é, 4}. If we cluster X using Algorithm then ¥, v s.t.

lper — v < @« / %‘ with probability at least 1 — mexp(—Z({ —1)2w2, ) — kexp(—mpmin)-

min

Proof outline To prove the theorem, we first show that Single-Linkage as used in Algorithm [T]has
the property of correctly identifying k connected components of a graph G, provided for all edges of
G, all intra-cluster edges are shorter than any inter-cluster edges (Lemma[2)). Then we show that the
edge set E induced by sample {v;} satisfies the condition with significant probability, where each
connected component {v,.(;)} corresponds to samples from the optimal cluster 7. (Lemmaand.
Finally, taking the mean of points in each connected component gives the desired result.

Consider a complete graph G = (V, E). Any k-clustering {V, ..., V}} of the vertex set induces a
bi-partition of the edge set E = E;;, U Egy t. € = (v3,v;) € Eyy, if v, v; € V. for some r € [k],
and e = (v;,v;) € Egue if v; € V3,05 € Vi, r # s. Let w(e) := |Jv; — vj||, the correctness of
Single-Linkage on instances described above is formally stated below.

Lemma 2. Assume a complete graph G = (V, E) admits a k-clustering {Vi*, ..., V*} of V with
the induced edge bi-partition E},,, E%, . such that Ve, € E}, ,Ves € E%, ., we have w(e1) < w(ez)
(the edge weights are just the Euclidean distances between vertices). Then running Single-Linkage
on Gy := (V,0) until k-components left, results in a graph Ggr, such that for each connected

component, 1, of G sy, the vertex set, V&, corresponds to exactly one cluster V. of V.

Now we show that with significant probability, the ground-truth clustering induces a non-degenerate
k-clustering of {v;,i € [m]}, {{vi} N T,,r € [k]}, which satisfies the property required by Lemma
[2l which follows by combining Lemma [3]and [4}

Lemma 3. Let T'.(;y denote the optimal cluster a sample v; belongs to. Define two events: A :=

(Fvi,i € [m], lv: — e || < 0/ E2Y, and B == {VT,,r € [k], T, 0 {vs,i € [m]} # O}. Then

Ter (i)

Pr(AnB)>1- mexp(—2(£ —1)%w? ;) — kexp(—mpmin)-

Lemma 4. IfVy; € {v;,i € [m]}, |V — pn(n)||* < %zz—i) and f > max{%, 4}. Then for any
1,7 € [m] s.t. w(i) = w(4), and for any p, q € [m] s.t. w(p) # 7(q),

vi = vjll < llvp = vyl
Finally, combining the seeding guarantee from Lemma [3|and 4] with the property of Single-Linkage
in Lemma 2] completes the proof of Theorem 3]
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