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Abstract

We prove new fast learning rates for the one-vs-all multiclass plug-in classifiers
trained either from exponentially strongly mixing data or from data generated by
a converging drifting distribution. These are two typical scenarios where training
data are not iid. The learning rates are obtained under a multiclass version of Tsy-
bakov’s margin assumption, a type of low-noise assumption, and do not depend
on the number of classes. Our results are general and include a previous result
for binary-class plug-in classifiers with iid data as a special case. In contrast to
previous works for least squares SVMs under the binary-class setting, our results
retain the optimal learning rate in the iid case.

1 Introduction

Fast learning of plug-in classifiers from low-noise data has recently gained much attention [2, 3, 4,
5]. The first fast/super-fast learning rates1 for plug-in classifiers were proven in [2] under Tsybakov’s
margin assumption [6], a type of low-noise condition. Their plug-in classifiers employ the local
polynomial estimator to estimate the conditional probability of a label Y given an observation X
and use it in the plug-in rule. Subsequently, [3] proved the fast learning rate for plug-in classifiers
with a relaxed condition on the density of X and investigated the use of kernel, partitioning, and
nearest neighbor estimators instead of the local polynomial estimator. Monnier [4] suggested to use
local multi-resolution projections to estimate the conditional probability of Y and proved super-fast
rates of the corresponding plug-in classifier under the same margin assumption.

These previous analyses of plug-in classifiers typically focus on the binary-class setting with iid
data assumption. This is a limitation of the current theory for plug-in classifiers since (1) many
classification problems are multiclass in nature and (2) data may also violate the iid data assumption
in practice. In this paper, we contribute to the theoretical understandings of plug-in classifiers by
proving novel fast learning rates of a multiclass plug-in classifier trained from non-iid data. In
particular, we prove that the multiclass plug-in classifier constructed using the one-vs-all method
can achieve fast learning rates, or even super-fast rates, with the following two types of non-iid
training data: data generated from an exponentially strongly mixing sequence and data generated
from a converging drifting distribution. This is the first result that proves fast learning rates for
multiclass classifiers with non-iid data, and our rates do not depend on the number of classes.

Our results assume a multiclass version of Tsybakov’s margin assumption that assumes the events in
which the most probable label of an example is ambiguous with the second most probable label have

∗The authors contributed equally to this work. The full paper was previously published at TAMC 2015 [1].
1Fast learning rate means the trained classifier converges with rate faster than n−1/2, while super-fast learn-

ing rate means the trained classifier converges with rate faster than n−1.
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small probabilities. This margin assumption was previously considered for multiclass empirical risk
minimization (ERM) classifiers with iid data [7] and in the context of active learning with cost-
sensitive multiclass classifiers [8]. Our results are natural generalizations for both the binary-class
and the iid data settings. As special cases of our results, we can obtain fast learning rates for the one-
vs-all multiclass plug-in classifiers in the iid data setting and for the binary-class plug-in classifiers
in the non-iid data setting. Our results can also be used to obtain the previous fast learning rates [2]
for the binary-class plug-in classifiers in the iid data setting.

In terms of theory, the extension from binary class to multiclass problem is usually not trivial and
depends greatly on the choice of the multiclass classifiers. Our results show that this extension can
be achieved with plug-in classifiers and the one-vs-all method. The one-vs-all method is a practical
way to construct a multiclass classifier using binary-class classification [9]. This method trains a
model for each class by converting multiclass data into binary-class data and then combines them
into a multiclass classifier.

Our paper considers two types of non-iid data. Exponentially strongly mixing data is a typical case of
identically but not independently distributed data. Fast learning from exponentially strongly mixing
data has been previously analyzed for least squares support vector machines (LS-SVMs) [10, 11]
and ERM classifiers [11]. On the other hand, data generated from a drifting distribution (or drifting
concept) is an example of independently but not identically distributed data. Some concept drifting
scenarios and learning bounds were previously investigated in [12, 13, 14, 15]. In this paper, we
consider the scenario where the parameters of the distributions generating the training data converge
uniformly to those of the test distribution with some polynomial rate.

We note that even though LS-SVMs can be applied to solve a classification problem with binary
data, the previous results for LS-SVMs cannot retain the optimal rate in the iid case [10, 11]. In
contrast, our results in this paper still retain the optimal learning rate for the Hölder class in the iid
case. Besides, the results for drifting concepts can also achieve this optimal rate.

2 Preliminaries

Let {(Xi, Yi)}ni=1 be labeled training data where Xi ∈ Rd and Yi ∈ {1, 2, . . . ,m} for all i. The
binary-class case corresponds to m = 2, while the multiclass case corresponds to m > 2. For now
we do not specify how {(Xi, Yi)}ni=1 are generated, but we assume that test data are drawn iid from
an unknown distribution P on Rd × {1, 2, . . . ,m}.
Given the training data, our aim is to find a classification rule f : Rd → {1, 2, . . . ,m} whose risk is
as small as possible. The risk of a classifier f is defined as R(f) , P(Y 6= f(X)). One minimizer
of the above risk is the Bayes classifier f∗(X) , arg maxj ηj(X), where ηj(X) , P(Y = j|X)

for all j ∈ {1, 2, . . . ,m}. For any classifier f̂n trained from the training data, it is common to
characterize its accuracy via the excess risk E(f̂n) , ER(f̂n) − R(f∗), where the expectation is
with respect to the randomness of the training data. A small excess risk for f̂n is thus desirable as
the classifier will perform close to the optimal classifier f∗ on average.

For a classifier f , we write ηf (X) as an abbreviation for ηf(X)(X), which is the value of the function
ηf(X) at X . We have the following useful property of the excess risk in the multiclass setting.

Proposition 1. For any classifier f̂n, we have E(f̂n) = E[ηf∗(X)−ηf̂n(X)], where the expectation
is with respect to the randomness of both the training data and the testing example X .

Following [2], we assume all the functions ηj’s are in the Hölder class Σ(β, L,Rd) and the marginal
distribution PX of X satisfies the strong density assumption (see [1, 2] for details).

·Margin Assumption for Multiclass Setting:
As in the binary-class case, fast learning rates for the multiclass plug-in classifier can be obtained
under a low-noise assumption similar to Tsybakov’s margin assumption [6]. In particular, we assume
that the conditional probabilities ηj’s satisfy the following margin assumption, which is an extension
of Tsybakov’s margin assumption to the multiclass setting.
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Assumption (Margin Assumption). There exist constants C0 > 0 and α ≥ 0 such that for all t > 0,
PX(η(1)(X)−η(2)(X) ≤ t) ≤ C0t

α, where η(1)(X) and η(2)(X) are the largest and second largest
conditional probabilities among all the ηj(X)’s.

3 The One-vs-All Multiclass Plug-in Classifier

We now introduce the one-vs-all multiclass plug-in classifier which we will analyze in this paper.
Let η̂n(X) = (η̂n,1(X), η̂n,2(X), . . . , η̂n,m(X)) be anm-dimensional function where η̂n,j is a non-
parametric estimator of ηj from the training data. The corresponding multiclass plug-in classifier f̂n
predicts the label of an observation X by: f̂n(X) = arg maxj η̂n,j(X). In this paper, we consider
plug-in classifiers where η̂n,j’s are estimated using the one-vs-all method and the local polynomial
regression function as follows. For each class j ∈ {1, 2, . . . ,m}, we first convert the training data
{(Xi, Yi)}ni=1 to binary class by considering all (Xi, Yi)’s such that Yi 6= j as negative (label 0) and
those such that Yi = j as positive (label 1). Then we construct η̂n,j from the new binary-class train-
ing data using the local polynomial regression function with an appropriate bandwidth h and kernel
K [1]. Specifically, K has to satisfy the assumptions similar to those in [2] (see [1] for details). The
conditions for h are given in Section 4 and 5.

4 Fast Learning For Exponentially Strongly Mixing Data

In this section, we consider the case where training data are generated from an exponentially strongly
mixing sequence [10, 16]. Let Zi = (Xi, Yi) for all i. Assume that {Zi}∞i=1 is a stationary se-
quence of random variables on Rd × {1, 2, . . . ,m} with stationary distribution P. That is, P is the
marginal distribution of any random variable in the sequence. For all k ≥ 1, we define the α-mixing
coefficients [10]: α(k) , supA1∈σt1,A2∈σ∞t+k,t≥1

|P(A1 ∩A2)−P(A1)P(A2)|, where σba is the

σ-algebra generated by {Zi}bi=a. The sequence {Zi}∞i=1 is exponentially strongly mixing if there
exist positive constants C1, C2 and C3 such that for every k ≥ 1, we have

α(k) ≤ C1 exp(−C2k
C3). (1)

We now state some key lemmas for proving the convergence rate of the multiclass plug-in classifier
in this setting. Let ne ,

⌊
n

d{8n/C2}1/(C3+1)e

⌋
be the effective sample size. The following lemma is

about the convergence rate of the local polynomial regression functions using the one-vs-all method.

Lemma 1. Let β, r0, and c be the constants in the Hölder assumption, the strong density assumption,
and the assumption for the kernel K respectively. Then there exist constants C4, C5, C6 > 0 such
that for all δ > 0, all bandwidth h satisfying C6h

β < δ and 0 < h ≤ r0/c, all j ∈ {1, 2, . . . ,m}
and n ≥ 1, we have P⊗n(|η̂n,j(x)− ηj(x)| ≥ δ) ≤ C4 exp(−C5neh

dδ2) for almost surely x with
respect to PX , where d is the dimension of the observations (inputs).

Given the above convergence rate of the local polynomial regression functions, Lemma 2 below
gives the convergence rate of the excess risk of the one-vs-all multiclass plug-in classifier.

Lemma 2. Let α be the constant in the margin assumption. Assume that there exist C4, C5 > 0
such that P⊗n(|η̂n,j(x) − ηj(x)| ≥ δ) ≤ C4 exp(−C5anδ

2) for almost surely x with respect to
PX , and for all j ∈ {1, 2, . . . ,m}, δ > 0. Then there exists C7 > 0 such that for all n ≥ 1,
E(f̂n) = ER(f̂n)−R(f∗) ≤ C7a

−(1+α)/2
n .

Using Lemma 1 and 2, we can obtain the following theorem about the convergence rate of the
one-vs-all multiclass plug-in classifier when training data are exponentially strongly mixing. This
theorem is a direct consequence of Lemma 1 and 2 with h = n

−1/(2β+d)
e and an = n

2β/(2β+d)
e .

Theorem 1. Let α and β be the constants in the margin assumption and the Hölder assumption
respectively, and let d be the dimension of the observations. Let f̂n be the one-vs-all multiclass
plug-in classifier with bandwidth h = n

−1/(2β+d)
e that is trained from an exponentially strongly

mixing sequence. Then there exists some constant C8 > 0 such that for all n large enough that
satisfies 0 < n

−1/(2β+d)
e ≤ r0/c, we have: E(f̂n) = ER(f̂n)−R(f∗) ≤ C8n

−β(1+α)/(2β+d)
e .
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The convergence rate in Theorem 1 is expressed in terms of the effective sample size ne rather than
the sample size n since learning with dependent data typically requires more data to achieve the
same level of accuracy as learning with independent data (see e.g., [10, 17, 18]). However, Theorem
1 still implies the fast rate for the one-vs-all multiclass plug-in classifier in terms of the sample size

n. Indeed, the rate in the theorem can be rewritten as O(n−
β(1+α)
2β+d ·

C3
C3+1 ), so the fast learning rate

is achieved when 2(α − 1/C3)β > (1 + 1/C3)d and the super-fast learning rate is achieved when
(α− 1− 2/C3)β > d(1 + 1/C3).

5 Fast Learning From a Drifting Concept
In this section, we consider the case where training data are generated from a drifting concept that
converges to the test distribution P. Unlike the setting in Section 4 where the training data form a
stationary sequence of random variables, the setting in this section may include training data that
are not stationary. Formally, we assume the training data {Zi}ni=1 = {(Xi, Yi)}ni=1 are generated
as follows. The observations Xi are generated iid from the marginal distribution PX satisfying
the strong density assumption. For each i ≥ 1, the label Yi of Xi is generated from a categorical
distribution on {1, 2, . . . ,m} with parameters ηi(Xi) , (ηi1(Xi), η

i
2(Xi), . . . , η

i
m(Xi)). That is,

the probability of Yi = j conditioned on Xi is ηij(Xi), for all j ∈ {1, 2, . . . ,m}. Note that from our
setting, the training data are independent but not identically distributed. To prove the convergence
rate of the multiclass plug-in classifier, we assume that ‖ηnj − ηj‖∞ , supx∈Rd |ηnj (x)− ηj(x)| =
O(n−(β+d)/(2β+d)) for all j, i.e., ηnj converges uniformly to the label distribution ηj of test data with
rate O(n−(β+d)/(2β+d)). The following lemma states the convergence rate of the local polynomial
regression functions in this setting. Note that the constants in this section may be different from
those in Section 4.
Lemma 3. Let β, r0, and c be the constants in the Hölder assumption, the strong density assumption,
and the assumption for the kernel K respectively. Let η̂n,j be the estimator of ηj estimated using the
local polynomial regression function with h = n−1/(2β+d). If ‖ηnj − ηj‖∞ = O(n−(β+d)/(2β+d))
for all j, then there exist constants C4, C5, C6 > 0 such that for all δ > 0, all n satisfying
C6n

−β/(2β+d) < δ < 1 and 0 < n−1/(2β+d) ≤ r0/c, and all j ∈ {1, 2, . . . ,m}, we have
P⊗n(|η̂n,j(x)− ηj(x)| ≥ δ) ≤ C4 exp(−C5n

2β/(2β+d)δ2) for almost surely x with respect to PX ,
where d is the dimension of the observations.

The following theorem is a direct consequence of Lemma 2 and 3 with an = n2β/(2β+d). We note
that the convergence rate in Theorem 2 is fast when αβ > d/2 and is super-fast when (α−1)β > d.
Theorem 2. Let α and β be the constants in the margin assumption and the Hölder assump-
tion respectively, and let d be the dimension of the observations. Let f̂n be the one-vs-all mul-
ticlass plug-in classifier with bandwidth h = n−1/(2β+d) that is trained from data generated
from a drifting concept converging uniformly to the test distribution. Then there exists some con-
stant C8 > 0 such that for all n large enough that satisfies 0 < n−1/(2β+d) ≤ r0/c, we have
E(f̂n) = ER(f̂n)−R(f∗) ≤ C8n

−β(1+α)/(2β+d).

6 Remarks

The rates in Theorem 1 and 2 do not depend on the number of classes m. They are both generaliza-
tions of the previous result for binary-class plug-in classifiers with iid data [2]. More specifically,
C3 = +∞ in the case of iid data, thus we have ne = n and the data distribution also satisfies the
condition in Theorem 2. Hence, we can obtain the same result as in [2]. Our results for the one-vs-
all multiclass plug-in classifiers retain the optimal rate O(n−β(1+α)/(2β+d)) for the Hölder class in
the iid case [2] while the previous results in [10, 11] for LS-SVMs with smooth kernels do not (see
Example 4.3 in [11]). Besides, from Theorem 2, the one-vs-all multiclass plug-in classifiers trained
from a drifting concept can also achieve this optimal rate. We note that for LS-SVMs with Gaussian
kernels, Hang and Steinwart [11] proved that they can achieve the essentially optimal rate in the iid
scenario (see Example 4.4 in [11]). That is, their learning rate is nζ times of the optimal rate for any
ζ > 0. Although this rate is very close to the optimal rate, it is still slower than log n times of the
optimal rate.2

2The optimal rates in Example 4.3 and 4.4 of [11] may not necessarily be the same as our optimal rate since
Hang and Steinwart considered Sobolev space and Besov space instead of Hölder space.
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