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Abstract

We present algorithms with strong data-dependent regret guarantees for the prob-
lem of bandit convex optimization. In the process, we develop a general frame-
work from which all previous main results in this setting can be recovered. The
key method is the introduction of adaptive regularization. By appropriately adapt-
ing the exploration scheme, we show that one can derive regret guarantees which
can be significantly more favorable than those previously known.

1 Introduction

Bandit convex optimization is a general framework for sequential decision making under uncertainty.
It generalizes the well-known multi-armed bandit scenario, and captures the exploration-exploitation
trade-off inherent to many online machine learning problems. At the same time, bandit convex
optimization also remains an area of online convex optimization in which existing regret guarantees
are not satisfactory.

We consider the setting of bandit convex optimization. Let K ⊂ Rn be a compact convex set, and
let {ft}∞t=1 be a sequence of convex functions. At each round t = 1, 2, . . . , T , the learner selects a
point xt ∈ K and incurs loss ft(xt). The learner’s objective is to minimize his regret, defined by:

RegT = max
x∈K

T∑
t=1

ft(xt)− ft(x),

that is the difference between his cumulative loss and that of the best fixed point in hindsight. In
contrast to the standard online learning or online convex optimization scenario, in bandit convex
optimization, the learner has access only to the value ft(xt) and not any higher-order information.

This scenario was first studied by [9], and has been further investigated by [1, 2, 12, 10, 4, 14].

It still remains an open question whether one can efficiently obtain the desired O(
√
T ) regret in the

purely strongly convex, purely strongly smooth, or purely Lipschitz settings. To make progress in
this direction, we will build upon recent advances in other areas of the online convex optimization
literature. Specifically, we will draw from the techniques in adaptive regularization presented in
[3, 7, 11] as well as ideas from the “learning faster from easy data” paradigm studied in [8, 5, 13, 6]
to derive a pair of efficient adaptive algorithms with minimal assumptions on the function’s loss
sequence.

Specifically, our algorithms will provide strong data-dependent guarantees, so that while their regret
will never be worse than that of previous algorithms in the same setting, they can also be much better
depending on how favorable and “easy” the actual data is. Moreover, the algorithms we present are
any-time and automatically adjust to the data, so that they can run without any a priori tuning or
unreasonable parameter specification.
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Algorithm 1 AdaBCO-Lipschitz
1: Input: η0 = 1

2nC , ν-self concordant barrierR, C > 0 constant
2: Initialize: x1 = argminx∈KR(x).
3: for t = 1, . . . , T : do
4: Choose a constant Lt ≥ 0 such that |ft(x)− ft(y)| ≤ Lt|x− y|.
5: Choose matrix Qt < 0 such that ft(x) ≥ ft(xt) + g>t (x− xt) + 1

2‖Qt(x− xt)‖
2
2.

6: Define B̃t,s =
(
∇2R(xs) + (ηs1{s<t})Q1:s

)−1/2
and

ηt =

 t∑
s=1

2

2Ls
1
n

n∑
j=1

λj(B̃t,s)n2C2

1/3

−3/4(

ν log(T )
2

)3/4

7: Let Bt =
[
∇2R(xt) + ηtQ1:t

]−1/2
.

8: Define δt =
(
2 n3C2ηt
Lt

Pn
j=1 λj(Bt)

)1/3

.

9: Sample u ∼ Sn uniformly, where Sn = {x ∈ Rn|‖x‖2 = 1} the unit sphere.
10: Select yt = xt + δtBtu ∈W1(xt) ⊂ K, incurring loss ft(yt).
11: Construct the gradient estimate ĝt = nft(yt)(δtBt)−1u.
12: Update xt+1 = argminx∈K g

>
1:tx+ 1

2

∑t
s=1 ‖(x− xs)‖2Qs + 1

ηt
R(x).

13: end for

2 Adaptive bandit convex optimization

We will now present Algorithm 1, AdaBCO-Lipschitz, an adaptive algorithm that requires minimal
regularity assumptions on the loss functions.

Unlike previous algorithms in the literature, AdaBCO-Lipschitz does not need the learner to specify
a priori a fixed level of convexity for the sequence of loss functions encountered during learning.
This is often an unreasonable requirement, particularly in a truly online setting, and so instead,
AdaBCO-Lipschitz allows the learner to specify the convexity of functions as it sees them, and the
algorithm is constructed such that the regret bound will automatically adapt to this data. This is
achieved via dynamic tuning of the sampling ellipsoids and learning rates.

Moreover, it is important to realize that computing parameters in real-time is never more difficult
than computing bounds that hold uniformly over all rounds at the start in a truly online scenario, so
AdaBCO-Lipschitz is never more difficult to implement than previous algorithms.
Theorem 1 (Adaptive BCO using dynamic Lipschitz bounds). Let K be a convex set and R a ν-
self-concordant barrier over K. Assume that |f | ≤ C. Then Algorithm 2 provides the regret bound:

T∑
t=1

E[ft(yt)− ft(x)] ≤ E

5(ν log(T ))
1
4

 T∑
t=1

LtnC2
n∑
j=1

λj(B̃t,s)

 1
3


3
4


As mentioned before, Algorithm 1 differs from previous algorithms in the literature in that it does
not require a priori assumptions on the convexity or smoothness of the loss functions. One can adjust
these convexity matrices and smoothness constants dynamically over time, and the regret bound will
adapt.

The construction of dynamic sampling ellipsoids and data-dependent learning rates here involves
some subtlety due to their interdependence. The optimal a posteriori learning rate depends on the
sampling ellipsoid, and the radius of the sampling ellipsoid depends on the learning rate. Building
an on-line approximation to the optimal rate also involves an abstract result on normalized sums.

Moreover, AdaBCO differs from previous algorithms in that it treats convexity as a matrix parameter
instead of a scalar parameter. This is based on the insight that, for minimizing regret, convexity of
the loss function is closely tied to convexity of the self-concordant barrier’s Hessian, and that one
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Algorithm 2 AdaBCO-Smooth
1: Input: η0 = 1

2nC , ν-self concordant barrierR, C > 0 constant
2: Initialize: x1 = argminx∈KR(x).
3: for t = 1, . . . , T : do
4: Choose a constant βt ≥ 0 such that ft(x) ≤ ft(y) +∇ft(y)>(x− y) + βt

2 ‖x− y‖
2
2.

5: Choose matrix Qt < 0 such that ft(x) ≥ ft(xt) + g>t (x− xt) + 1
2‖Qt(x− xt)‖

2
2.

6: Define B̃t,s =
(
∇2R(xs) + ηs1{s<t}Q1:s

)−1/2
and

ηt =

 t∑
s=1

√√√√4βs
1
n

n∑
j=1

λj(B̃2
t,s)n2C2

−2/3

(ν log(T ))2/3

7: Let Bt =
[
∇2R(xt) + ηtQ1:t

]−1/2
.

8: Define δt =
(

n3C2ηt
βt

Pn
j=1 λj(B

2
t )

)1/4

.

9: Sample u ∼ Sn uniformly, where Sn = {x ∈ Rn|‖x‖2 = 1} the unit sphere.
10: Select yt = xt + δtBtu ∈W1(xt) ⊂ K, incurring loss ft(yt).
11: Construct the gradient estimate ĝt = nft(yt)(δtBt)−1u.
12: Update xt+1 = argminx∈K g

>
1:tx+ 1

2

∑t
s=1 ‖(x− xs)‖2Qs + 1

ηt
R(x).

13: end for

can bound regret in terms of the average eigenvalue of the sum of these matrices as opposed to to
the minimal eigenvalue. Essentially, the algorithm can “borrow” convexity from the self-concordant
barrier if the convexity of the loss function is not strong enough to achieve the desired regret. This
becomes particularly useful when the learner is querying points near the decision set’s boundary,
and the Hessian of R has large eigenvalues in the direction of the boundary (often the case because
R ↗∞ at ∂K).

One can also construct a similar algorithm for functions that are dynamicallyC1,1 with the following
guarantee:

Theorem 2 (Adaptive BCO using dynamic smoothness bounds). Let K be a convex set and R a
ν-self-concordant barrier over K. Assume that |f | ≤ C. Then the following regret bound holds for
Algorithm 2:

T∑
t=1

E[ft(yt)− ft(x)] ≤ E

5
2
(ν log(T ))

1
3

 T∑
t=1

√√√√4βtnC2

n∑
j=1

λj(B̃2
t,s)

 2
3


3 Applications and comparisons with previous results

The data-dependent nature of the above algorithm provides two important implications.

The first is that they allow us to easily produce regret bounds in a variety of new situations, where
the learner experiences loss functions with various levels of smoothness and convexity. In particular,
we can identify new scenarios where the optimal Õ(

√
T ) regret is achievable by navigating the

relationship between smoothnesss and convexity.

The second is that these algorithms also automatically adapt to the smoothness and convexity of
these scenarios. These new cases do not require any a priori insight or tuning. The algorithms
presented in this paper adaptively determine optimal sampling ellipsoids and learning rates, which
lead to strong guarantees.

In particular, they allow the learner to recover existing regret bounds without modifying the algo-
rithms. Properties such as strong convexity or smoothness are processed adaptively and online, so
that if, e.g., a sequence of loss functions is found to be approximately strongly convex (which will
become clear in the following results), then the strongly convex guarantee will apply. If the sequence
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of loss functions is better than strongly convex, then the algorithm will give an even better guarantee.
Thus, these algorithms are prime examples of algorithms that “learn faster from easy data”.

We present first the results for Algorithm 1.
Corollary 1 (Power law asymptotics for the dynamically Lipschitz and strongly convex scenario).
Assume that there exists α ∈ R such that

LtnC
2

n∑
j=1

λj((∇2R(xt) + ηtQ1:t)−1/2) = O(tα).

Then the inequality
∑T
t=1 E[ft(yt)− ft(x)] ≤ Õ(T

3+α
4 ) holds.

In particular, Õ(
√
T ) regret is attainable for α ≤ −1.

Moreover, Õ(T 2/3) regret is adaptively attained for strongly convex functions, and Õ(T 3/4) regret
is adaptively attained for Lipschitz functions.

We would like to stress that the above reductions are worst-case guarantees. The data-dependent
nature of the regret bound above implies that it can do much better on easier data, and that we do not
need to know about these optimistic settings in advance of running the algorithm. The algorithms
above will automatically take advantage of them.

This is not the case with any of the previous algorithms in bandit convex optimization, as they do not
provide any sort of data-dependent guarantees. In particular, they do not account for the convexity
of the self-concordant barrier at all, so that they provide much weaker bounds when an algorithm
plays points at which the Hessian of the barrier has large average eigenvalues. For self-concordant
barriers such as the log-barrier function, having larger average eigenvalues corresponds to being
closer to the boundary of the set.

We now present the accompanying results for smooth functions.
Corollary 2 (Power law asymptotics for the dynamically smooth and strongly convex scenario).
Assume that there exists α ∈ R such that

βtnC
2

n∑
j=1

λj((∇2R(xt) + ηtQ1:t)−1) = O(tα).

Then the inequality
∑T
t=1 E[ft(yt)− ft(x)] ≤ Õ(T

2+α
3 ) holds.

In particular, Õ(
√
T ) regret is attainable for α ≤ −1

2 .

Moreover, Õ(T 1/2) regret is adaptively attained for smooth and strongly convex functions, while
Õ(T 2/3) regret is adaptively attained for smooth functions.

4 Conclusion

We presented efficient algorithms with regret bounds that adapt to the bandit convex optimization
problem. Unlike previous algorithms, the algorithms we give do not require a priori assumptions
of strong convexity or strong smoothness. Instead, they can process these parameters in an online
fashion, which is much more suitable for the settling on online convex optimization.

Moreover, our algorithms adapt to the sequence of loss functions seen, so that they adapt to the
problem at hand, recovering, in the worst case, all previous known bounds in this scenario without
external tuning of learning rates or prior knowledge of function regularity.

They also provide data-dependent guarantees, so that on “easier data”, the algorithms learn faster
and the bounds become tighter. This is a desirable attribute that previous algorithms do not possess,
and is due to a careful online tuning of the sampling ellipsoid and learning rate as well as the
exploiting the connection between the convexity of the loss function and the convexity of the self-
concordant barrier. In particular, we are able to use these algorithms and their accompanying bounds
to provide problem-dependent conditions under which one can obtain the Õ(

√
T ) regret, including

in the purely Lipschitz or purely smooth settings.
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