
Anticipating Concept Drift in Online Learning∗

Michał Dereziński
Computer Science Department

University of California, Santa Cruz
CA 95064, U.S.A.

mderezin@soe.ucsc.edu

Badri Narayan Bhaskar
Yahoo Labs

701 1st Ave, Sunnyvale
CA 94089, U.S.A.

bbhaskar@yahoo-inc.com

Abstract

Adapting to changing environment is a key challenge in online learning. Many
state of the art algorithms have been shown to incur losses that are bounded using
the variability of the learned concept over time. However, what if this concept
drift can be anticipated? We propose online optimization algorithms that use the
sequence of past predictive models to estimate this drift, allowing them to con-
verge to a moving comparator which are supported by theory and simulations.

1 Introduction

Online convex programming provides an effective model for adaptive online prediction [BT03,
Zin03, NY83, CBL06]. The notions of tracking and adaptive regret are often employed to evaluate
algorithms in changing environments [HS09, LW94, AKCV12, HW01, HW98, BW02]. However,
most of the approaches focus on adapting to the changes after they occur, so the bounds have to con-
tain some penalty that is proportional to the variability of the underlying concept. If those changes
follow some predictable pattern or trajectory, we should be able to anticipate them, thus avoiding this
penalty [HW13]. We propose to introduce dynamic concept drift estimation into online optimization
algorithms by modeling the evolution of the concept, which can be viewed as combining filtering
[BC09, XSdS94, TS96, KWH06] with optimization. In the following sections, we present theoret-
ical background for analyzing online optimization algorithms capable of learning and anticipating
concept drift [GvB+14]. We also propose several algorithms supported by partial theoretical results
and simulations, including a simple extension of gradient descent which exhibits exact convergence
to a moving optimum under certain assumptions.

2 Background

We consider an online learning setup, where at each time step t algorithm proposes a model θ̂t ∈ Θ,
then receives loss ft(θ̂t). The goal is to minimize the cumulative loss over all examples until some
time T . To evaluate the algorithm for a given experiment, it is useful to consider a comparator
sequence of models θ = {θt}Tt=1, which would represent the true concept drift. From this, we
obtain the regret incurred by the algorithm:

RT (θ) :=

T∑
t=1

ft(θ̂t)−
T∑
t=1

ft(θt).

The classical Mirror Descent (MD) algorithm, and its special case, Gradient Descent (GD), use the
gradient of the most recent loss function ft to update the model θ̂t so that it better fits the corre-
sponding example [BT03, NY83]. For convex losses, the tracking regret of MD can be bounded by

∗This research was supported by the NSF grant IIS-1118028.

1



RT (θ) ≤ O(
√
T (1 +V (θ))), where V (θ) =

∑T
t=1 ‖θt+1− θt‖ is the variability of the comparator

sequence, which effectively measures the amount of concept drift. The O(·) notation hides some
constants describing the convexity of losses and properties of the parameter space Θ. The

√
T term

means that, without concept drift, the regret is sublinear with respect to T , so the model has to con-
verge to an optimal solution. On the other hand, drift variability V (θ) may often grow linearly, in
which case this algorithm will no longer exhibit convergence.

Suppose that we believe the concept drift follows a dynamical model Φt : Θ→ Θ that comes from
some continuous family D. A sequence θ follows drift Φ ∈ D if for all t we have θt+1 = Φt(θt).
For example, D may consist of all linear drift models, i.e., each Φ corresponds to a vector v, so that
Φt(θ) = θ+ v. For any comparator θ, we can measure its cumulative average deviation from a drift
model Φ by generalizing the notion of variability

V
〈k〉
Φ (θ) =

T∑
t=k+1

∥∥∥∥∥1

k

t−1∑
i=t−k

(θi+1 − Φi(θi))

∥∥∥∥∥
We use a sliding window of width k to average out any independent noise, measuring only the
persistent variability, which will be useful in further analysis. Similarly, a sequence θ can be de-
scribed with respect to a drift family D by looking at the drift model Φ∗ ∈ D that minimizes
VΦ∗(θ) := V

〈1〉
Φ∗ (θ). Can we achieve regret O(

√
T (1 + VΦ∗(θ)))?

3 Proposed Algorithms

An online optimization system capable of sublinear regret in the presence of concept drift needs to
incorporate a component responsible for selecting a good estimate of the drift, Φ̂t ∈ D, which is
updated at each time-step. Recently, Dynamic Mirror Descent (DMD) [HW13] algorithm has been
proposed as a way to incorporate a predetermined drift dynamic into the optimization procedure by
alternating the gradient step and the drift step. Instead of fixing the drift from the start, we propose
to learn it using the sequence of models θ̂t as a proxy for how the true concept evolves, as if treating
θ̂t as a noisy measurement of θt in an online filtering task. The key difference between this task and
the techniques used in Kalman filters [WB95] is that in optimization we don’t have any observed
variable that describes the latent state, but rather the algorithm must query the domain and generate
the estimates itself by relying on the loss function. Naturally, those are only reasonable when the
optimization has already converged to some degree, so we might not want to apply the drift estimate
throughout the process, but only when we expect it to be beneficial. We will use linear drift family
as a test case for analysis. A natural way to estimate it is by taking the average of last k update steps:

Φ̂t(θ; θ̂
t

t−k) = θ +
1

k

t−1∑
i=t−k

(θ̂i+1− θ̂i) = θ +
1

k
(θ̂t− θ̂t−k). (1)

We can now introduce this to the DMD algorithm, obtaining as a special case the algorithm we call
Average Momentum Gradient Descent (AMGD):

θ̂t+1 = θ̂t−ηt∇ft(θ̂t) +
1

k
(θ̂t− θ̂t−k).

Adding the drift term indiscriminately to every update is dangerous from a practical stand point,
because it can lead to instability. However, AMGD is a good starting point for convergence analysis,
and even in this case some interesting guarantees appear to be obtainable.

A common approach for ensuring stability of an optimization algorithm is through an ensemble
method. We propose a simple Two Track algorithm, with two sequences of models updated sepa-
rately. The first sequence θ̂(1) is regular Mirror Descent (without the drift step). The second one θ̂(2)

uses Dynamic Mirror Descent with a drift step based on an estimated model Φ̂t. The final prediction
at each time-step is a weighted average of the two tracks:

θ̂t = (1− wt) θ̂
(1)

t +wt θ̂
(2)

t .

Here, wt ∈ [0, 1] represents our confidence in the drift estimation. To update this weight, we can use
one of the standard methods applied in the ensemble setting, like the Fixed Share Forecaster (FSF)

2



[CBL06]. Notice, that with this algorithm we have more options for estimating the drift. Namely,
we can use either of the two tracks, or the final mixed prediction, as the proxy for the concept drift.
This choice has a significant impact on the behavior of the algorithm, which will be discussed later.

4 Analysis

In this section, we propose some techniques for analyzing the effectiveness of drift estimation. We
focus on the linear drift, that is, when family D represents all linear trajectories (along a fixed
direction), but we believe the results can be generalized. The model updates depend on the loss
function and determine the rate of convergence. For instance, for gradient descent with loss function
ft(θ) = 1

2‖θ − θt‖22, the update takes the form Gθ
t (θ̂t) = α(θt − θ̂t) which leads to a linear

convergence in the absence of any concept drift. We use the function Gθ
t as a reference for the

convergence behavior in our analysis, but our experiments show that we can substantially relax the
conditions on the model updates and perhaps extend our theoretical argument. If a comparator is
drifting along a specific linear trajectory, then a prediction sequence converging to it will follow
a very similar trajectory once it gets close enough. This suggests a natural strategy for the Two
Track algorithm, where initially we put weight on the no-drift track, then we gradually switch to
the drift-enhanced predictions. In fact, with the right weight update scheme we can be almost as
good as the best instantiation of this strategy. The FSF ensemble method is shown to achieve regret
O(
√
T (1 + mint{V (θt1) + VΦ̂(θTt+1)})). To understand the performance of drift estimation in this

scenario, we show the following bound for arbitrary sequences θ and θ̂:

min
t
{V (θt1) + VΦ̂(θTt+1)} ≤ d

α
log

M

d
+ VΦ∗(θ) +

2 + α

α
V
〈k〉
Φ∗ (θ) +

2

α
V
〈k〉
Gθ (θ̂), (2)

where M = maxθ,θ′∈Θ ‖θ − θ′‖ and d = ‖Φ∗(θ) − θ‖ is the speed of the optimal linear drift
Φ∗ ∈ D for comparator θ. This bound holds for estimation Φ̂ defined in Equation (1). First term
is responsible for the drift of the initial sequence θt1, the next two depend only on the comparator’s
deviation from the best matching drift, while the last one controls the convergence behavior of θ̂
(that is, if θ̂ follows update Gθ

t , this term goes away). Note, that increasing k improves the bound
by averaging out the deviations, but it also requires maintaining a larger estimation window.

The inequality (2) unfortunately does not lead to a proper adversarial regret bound, because of the
last term’s dependence on the sequence θ̂. It also does not capture an intriguing self-reinforcing
effect of the drift estimation, that can be observed experimentally. Namely, the accuracy of drift
estimation depends on the distance from the comparator. Adding drift to the predictions is expected
to reduce that distance. If we then use those new θ̂t’s to estimate the drift, the feedback loop can
result in convergence to a moving comparator. By using stability theory of complex polynomials
[Cho11] we show the convergence of an idealized version of the AMGD algorithm. Here the updates
exactly follow the linear convergence step Gθ

t :

θ̂t+1 = θ̂t +α(θt − θ̂t) +
1

k
(θ̂t− θ̂t−k). (3)

Theorem 1 For k ≥ 2 and α ∈ (0, 1), sequence θ̂t defined by (3) converges to any comparator of
the form θt = θ0 + t · v.

We conjecture that this result extends to the AMGD algorithm for strongly convex and Lipschitz
smooth loss functions, thereby generalizing classical Gradient Descent convergence guarantees.

5 Experiments

To evaluate and compare the proposed algorithms, we ran various simulations. Our goal was to es-
tablish the best way of introducing drift estimation into online optimization, so instead of focusing
on a specific optimization step (like Gradient Descent), we looked at various types of static conver-
gence behavior. That is, similarly as in Section 4, we look at a convergence function Gθ

t : Θ → Θ,
which at time-step t can transform a point θ̂ into some Gθ

t (θ̂) in such a way, that would guarantee

3



0 100 200 300 400 500

−30

−20

−10

0

10

20

30

 

 

Comparator
GD
TTND
TTMP
AMGD

(a) Trajectories

0 50 100 150 200 250
10

−1

10
0

10
1

10
2

Time

L
o

s
s

 

 

GD

TTND

TTMP

AMGD

(b) Losses

Figure 1: As seen on plot (a), the comparator is moving across space Θ = R2 along the X axis from
left to right. The losses (b) show that algorithms AMGD and TTMP achieve linear convergence.

convergence to a static optimum. However, in this case we will allow any sequence of functions sat-
isfying static linear convergence: ‖Gt(θ̂)− θt‖ ≤ (1− α)‖ θ̂−θt‖ for all θ̂ ∈ Θ and all t ∈ [1, T ].
With this constraint in mind, we can now treat function Gt(·) as an adversary, aiming to hinder the
drift estimation. In the simulations, we look at the following approaches: a simple single track algo-
rithm corresponding to AMGD (where Gt replaces the gradient step), and the Two Track algorithm
as described in Section 3, with two variants of drift estimation. The first variant uses the no-drift
track θ̂(1) for estimation (TTND), while the second one uses the final mixed prediction for that pur-
pose (TTMP). Notice that using the first track for estimation means there is no feedback loop effect
in estimation. Multiple values of parameter k were tested, but the results shown used k = 13. As a
baseline, we use the optimization step Gt(θ̂t) by itself (denoted GD).

Multiple simulations were ran to find the most adversarial function sequencesGt. Intuition suggests
that a large angle between the update vector Gt(θ̂t) − θ̂t and the ideal convergence step α(θt −
θ̂t) would affect the trajectory of predictions, thereby corrupting the drift estimation. Simulations
support this claim. We used two-dimensional model space in the experiments so that it is possible to
plot the trajectories, as seen on Figure 1a. The comparator is moving from left to right at the speed
of 2 units per time step. To properly read the trajectories we have to keep in mind the hidden time
dimension. The losses of the algorithms (loss is measured as the distance from the comparator) at
each time step are shown on Figure 1b. The adversarial functionGt was chosen so that it maximizes
the angle of the step from the direction of the comparator, while still preserving a prespecified
static convergence rate. Every 30 time steps the angle is flipped symmetrically (observe the GD
trajectory for a better intuition). Other adversarial sequences were also tested. Observe that all three
drift estimation approaches provide a significant benefit compared to GD. Looking at the right end
of the trajectories we see that only GD lags behind the comparator horizontally. However, only
TTMP and AMGD achieve convergence, whereas TTND keeps oscillating at a fixed distance. The
convergence is only possible with the drift feedback loop, because otherwise the estimation remains
noisy. However, the feedback loop introduces a possibility of “overshooting” the comparator, which
leads to instability, as seen in the early trajectory of AMGD. In fact, for a small enough value of k,
instead of converging, this algorithm may (under adversarial conditions) fall into a diverging spiral.
This can be avoided by selecting a sufficiently wide estimation window. This issue is also alleviated
in TTMP, because even if it does not converge, as an ensemble method it will not do much worse
than GD (and in fact, it did better in all the simulations).

It should be noted that the linear drift family is just a test case. Analyzing estimation of other families
of smooth drift trajectories is an interesting future research direction. Moreover, in many practical
tasks each example is labeled with a precise time stamp, which can be used instead of simple step
enumeration. In some learning problems, a batch learning solution can be used, which includes time
stamp as a feature. A better understanding is needed of when this is more appropriate than online
approaches. Similar drift estimation techniques could also be applied to optimization tasks where
the loss gradient is not available [BB04] and batch learning is impossible.

4



References

[AKCV12] Dmitry Adamskiy, Wouter M. Koolen, Alexey Chernov, and Vladimir Vovk. A closer
look at adaptive regret. In Proceedings of the 23rd International Conference on Algo-
rithmic Learning Theory, ALT’12, pages 290–304, Berlin, Heidelberg, 2012. Springer-
Verlag.

[BB04] Tim Blackwell and Jrgen Branke. Multi-swarm optimization in dynamic environments.
In Applications of Evolutionary Computing, volume 3005 of Lecture Notes in Computer
Science, pages 489–500. Springer Berlin Heidelberg, 2004.

[BC09] A. Bain and D. Crisan. Fundamentals of stochastic filtering. Springer, 2009.
[BT03] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient

methods for convex optimization. Oper. Res. Lett., 31(3):167–175, May 2003.
[BW02] O. Bousquet and M. K. Warmuth. Tracking a small set of experts by mixing past pos-

teriors. Journal of Machine Learning Research, 3:363–396, 2002.
[CBL06] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge

University Press, New York, NY, USA, 2006.
[Cho11] Younseok Choo. An elementary proof of the jury test for real polynomials. Automatica,

47(1):249–252, January 2011.

[GvB+14] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. A survey on concept drift adaptation. ACM Comput. Surv., 46(4):44:1–
44:37, March 2014.

[HS09] Elad Hazan and C. Seshadhri. Efficient learning algorithms for changing environments.
In Proceedings of the 26th Annual International Conference on Machine Learning,
ICML ’09, pages 393–400, New York, NY, USA, 2009. ACM.

[HW98] Mark Herbster and Manfred K. Warmuth. Tracking the best expert. Mach. Learn.,
32(2):151–178, August 1998.

[HW01] Mark Herbster and Manfred K. Warmuth. Tracking the best linear predictor. J. Mach.
Learn. Res., 1:281–309, September 2001.

[HW13] E. Hall and R. Willett. Dynamical models and tracking regret in online convex pro-
gramming. In Proceedings of The 30th International Conference on Machine Learning,
pages 579–587, 2013.

[KWH06] J. Kivinen, M.K. Warmuth, and B. Hassibi. The p-norm generalization of the lms algo-
rithm for adaptive filtering. Trans. Sig. Proc., 54(5):1782–1793, October 2006.

[LW94] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Inf.
Comput., 108(2):212–261, February 1994.

[NY83] A. Nemirovski and D. B. Yudin. Problem complexity and method efficiency in optimiza-
tion. Wiley-Interscience series in discrete mathematics. Wiley, Chichester, New York,
1983. A Wiley-Interscience publication.

[TS96] Yahali Theodor and Uri Shaked. Robust discrete-time minimum-variance filtering.
IEEE Transactions on Signal Processing, 44(2):181–189, 1996.

[WB95] Greg Welch and Gary Bishop. An introduction to the kalman filter. Technical report,
Chapel Hill, NC, USA, 1995.

[XSdS94] Lihua Xie, Yeng Chai Soh, and Carlos E. de Souza. Robust kalman filtering for un-
certain discrete-time systems. Automatic Control, IEEE Transactions on, 39(6):1310–
1314, Jun 1994.

[Zin03] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In Proc. Int. Conf. Mach. Learning (ICML), pages 928–936, 2003.

5


	Introduction
	Background
	Proposed Algorithms
	Analysis
	Experiments

