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Abstract

We present a general framework for designing data-dependent optimization algo-
rithms, building upon and unifying recent techniques in adaptive regularization
and optimistic gradient predictions. We first provide a general regret guarantee
that holds at any time and under minimal assumptions, and then show how dif-
ferent relaxations recover existing algorithms, both basic as well as more recent
sophisticated ones. Finally, we show how combining adaptivity and optimism can
guide the design of algorithms that benefit from more favorable guarantees than
recent state-of-the-art methods.

1 Introduction

In the standard scenario of online convex optimization [11], at each round t = 1, 2,.. ., the learner
selects a point x; out of a compact convex set XC and incurs loss f;(x;), where f; is a convex function
defined over K. The learner’s objective is to find an algorithm .4 that minimizes regret:

T
Regr(A) = rax Regr (A, z), where Regy (A, x) = Z fe(ae) = felz)
t=1

that is the difference between the learner’s cumulative loss and the loss of the best = in . We will
assume only that the learner has access to the gradient or an element of the sub-gradient of the loss
functions f;, but that the loss functions f; can be arbitrarily singular and flat, e.g. not necessarily
strongly convex or strongly smooth.

In the scenario just presented, minimax optimal rates can be achieved by standard algorithms
such as online gradient descent [11]. However, general minimax optimal rates may be too con-
servative. Recently, adaptive regularization methods have been introduced for standard descent
methods to achieve tighter data-dependent regret bounds (see [1], [4], [8], [7], [9]). Specifically,
in the “AdaGrad” framework of [4], there exists a sequence of convex functions 1/, such that
the update @41 = argmin, ng) © + By, (z,7;) yields regret: Regr(A,z) < v2max, ||z —

xt||oozzl=1 Zthl |g+.i|?, where g; € Ofi(z:) is an element of the subgradient of f; at x4,

g1:T; = Zle gt,i» and By, is the Bregman divergence defined using the convex function ;.

This upper bound on the regret has shown to be within a factor v/2 of the optimal a posteriori regret.
However, this upper bound on the regret can still be very large, even if the functions f; admit some



Algorithm 1 Composite Adaptive Optimistic Follow-the-Regularized-Leader

1: Input: regularization function ro > 0, composite functions {¢; }$2, where ¢; > 0.

2: Initialize: §; = 0, x; = argmin, - ro(x).

3: fort=1,...,7:do

4: Compute g; € 9 fi(xy).

5: Construct regularizer r; > 0.

6: Predict the next gradient §i+1 = Gr+1(g1,- -5 Gty T1,y .-, Tt).

7: Update Ti41 = argminxelc gi:t - T + §t+1 - T+ TO:t((E) + <1;t+1(1').
8: end for

favorable properties (e.g. f; = f, linear). This is because the dependence is directly on the norm of
GtS.

An alternative line of research has been investigated by a series of recent publications that have
analyzed online learning in “slowly-varying” scenarios [5, 3, 10, 2]. If R is a self-concordant
function, || - ||y2r(s,) is the semi-norm induced by its Hessian at the point z;,' and gy1 =
Jt+1(91, -, Gty 1, ..., xy) is a “prediction” of a time ¢ + 1 subgradient g;y; based on infor-
mation up to time ¢, then one can obtain regret bounds of the following form: Regp(A,z) <

T ~
%R(l’) +203 1 19t — Gellv2r(ay) . - Here, || - | 927 (z,),« denotes the dual norm of || - ||v27 (z,):

for any x, H9U||V2R(m),* = SUP”vasz)
mistic case where g; ~ g; for all t. Nevertheless, it admits the drawback that much less control is
available over the induced norm since it is difficult to predict, for a given self-concordant function
‘R, the behavior of its Hessian at the points z; selected by an algorithm. Moreover, there is no guar-
antee of “near-optimality” with respect to an optimal a posteriori regularization as there is with the
adaptive algorithm.

<1 xTy. This guarantee can be very favorable in the opti-

2 Adaptive and Optimistic Follow-the-Regularized-Leader algorithm

In view of the discussion in the previous section, we present an adaptive and optimistic version of the
Follow-the-Regularized-Leader (FTRL) family of algorithms. In each round of standard FTRL, a
point is chosen that is the minimizer of the average linearized loss incurred plus a regularization term.
In our new version of FTRL, we will find a minimizer of not only the average loss incurred, but also
a prediction of the next round’s loss. In addition, we will define a dynamic time-varying sequence
of regularization functions that can be used to optimize against this new loss term. Algorithm 1
shows the pseudocode of our Composite Adaptive and Optimistic Follow-the-Regularized-Leader
(CAO-FTRL) algorithm, where we also allow for objective functions with composite terms that we
may wish to optimize directly.

The following result provides a regret guarantee for the algorithm when one uses proximal regular-
izers, i.e. functions r, such that argmin - r¢(z) = 4.

Theorem 1 (CAO-FTRL-Prox). Let {r;} be a sequence of proximal non-negative functions, such
that argmin ¢y ri(x) = x4, and let §; be the learner’s estimate of g, given the history of functions
fis-o., ft—1 and points 1, ..., xs—1. Let {(1}52 be a sequence of non-negative convex functions,
such that (1(x1) = 0. Assume further that the function ho.y : © — g1.4 - T+ Ge41 - © + o4 (x) +
Cr:t41(x) is I-strongly convex with respect to some norm || - || ;). Then the following regret bounds

"The norm induced by a symmetric positive definite (SPD) matrix A is defined for any z by ||z||4 =

VaTAx.



hold for CAO-FTRL (Algorithm 1):

T T
th(xt) - ft(l') < Cl:Tfl(x) + TO:Tfl(x) + Z Hgt - §t||(2t71),*

t=1
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The regret bound just presented can be vastly superior to the adaptive methods of [4], [8], and others.
For instance, one common choice of gradient prediction is §;+1 = ¢¢, so that for slowly varying
gradients (e.g. nearly “flat” functions), g; — g: ~ 0, but ||g¢[|(+) = [|g[| (). Moreover, for reasonable
gradient predictions, [|g¢+1/(r) = [ 9¢|l(+) generally, so that in the worst case, Algorithm 1’s regret
will be at most a factor of two more than standard methods. At the same time, the use of non self-
concordant regularization allows one to more explicitly control the induced norm in the regret bound
as well as provide more efficient updates than those of [10].

We now present a series of reductions of AO-FTRL to known algorithms.
Corollary 1. With the following suitable choices of the parameters in Theorem 1, the following

regret bounds can be recovered:

1. Adaptive FTRL-Prox of [7] (up to a constant factor of 2): g =0, (; = 0.
2. Primal-Dual AdaGrad of [4]: ro.s = Yy, § = 0.

3. Optimistic FTRL of [10]: ro = nR where n > 0 and R a self-concordant function, ry =
0,vt>1,¢ =0.

We now demonstrate how one can build an “optimistic” version of the well-known AdaGrad al-
gorithm, which can be viewed as an adaptive version of Gradient Descent. In our version, our
algorithm will accelerate when the gradient predictions become more accurate, as opposed to when
the gradients are simply smaller.

Corollary 2 (Adaptive and Optimistic Gradient Descent). Ler K C xI,[—R;, R;] be
an n-dimensional rectangle, and denote A;; = \/zzzl(gayi—'gva,i)? Set 1oy =

Asi—Ag 14 . ) . o
St Sedo e bi (1~ ;)2 Then, if we use the martingale-type gradient prediction Gy =

gt, the following regret bound holds: Reg;(AO-GD, ) < 4 Zz;l R; \/23;1(9121' —gt—1,)2.

Moreover, this regret bound is nearly equal to the optimal a posteriori regret bound:
T - T
Ry, \/Zt:1(9t,z‘ = g1—1,0)* = max; Riy/ninfo o s1)<n 2oy 196 = 9e-1lli0g(5)-1-

Notice that the regularization function is minimized when the gradient predictions become more
accurate. Thus, if we interpret our regularization as an implicit learning rate, our algorithm uses a
larger learning rate and accelerates as our gradient predictions become more accurate. This is in
stark contrast to other adaptive regularization methods, such as AdaGrad, where learning rates are
simply inversely proportional to the norm of the gradient.

Moreover, since the regularization function decomposes over the coordinates, this acceleration can
occur on a per-coordinate basis. If our gradient predictions are more accurate in some coordinates
than others, then our algorithm will be able to adapt accordingly. Under the simple martingale
prediction scheme, this means that our algorithm will be able to accelerate when only certain coor-
dinates of the gradient are slowly-varying, even if the entire gradient is not.



Algorithm 2 CAOS-Reg-ERM-Epoch

1: Input: scaling constant o > 0, composite term (, 79 = 0.
2: Initialize: initial point z; € /C, distribution p;.

3: Sample j; according to p;, and sett = 1.

4: fors=1,...,k:do

5: Compute g/ = V f;(z1) Vj € {1,...,m}.

6: fora=1,...,7T/k:do ,
7: If 7" mod k = 0, compute g/ = V f;(z) Vj.
8: Set §; = p{zt_ , and construct 7, > 0.
V37

. - =7
9: Sample j;41 ~ pre1 and set Gyy1 = Pii‘t )
10: Update x4 = argmin,cxc §1:¢ - © + Ge1 -« + 7o (x) + (t + 1)af(x) and t =t + 1.
11: end for
12: end for

3 Application to Stochastic Regularized Empirical Risk Minimization

Many learning algorithms can be viewed as instances of regularized empirical risk minimization
(e.g. SVM, Logistic Regression, Lasso), where the goal is to minimize an objective function of the
following form: H(x) = Z;"zl fi(@) + af(z).

We present here a refinment of the commonly used stochastic gradient descent. For simplicity,
we elect to use as gradient prediction the last gradient of the current function being sampled, f;.
However, we may run into the problem of never seeing a function before. A logical modification
would be to separate optimization into epochs and do a full batch update over all functions f; at
the start of each epoch. This is similar to the technique used in the Stochastic Variance Reduced
Gradient (SVRG) algorithm of [6]. However, we do not assume extra function regularity as they do
in their paper, so the bounds are not comparable. The algorithm is presented in Algorithm 2 and
comes with the following guarantee:

Corollary 3. Assume K C XD [-R;,R;]. Denote Ay; = /> o_(Gasi — Ga,i)% and

Agi—As_1 . ..
let rox = Y.y ZZ:lTl(xz — w5;)? be the adaptive regularization. Then

the regret of Algorithm 2 is bounded by: E Zil fi(x) + () — fi(x) —aC(x)} <

2

n k (s=1)(T/K)+T/k ~m |9} ,—3,
D1 AR; \/Zs_l D (s (T )41 2=t

Moreover, if |V filleo < Lj Vj, then setting p,; = ZmLilL vields a worst-case bound of:
j=1 1

857 Riy/T (z;’;l Lj)Q.

4 Conclusion

We presented a general framework for developing efficient adaptive and optimistic algorithms for on-
line convex optimization. Building upon recent advances in adaptive regularization and predictable
online learning, we improved upon each method. We demonstrated the power of this approach by
deriving algorithms with guarantees than can perform much better on easier data than those com-
monly used in practice.
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