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Abstract

This paper aims to provide a sharp excess risk guarantee for learning a sparse
linear model without any assumptions about the strong convexity of the expected
loss and the sparsity of the optimal solution in hindsight. Given a target level e
for the excess risk, an interesting question to ask is how many examples and how
large the support set of the solution are enough for learning a good model with the
target excess risk. To answer these questions, we present a two-stage algorithm
that (i) in the first stage an epoch based stochastic optimization algorithm is ex-
ploited with an established O(1/¢) bound on the sample complexity; and (ii) in
the second stage a distribution dependent randomized sparsification is presented
with an O(1/¢€) bound on the sparsity (referred to as support complexity) of the re-
sulting model. Compared to previous works, our contributions lie at (i) we reduce
the order of the sample complexity from O(1/€?) to O(1/¢) without the strong
convexity assumption; and (ii) we reduce the constant in O(1/¢) for the sparsity
by exploring the distribution dependent sampling.

1 Introduction

In this paper, we are interested in the excess risk of learning a sparse model without assuming the
optimal solution is sparse. This problem has a variety of applications in practice. A sparse model
is preferred when computational resources are limited and features are expensive to obtain (e.g., in
medical diagnostic). In particular, if we let x € R and y € R denote an input and output pair that
follow an unknown distribution P, and let w € R< denote a linear model, we define the following
excess risk of w: ER(w,w,) = Ep[(w'x — y)2] — Ep[(w,] x — y)?], where w, is an optimal
model that minimizes the expected error in the domain D = {w : ||w|; < B}, i.e.,
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W, =arg min SEPI(W x —y)7] (1)
The parameter B is usually determined by cross-validation. As a result, although there is an #; norm
constraint in the above problem, the optimal solution w, is not necessarily sparse. Our goal is to
learn a sparse model to achieve a small excess risk ER(w, w.) < e. The question then boils down
to (i) How to learn such a sparse model? (ii) What is the sample complexity in order to guarantee a
small excess risk? and (iii) What is the support complexity of w to suffice for an € excess risk? In
this paper, we answer these questions in the affirmative.



We develop our algorithms based on an approach presented in [11], which studied a similar prob-
lem in a pure optimization context. We notice thatthe two-stage approach combined with empirical
risk minimization (ERM) or stochastic optimization for minimizing Ep[(w ' x — y)?] can poten-
tially resolve our problem. By existing theory of excess risk for ERM or stochastic optimiza-
tion [7, 9, 13, 12], we can obtain an O(1/€?) sample complexity without strong convexity and
an O(1/ e) sample complexity with strong convexity. Considering the objective function in (1):
L(w) = 3w Ep[xx"]w — w'Ep[yx] + £Ep[y?], it could be non-strongly convex since E[xx ']
could have a zero eigen-value unless under some special cases (e.g., features are independent and
second moments of individual features are positive). Therefore, existing analysis without the strong
convexity assumption only yields O(1/e?) sample complexity .

In this paper, we present an improved analysis of the excess risk for the two-stage approach without
the strong convexity assumption. In particular, we show that (i) the sample complexity of a modified
stochastic optimization algorithm can be made O(1/€) by exploiting a property of the optimization
problem similar to the error bound condition [8]; and (ii) the constant in the support complexity
O(1/¢) of the resulting model from randomized sparsification can be reduced by exploiting a dis-
tribution dependent sampling. To the best of our knowledge, this is the first work that considers the
complexities of the samples and the support of the solution for excess risk analysis.

2 Learning a Sparse Model with Sharp Excess Risk Analysis

Without loss of generality, we assume x € [—1,1]? and |y| < B and denote Ep|[-] by E[-] for short.
We will first present and analyze a stochastic optimization algorithm that aims to solve
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min | L(w) = SE[(w x — )7 )
where D = {w € R? : |w||; < B}. In the sequel, we let Il [W] denote the projection into a
domain €, i.e., Ilo[w] = argminweq ||[w — W[3. Let {(w - x,y) = 1(w - x — y)? denote the
square loss function. Since the objective function is not necessarily strongly convex, therefore the
optimal solution might not be unique. To this end, we let 2, denote the set of optimal solutions.
For any w € R?, we denote by w™ the closest optimal solution to w, i.e., w& = Ilg, [w] We
denote the optimal expected loss by L., i.e., L, = L(w,),Vw. € Q.. Then the excess risk of w is
2(L(w) — L.). The key to our analysis is the following lemma that lower bounds the excess risk of
w by the scaled distance from w to w™, which is independent of the optimization algorithm.
Lemma 1. For any w € D, there exists a > 0 such that 2(L(w) — L,) > L|lw — w3
Remark: The value of x depends on the optimization problem, in particular the distribution of the
data, which is unfortunately unknown to us. The above inequality can be easily recovered for a

strongly convex function L(w) with w™ being the unique optimal solution and 1/ being the strong
convexity parameter of L(w).

Connection to the global error bound condition We highlight the connection of inequality in
Lemma 1 to the global error bound condition [16], which is stated below. An optimization prob-
lem minycq f(w) admits a global error bound if there is a constant 7 such that [|[w — wT |y <
Y[V f(w)|l2, VW € Q where w is the projection of w to the optimal solution set and V' f(w)
is the projected gradient defined as VT f(w) = w — I, [w — Vf(w)]. Next, we show that if
f(w) is a 1-smooth function and satisfies the global error bound, it also satisfies the Lemma 1.
In particular, for any optimal solution u € ., we have f(u) < f(w) + Vf(w) (u — w) +
1/lu — w||3. If we minimize the R.H.S over u, we obtain the optimal solution for u given by
w, = g, [w— Vf(w)]. Letz = (W, — w)/||[w. — W||2 and .. = ||w. — W||2. Assume that
n. > 0,then f, < f(w)+V f(w) zn, +3n? = f(w)+ming<,<,, Vf(w)" zn+ in? Therefore
1 = o, [V (W) 2] and =V f(w) "z > 0. Thus f. < f(w) —nZ + 502 = f(w) — 0% =
F(w) = YT, [w — Vi(w)] = wl3 = f(w) = LIV F(w)[3 < F(w) — 3w — we |3 where
the last inequality is due to the global error bound condition. Hence, we can see that when f(w) is
a 1-smooth function and admits a global error bound with a parameter -, it satisfies the Lemma 1
with x = ~2. Importantly, it implies that Lemma 1 is a relaxed condition than the global error bound
condition.

! Although adding a strongly convex regularizer can make the objective function strongly convex, it only
ensures O(1/n) convergence for the objective function not the expected loss [13].



Algorithm 1 Stochastic Optimization for Sparse Learning

Input: the total number of iterations 7" and 11, p1, 1.
Initialization: w} =0and k = 1.
while > | T; < T do
fort=1,...,T; do
Obtain a sample denoted by (xF, yF)
Compute Wy = Iy, <5 lw-wh |2 <p [WE — T VE(WE - XF, yF)]
end for
Update Ty 11 = 2Th, i1 = Mk/2: prar = pir/V2and with = S0/%) wh /Ty,
Setk=k+1
end while
Output: w = w!" !
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Algorithm 2 Randomized Sparsification

Input: w = (@, ..., Wy) and probabilities py, . .., pg such that 2?21 pj =1
Initialization: wg = 0.
fork=1,...,K do

sample i), € [d] according to Pr(i;, = j) = p,; and Compute [Wy);, = [Wi—_1]i, + Z’C
ik

end for _
Output: w = 7K
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2.1 Stochastic Optimization

‘We are now ready to present the stochastic optimization algorithm and its excess risk guarantee. The
algorithm presented in Algorithm 1 is based on the epoch gradient descent [7], which is originally
proposed and analyzed for only strongly convex optimization. The values of 0y, p1, T} are specified
differently to handle the unknown value of k.

The following theorem establishes the excess risk guarantee of Algorithm 1.
Theorem 1. Assume ||x||3 < R2. By running Algorithm 1 with p; = B, 11 = 1/(2RVT1),

Ty > (8cR + 64R\/210g(1/6))2. In order to have ER(W,w.) < € with a high probability 1 — §
CBQTl

over {(x§,yF)}, it suffice to have T = , where § = %, m = |logy(cB?/(2¢) + 1)] and

¢ = max(k, 1).

Remark 1 (No strong convexity assumption): The sample complexity of Algorithm 1 is O(1/e)
for achieving an € excess risk. Compared to previous work without the strong convexity assumption,
this order is improved upon O(1/€?).

Remark 2 (No sparsity assumption): Another issue is the dependence on the dimensionality. The
sample complexity in Theorem 1 has a linear dependence on d due to R < v/d. Several previous
work [1, 10] can exploit the sparsity of the optimal solution w, and obtain a logarithmic dependence
on the dimensionality. For example, [1] exploited both the strong convexity of the expected loss and
the sparsity of the optimal solution and achieved an O(slog(d)/¢) sample complexity, where s is the
sparsity of w,.. However, when the optimal solution is not sparse they can only obtain O(log(d)/€?)
even with the strong convexity assumption. In contrast, our result is the first that establishes O(d/¢)
sample complexity without strong convexity and sparsity assumptions.

2.2 Distribution Dependent Randomized Sparsification

Although Theorem 1 provides a guarantee on the excess risk of w found by Algorithm 1, it has
no guarantee on the sparsity of w. Previous studies have found that minimizing the ¢; constrained
problem does not necessarily lead to a sparse solution. A naive heuristic to make the solution sparse
is to choose the coordinates according to the magnitude of elements in w. Alternatively, one can
choose the coordinates in a randomized way using the randomized sparsification procedure given in



Algorithm 2. [11] used p; = % to define the sampling probabilities and established the following
result for the number of steps K. Since supp(w) < K, therefore the theorem below also provides

an upper bound for the sparsity of w.
Theorem 2. [11] Given the samples in Algorithm 1, let p; = %,j € [d] in Algorithm 2. In order

fo have ER(W,w,) < ER(W,w.) + € with a probability 1 — 6, it suffice to have K = {%—‘
Next, we describe a distribution dependent randomized sparsification algorithm that provides guar-
antee on the sparsity of the resulting model for achieving an e excess risk, which is better than
Theorem 2 by a distribution dependent constant factor. The intuition is that since we are ultimately
interested in the prediction performance made by w ' x, thus the probabilities of selecting the co-
ordinates should be dependent on the magnitude of w;x;,i € [d]. This is formally stated in the
following theorem.
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Theorem 3. Given the samples in Algorithm 1, let p; = #%,] € [d] in Algorithm 2. In
order to have ER(W,w.) < ER(W,w.) + € with a probability 1 — § over i1,. .. ik, it suffice to
have K = ’V(Zgl v ??E[Ifl)z-‘
€

Remark: The value of K in Theorem 3 is always less than that in Theorem 2, because

2
(Z?Zl @JzE[x?]) < ||w]|2. The equality holds only when the second moments of individual
features are equal. For small values of € and 6, the improvement could be significant. In practice,
the second order moments may not be know aprior. We can calculate empirical estimations using

the samples from the first stage.

2.3 Implementation

It is notable that Algorithm 1 requires a projection into the intersection of an ¢; ball and an /5 ball.
The problem is
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min —|lw—w 3
st. ||lw—c|?<r?

First, it should be noticed that the above problem always has a feasible solution and the optimal

solution is unique. This is because c is a feasible solution due to ¢ = w¥ and ||w¥||; < B, and the

uniqueness is due to that the objective function is a strongly convex function. By the Lagrangian

theory, the above problem is inequivalent to max, > g(n), where g(n) = min|w, <p 5||w—W|3+

2(||w —c||3 —r?). To solve this, we present an efficient bisection search algorithm. Let o = ﬁ €

[0,1] and w,, = aw + (1 — a)c and W}, = Il <[Wa]. The g(n) function is a concave function
of 7. Given an 7) (or equivalently «), we can compute the gradient of g(n). If Vg(n) < 0, we should
decrease 7 (i.e., increase «); otherwise we should increase 7 (i.e., decrease «). To compute the
gradient of g(n), we need to find w, the optimal solution to the inner minimization problem w.r.t
w,i.e.,

2
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w) =arg min

1 H W+ 7nc
« 5w =
Iwlp:<B 2

I+n |,

Then the gradient of g(n) can be computed by Vg(n) = %(|[wj — c[|3 — r2). We can start from
a=1,ie,n =0,if |w] — c||2 < r then w] is the optimal solution; otherwise we set « = 1/2
and compute w7 ;. If ||w’1‘/2 — c|l2 < r we need to increase «, otherwise we decrease c. Since
every iteration we cut the search space by half, in order to find an €4 accurate solution (i.e., the

distance to the optimal solution is less than €,), we only need {log2 (||w6—7c|\2ﬂ iterations. To
see this, we let w,, and wzk denote the generated sequences and let w,,, and w,, denote the
corresponding vectors to the optimal 7,.. By the non-expansive property of projection [2], we have
lwe, — Wi ll2 < [Wa, — Wa, |2 < “‘"277:”2 < €. Finally, for solving the projection into the ¢;
ball in (4), we can use the linear time algorithm proposed in [6]. Thus, the total time complexity for
solving (3) is O(d log(||w — cl|2/¢€s))-
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