
LOD is all about evolution

Querying and Managing evolving Linked Open Data

Javier D. Fernández

11TH SEPTEMBER 2017

Drift-a-LOD’17

Special thanks to Axel Polleres for his input

About me:

 since 2015 @WU, Inst. for Information Business
Research interest: Semantic Web, Open Data, Big (Semantic) Data Management, Databases, Data Compression,
Privacy and Security

 https://www.wu.ac.at/en/infobiz/team/fernandez/

MadridValladolid Santiago Rome

2

Óscar CorchoPablo de la Fuente
Miguel A. Martínez-

Prieto

Claudio Gutiérrez Maurizio Lenzerini

Vienna

Axel Polleres

https://www.wu.ac.at/en/infobiz/team/fernandez/

 Monitoring Evolution and Archiving

 Archiving the Web of Data

 Representing and querying evolving semantic data

 Open Data evolution

PAGE 3

General agenda

images: zurb.com

http://zurb.com/word/brainstorming

 Monitoring evolution is relevant

ARCHIVING LINKED AND OPEN DATA4

Why evolution matters
(Creationists: please ignore this slide…)

 Changes tell us “something”

 Uncertain information

 Validity of the information

ARCHIVING LINKED AND OPEN DATA5

Evolution matters

 Web archives: Common Crawl, Internet Memory, Internet Archive, …

6

Preservation matters

 The Memento protocol

7

Time-based access matters

But…

Follow your nose
(HTTP content negotiation with datetime)

RFC 7089

Batch discovery
(list of URIs of Mementos of the Original Resource)

 Poor granularity (“some” snapshots)

 Aggregated data, only, rather than raw data access

 (e.g. in Google trends)

 What is the right query language?

 basic retrieval features (get version at timestamp t)

 when did a certain information disappear?

 when was it changed?

 structured queries?

 Scalability problems

8

Challenges (Web archives)

Is it easier/better for RDF/Linked Data?

Arching the Web of Data

ANDREAS HARTH -
STREAM
REASONING IN
MIXED REALITY
APPLICATIONS,
STREAM
REASONING
WORKSHOP 2015

Linked Data is evolving

Number of

sources

Update rate

month

year

week

day

hour

minute

second

104 105 106101100 102 103

BTC

Dynamic LD

Observatory

Internet

of Things

Virtual/Augmented

Reality

LOD Laundromat

live

11

One of the first (and last?) LOD archives:
The Dynamic Linked Data Observatory
(evolving Linked Data since 2012)

Weekly dumps of
crawl snapshots...

Granularity?
Queries?
Crawl failures?

3

Most semantic Web/Linked Data tools are focused on
this “static view” but do not consider

versioning/evolution

Linked Data Archives:
The missing link in the RDF evolution

Sindice, SWSE, Swoogle, LOD Cache, LOD-Laundromat… so far, no versions!

13

RDF Archiving. Example

RDF Graph V1

ex:C1 ex:hasProfessor ex:P1 .
ex:S1 ex:study ex:C1 .
ex:S2 ex:study ex:C1 .

RDF Graph V3

ex:C1 ex:hasProfessor ex:P1 .
ex:C1 ex:hasProfessor ex:P2 .
ex:C1 ex:hasProfessor ex:S2 .
ex:S1 ex:study ex:C1 .
ex:S3 ex:study ex:C1 .

RDF Graph V2

ex:C1 ex:hasProfessor ex:P1 .
ex:S1 ex:study ex:C1 .
ex:S2 ex:study ex:C1 .
ex:S3 ex:study ex:C1 .

ex:S1

ex:has Professor

ex:S2

ex:C1

ex:P1

ex:has Professor

ex:C1

ex:P1
ex:S3

ex:S1

ex:S2

ex:has Professor

ex:C1

ex:P1
ex:S3

ex:hasProfessor

ex:P2

ex:S1

ex:S2

 How can we represent archives of continuously evolving linked
datasets?

 How can we minimize the redundant information of archives? (e.g.
duplicates in snapshots)

 How can we improve completeness of archiving?

 How can emerging retrieval demands in archiving be satisfied?

 e.g. time-traversing and traceability? Avoiding bottlenecks?

 How can certain time-specific queries over archives be answered?

 Can we re-use existing technologies (e.g. SPARQL or temporal
extensions)?

 What is the right query language for such queries?

 e.g. knowing if a dataset has changed, and how, in a certain time period?

14

Research challenges on evolving structured
interlinked data

15

…in the last few years:

Managing the Evolution and

Preservation of the Data Web (FP7)
Preserving Linked Data (FP7)

Research projects

Archives

Tools

Benchmarking

one of the fundamental problems in the Web of Data

BEAR

RDF evolution at Scale

v-RDFCSA

Representing and
querying evolving
semantic data

How we can get archives of RDF data

The cold-start problem

 Some services that publish or are mapped to RDF change regularly, but
we don’t know the frequency upfront!

 Some services mapped to RDF announce/archive their changes already,
so they already keep an archive…

Pull changes (crawl) vs.
Push changes (notify)

data

YYYY/MM/DD/HH/domain

crawl

metadata

downloader
politeness queue

cron

crawl

schedule

content

meta

adaptive scheduler
• check if URL was

crawled,
• compare content

with previous
crawl(s),

• adapt schedule

cron

scheduler

cron

URI type

links

Data Monitor Framework

1

2

3

Towards capturing and preserving
changes on the Web of Data 50-65
Jürgen Umbrich, Nina Mrzelj, Axel
Polleres. DIACHRON WS 2015

 Retrieve historical versions of a DBpedia resource

 What was the version of “Donald Trump” on dd/mm/yyyy?

 Re-apply DBpedia mappings on the Wikipedia revision history

DBpedia Wayback Machine

http://data.wu.ac.at/wayback

19
On-demand “archive”

 How can one represent revisions while respecting DBpedia?

 a) quads  <dbpediaSubject> <pred> <obj> <Revision> .

 b) proprietary triples  <ownSubject/Revision> <pred> <obj> .

 Operations?

 Get revisions meta-data for one resource (by revisionID or timestamp)

 Get “materialised” versions of a resource (by revisionID or timestamp)

 Get difference between two revisions

DBpedia Wayback Machine

 More complex operations/queries? Open challenge

 a) On-demand? Query rewriting, similar to RDB2RDF

 b) Batch: Fetch the desired information, then store and query it

DBpedia Wayback Machine

22

We are (obviously) not the only ones
looking into this…

However:
Only one version per
“irregular” dbpedia
dump

 Lodlaundromat.org: a central repository of LD

 Problems?

 Still you need to access/query 650K datasets

 Of course the solution is not complete, but “a good approximation”

23

LOD Laundromat

24

LOD

Laundromat

Dataset 1

N-Triples
(zip)

Dataset 650K

N-Triples
(zip)

Linked
Open Data

SPARQL
endpoint

(metadata)

LOD-a-lot: LOD-a-lot: Low cost archiving of LOD

Kudos Javier D. Fernandez, Wouter Beek, Miguel A. Martínez-Prieto, Mario Arias, Ruben Verbogh

LOD-a-lot
28B triples

 Disk size:

 HDT: 304 GB

 HDT-FoQ (additional indexes): 133 GB

 Memory footprint (to query):

 15.7 GB of RAM (3% of the size)

 144 seconds loading time

 8 cores (2.6 GHz), RAM 32 GB, SATA HDD on Ubuntu 14.04.5 LTS

 LDF page resolution in milliseconds.

25

LOD-a-lot (some numbers)

305€

(LOD-a-lot creation took 64 h & 170GB RAM. HDT-FoQ took 8 h & 250GB RAM)

26

LOD-a-lot

https://datahub.io/dataset/lod-a-lot

http://purl.org/HDT/lod-a-lot

https://datahub.io/dataset/lod-a-lot
http://purl.org/HDT/lod-a-lot

 Archiving

 We plan to have quarterly releases

 Query resolution at Web scale

 Evaluation and Benchmarking

 No excuse 

 RDF metrics and analytics

27

LOD-a-lot (some use cases)

subjects predicates objects

28

ACKs LOD-a-lot

The archiving problem

Now, how can we efficiently archive and
perform time-based retrieval queries of a
dataset?

30

RDF Archiving. Archiving policies

V1

ex:C1 ex:hasProfessor ex:P1 .
ex:S1 ex:study ex:C1 .
ex:S3 ex:study ex:C1 .

ex:C1 ex:hasProfessor ex:P2 .
ex:C1 ex:hasProfessor ex:S2 .
ex:S1 ex:study ex:C1 .
ex:S3 ex:study ex:C1 .

V2 V3

ex:C1 ex:hasProfessor ex:P1 .
ex:S1 ex:study ex:C1 .
ex:S2 ex:study ex:C1 .

V1

ex:C1 ex:hasProfessor ex:P1 .
ex:S1 ex:study ex:C1 .
ex:S2 ex:study ex:C1 .

ex:S3 ex:study ex:C1 .

ex:S2 ex:study ex:C1 .

ex:C1 ex:hasProfessor ex:P1 .

ex:C1 ex:hasProfessor ex:P2 .
ex:C1 ex:hasProfessor ex:S2 .

V1,2,

3
ex:C1 ex:hasProfessor ex:P1 [V1,V2].
ex:C1 ex:hasProfessor ex:P2 [V3].
ex:C1 ex:hasProfessor ex:S2 [V3].
ex:S1 ex:study ex:C1 [V1,V2,V3].
ex:S2 ex:study ex:C1 [V1].
ex:S3 ex:study ex:C1 [V2,V3].

a) Independent Copies/Snapshots (IC)

b) Change-based approach (CB)

c) Timestamp-based approach (TB)

RETRIEVAL MEDIATOR

RETRIEVAL MEDIATOR

RETRIEVAL
MEDIATOR

d) Hybrid approaches

31

BEAR

https://aic.ai.wu.ac.at/qadlod/bear.html

https://aic.ai.wu.ac.at/qadlod/bear.html

 Blueprint on benchmarking archives of semantic data

 How can one define the corpus?

 How can one design benchmark queries? Which queries?

 BEAR: concrete basic benchmark

 Data: Crawl from Linked Data Observatory

 Basic queries: Materialize, get Version…

 Initial evaluation on archiving policies

32

BEAR:
Benchmarking the Efficiency of RDF Archives

https://aic.ai.wu.ac.at/qadlod/bear.html

https://aic.ai.wu.ac.at/qadlod/bear.html

 Blueprint on benchmarking archives of semantic data

 How can one define the corpus?

 How can one design benchmark queries? Which queries?

 BEAR: concrete basic benchmark

 Data: Crawl from Linked Data Observatory

 Basic queries: Materialize, get Version…

 Initial evaluation on archiving policies

33

BEAR:
Benchmarking the Efficiency of RDF Archives

https://aic.ai.wu.ac.at/qadlod/bear.html

https://aic.ai.wu.ac.at/qadlod/bear.html

Benchmarking: Define the corpus

Number of versions / size

Data dynamicity

Version change ratio

Version data growth

Data static core

Total triples (version-oblivious)

Others

RDF vocabulary

Per version / evolution34

Benchmarking: Define the queries

 Structured query languages managing time.

 Temporal databases (T-Quel, TSQL2)

 Overlapping, meeting, before, equal, during, finish

 RDF/Linked Data

 SPARQL extensions

 T-SPARQL, SPARQL-ST

 AnQL

 DIACHRON Query Language

 SPARQL with specific constructors such as DATASET (similar to a named graph),
VERSION, or CHANGES

35

 Design of benchmark queries

Archive-driven Cardinality + Selectivity (disregard versions)

Version-driven Cardinality + Selectivity + dynamicity

Basic temporal retrieval features of queries

Mat (Q, Vi): version materialization

Diff (Q, Vi,Vj): delta materialization

Version(Q): results of Q annotated with the version

Join(Q1,Vi, Q2,Vj)

Change(Q): Returns versions in which Diff(Q, Vi, Vi-1) !=∅

36

Benchmarking: Define the queries

 Instantiation of archive queries in AnQL [1]

 Antoine Zimmermann, Nuno Lopes, Axel Polleres, and Umberto Straccia. A
general framework for representing, reasoning and querying with
annotated Semantic Web data. Journal of Web Semantics (JWS), 12:72--
95, March 2012.

 Mat(Q,V)

 Diff(Q,V1,V2)

 Ver(Q)

 join(Q1,vi,Q2,vj)

 Change(Q)

37

SELECT * WHERE { Q :[v] }

Benchmarking: Define the queries

 Instantiation of archive queries in AnQL [1]

 Antoine Zimmermann, Nuno Lopes, Axel Polleres, and Umberto Straccia. A
general framework for representing, reasoning and querying with
annotated Semantic Web data. Journal of Web Semantics (JWS), 12:72--
95, March 2012.

 Mat(Q,V)

 Diff(Q,V1,V2)

 Ver(Q)

 join(Q1,vi,Q2,vj)

 Change(Q)

38

SELECT * WHERE {

{ { {Q :[v1]} MINUS {Q :[v2]} } BIND (v1 AS ?V)

}

UNION

{ { {Q :[v2] } MINUS {Q :[v1]}} BIND (v2 AS ?V)

}

Benchmarking: Define the queries

 Instantiation of archive queries in AnQL [1]

 Antoine Zimmermann, Nuno Lopes, Axel Polleres, and Umberto Straccia. A
general framework for representing, reasoning and querying with
annotated Semantic Web data. Journal of Web Semantics (JWS), 12:72--
95, March 2012.

 Mat(Q,V)

 Diff(Q,V1,V2)

 Ver(Q)

 join(Q1,vi,Q2,vj)

 Change(Q)

39

SELECT * WHERE { Q :?V }

Benchmarking: Define the queries

 Instantiation of archive queries in AnQL [1]

 Antoine Zimmermann, Nuno Lopes, Axel Polleres, and Umberto Straccia. A
general framework for representing, reasoning and querying with
annotated Semantic Web data. Journal of Web Semantics (JWS), 12:72--
95, March 2012.

 Mat(Q,V)

 Diff(Q,V1,V2)

 Ver(Q)

 join(Q1,v1,Q2,v2)

 Change(Q)

40

SELECT * WHERE { {Q :[v1]} {Q :[v2]} }

Benchmarking: Define the queries

 Instantiation of archive queries in AnQL [1]

 Antoine Zimmermann, Nuno Lopes, Axel Polleres, and Umberto Straccia. A
general framework for representing, reasoning and querying with
annotated Semantic Web data. Journal of Web Semantics (JWS), 12:72--
95, March 2012.

 Mat(Q,V)

 Diff(Q,V1,V2)

 Ver(Q)

 join(Q1,vi,Q2,vj)

 Change(Q)

41

SELECT ?V1 ?V2 WHERE

{ {{Q :?V1 } MINUS {Q :?V2}} UNION

{{Q :?V2 } MINUS {Q :?V1}}

FILTER(abs(?V1-?V2) = 1) }

Benchmarking: Define the queries

Open question
remains:

What is the right
query syntax for
archive queries?

 blueprint on benchmarking archives of semantic data

 How can one define the corpus?

 How can one design benchmark queries? Which queries?

 BEAR: concrete basic benchmark

 Data: Crawl from Linked Data Observatory

 Basic queries: Materialize, get Version…

 Initial evaluation of archiving policies

42

BEAR: Benchmarking the Efficiency of RDF
Archiving

https://aic.ai.wu.ac.at/qadlod/bear.html

https://aic.ai.wu.ac.at/qadlod/bear.html

 Queries and systems

 We implemented and evaluate archiving systems on Jena-TDB and HDT,
based on IC, CB and TB policies.

 Serve as an initial baseline to compare archiving systems

 More info: https://aic.ai.wu.ac.at/qadlod/bear.html

43

BEAR: Benchmarking the Efficiency of RDF
Archiving

https://aic.ai.wu.ac.at/qadlod/bear.html

BEAR datasets

44

RDF Archiving. Archiving policies

V1

ex:C1 ex:hasProfessor ex:P1 .
ex:S1 ex:study ex:C1 .
ex:S3 ex:study ex:C1 .

ex:C1 ex:hasProfessor ex:P2 .
ex:C1 ex:hasProfessor ex:S2 .
ex:S1 ex:study ex:C1 .
ex:S3 ex:study ex:C1 .

V2 V3

ex:C1 ex:hasProfessor ex:P1 .
ex:S1 ex:study ex:C1 .
ex:S2 ex:study ex:C1 .

V1

ex:C1 ex:hasProfessor ex:P1 .
ex:S1 ex:study ex:C1 .
ex:S2 ex:study ex:C1 .

ex:S3 ex:study ex:C1 .

ex:S2 ex:study ex:C1 .

ex:C1 ex:hasProfessor ex:P1 .

ex:C1 ex:hasProfessor ex:P2 .
ex:C1 ex:hasProfessor ex:S2 .

V1,2,

3
ex:C1 ex:hasProfessor ex:P1 [V1,V2].
ex:C1 ex:hasProfessor ex:P2 [V3].
ex:C1 ex:hasProfessor ex:S2 [V3].
ex:S1 ex:study ex:C1 [V1,V2,V3].
ex:S2 ex:study ex:C1 [V1].
ex:S3 ex:study ex:C1 [V2,V3].

a) Independent Copies/Snapshots (IC)

b) Change-based approach (CB)

c) Timestamp-based approach (TB)

RETRIEVAL MEDIATOR

RETRIEVAL MEDIATOR

RETRIEVAL
MEDIATOR

45

RDF Archiving. Archiving policies

V1

ex:C1 ex:hasProfessor ex:P1 .
ex:S1 ex:study ex:C1 .
ex:S3 ex:study ex:C1 .

ex:C1 ex:hasProfessor ex:P2 .
ex:C1 ex:hasProfessor ex:S2 .
ex:S1 ex:study ex:C1 .
ex:S3 ex:study ex:C1 .

V2 V3

ex:C1 ex:hasProfessor ex:P1 .
ex:S1 ex:study ex:C1 .
ex:S2 ex:study ex:C1 .

V1

ex:C1 ex:hasProfessor ex:P1 .
ex:S1 ex:study ex:C1 .
ex:S2 ex:study ex:C1 .

ex:S3 ex:study ex:C1 .

ex:S2 ex:study ex:C1 .

ex:C1 ex:hasProfessor ex:P1 .

ex:C1 ex:hasProfessor ex:P2 .
ex:C1 ex:hasProfessor ex:S2 .

V1,2,

3
ex:C1 ex:hasProfessor ex:P1 [V1,V2].
ex:C1 ex:hasProfessor ex:P2 [V3].
ex:C1 ex:hasProfessor ex:S2 [V3].
ex:S1 ex:study ex:C1 [V1,V2,V3].
ex:S2 ex:study ex:C1 [V1].
ex:S3 ex:study ex:C1 [V2,V3].

a) Independent Copies/Snapshots (IC)

b) Change-based approach (CB)

c) Timestamp-based approach (TB)

RETRIEVAL MEDIATOR

RETRIEVAL MEDIATOR

RETRIEVAL
MEDIATOR

46

83

Time-based access. Queries

47

 Triple Pattern queries

 Queries with “similar” number of
results in all versions.

 ε-stable query

𝒎𝒂𝒙∀𝒊∈𝑵 𝑪𝑨𝑹𝑫 𝑸,𝑽𝒊 ≤ 𝟏 + 𝜺
 ∀𝒊∈𝑵𝑪𝑨𝑹𝑫 𝑸,𝑽𝒊

𝑵

𝒎𝒊𝒏∀𝒊∈𝑵 𝑪𝑨𝑹𝑫(𝑸,𝑽𝒊) ≥ (𝟏 + 𝜺)
 ∀𝒊∈𝑵𝑪𝑨𝑹𝑫(𝑸,𝑽𝒊)

𝑵

50%

50%

𝜺 = 𝟎. 𝟓

Time-based access. Queries

48

Materialize (s,?,? ; version)

Hybrid approach

IC CB HB4 HB8 HB16

48 GB 28 GB 34 GB 31 GB 29 GB

Time-based access. Queries

49

diff(?,?,o ; version0 ; version t)

Hybrid approach

IC CB HB4 HB8 HB16

48 GB 28 GB 34 GB 31 GB 29 GB

 RDFCSA: RDF index based on a Compressed Suffix Array

 v-RDFCSA[2] is designed as a lightweight TB approach

 Version information encoding

 Any triple can be identified by the position of its subject within SA

 Let be N the number of different versions and n the set of version-oblivious triples

 Two alternative encoding strategies

 tpv: N bitsequences, each position i encodes if the triple i appears in the version

 vpt: n bitsequences, each position i encodes if the version i includes the triple

51

Self-Indexing RDF Archives: v-RDFCSA

Bv1 0 1 1 0 1

Bv2 0 1 0 1 0

Bv3 1 0 0 0 1

Triples

1 2 3 4 5tpv

V
e
rsio
ns

1

2

3

Bt1

0 1 1 0 1

0 1 0 1 0

1 0 0 0 1

Triples

1 2 3 4 5vpt
V
e
rsio
ns

1

2
3

Bt2 B
t
3 B

t
4 B

t
5

[2] Ana Cerdeira-Pena, Antonio Fariña, Javier D. Fernández, and Miguel A.
Martínez-Prieto. Self-Indexing RDF Archives. Data Compression Conference
(DCC), 2016.

Performs more than one order of magnitude faster than Jena-TDB

How is Open Data evolving?

Open Data evolution

 Periodically monitoring a list of Open Data Portals

 90 CKAN powered Open Data Portals

 Quality assessment

 Evolution tracking

 Meta data

 Data

OPEN DATA PORTAL WATCH
… a first step.

http://data.wu.ac.at/portalwatch/

Jürgen Umbrich
Sebastian Neumaier

http://data.wu.ac.at/portalwatch/
https://www.wu.ac.at/en/infobiz/team/umbrich/
https://www.wu.ac.at/en/infobiz/team/neumaier/

54

ECDA: Evolving CSV Data Analyzer

55

• Analysis of 726 datasets

• Mean of 18 versions per file

• Mean of 430 rows and 5.4 columns

• Increasing nature (x1.85 number of rows)

• Small value modifications (0.85 jaccard)

• Mostly string types (80% of 8-25 characters)

ECDA: Evolving CSV Data Analyzer

56

• Analysis of 726 datasets

• Entities (Babelfy)

• On average there are around 0.07 entities per cell

• Entities are static in the header (a mean of 3)

• 1/3 of the entities change across time

• Number of entities slightly decrease in time

ECDA: Evolving CSV Data Analyzer

 Archiving and querying evolving semantic Web data

Finally, many open questions remain still!

Objective Research Question

Representation of
archives

minimize the redundant information
 respect the original modeling and provenance information (e.g. LOD-a-lot)

Query language  design a query language satisfying these requirements for evolving interlinked
data

 our BEAR operations are meant to be an extensible starting point

Indexing  index archives at large scale
 keep up with evolution rate (streaming vs. archiving) to process the queries

efficiently

Analysis/Optimization  use evolution patterns to optimize representations and queries
 Querying archives of structures and non-structured sources? E.g. Open Data!

Application  LOD-a-lot is a good examples but modularity can be improved
 Any low-cost but functional archiving at LOD scale can be a major milestone for

the community

Thank you!

“The measure of intelligence is the ability to change”

Albert Einstein

