Combining distributional semantics and structured data to study lexical change
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Outline

- WHY this integration?

-  WHAT NLP lexical change data do we have?

-  WHAT does Wordnet contain?

- HOW did we integrate the two?

-  WHAT can this integrated source be used FOR?



[writings, yellow, four, woods, preface, aggression, marching, looking, granting, eligible, electricity, rouse, originality, lord, meadows, sinking, hormone, regional, pierce, appropriation,
foul, politician, bringing, disturb, recollections, prize, wooden, persisted, succession, immunities, reliable, charter, specially, nigh, tired, hanging, bacon, pulse, empirical, elegant, second,
valiant, sustaining, sailed, errors, relieving, thunder, cooking, contributed, fingers, vassals, fossil, designing, increasing, admiral, hero, avert, reporter, error, atoms, reported, china,
burgesses, pancreas, natured, substance, pretensions, climbed, reports, controversy, natures, military, numerical, criticism, golden, divide, classification, owed, explained, replace,
brought, remnant, stern, unit, opponents, painters, spoke, occupying, symphony, music, therefore, strike, sermons, females, holy, populations, successful, brings, hereby, hurt, glass,
harmless, midst, hold, circumstances, morally, locked, pursue, accomplishment, plunged, temperatures, concepts, revenues, example, misfortunes, triple, unjust, household, artillery,
organized, currency, caution, british, want, absolute, provincial, complaining, travel, drying, feature, machine, hot, significance, symposium, preferable, dignified, oceans, beauty, shores,
wrong, destined, types, profess, effective, youths, revolt, headquarters, presiding, baggage, keeps, democratic, wing, wind, wine, senators, welcomed, dreamed, concurrence, reforms,
vary, quakers, fidelity, wrought, admirably, fit, heretofore, fix, occupations, survivors, distinguishing, fig, nobler, wales, hidden, admirable, easier, glorify, grievous, detachment, effects,
schools, township, sixteen, silver, structural, represents, clothed, arrow, addicted, interfering, burial, preceded, financial, telescope, concord, series, displacement, commons, contracting,
fortnight, substantially, cathedral, message, whip, borne, toleration, misfortune, excepting, mason, re, encourage, adapt, engineer, foundation, assured, threatened, strata, sensory,
assures, faculties, grapes, crowned, estimate, universally, chlorine, enormous, ate, exposing, heading, shipped, musicians, speedy, repealed, appreciable, nouns, channels, wash,
instruct, olds, exchequer, service, similarly, engagement, cooling, needed, master, listed, legs, bitter, ranging, listen, danish, rewards, collapse, bounty, wisdom, motionless, sulphur,
positively, peril, showed, coward, tree, nations, project, pneumonia, idle, exclaimed, endure, seminary, feeling, acquisition, willingness, spectrum, shrubs, notwithstanding, dozen, affairs,
wholesome, person, responsible, eagerly, metallic, recommended, causing, absorbed, amusing, doors, committing, transactions, belligerent, object, diminishing, wells, swiss, affirmation,
mouth, letter, conceded, retaining, shalt, singer, episode, grove, professor, camp, fugitives, detriment, nineteenth, incomplete, saying, bomb, insects, meetings, nominated, schism,
undue, soluble, gauge, participate, tempted, lessons, touches, busy, liberated, holder, bush, bliss, touched, rich, heartily, rice, plate, remotest, terrors, foremost, pocket, altogether, relish,
societies, contributes, patch, release, hasten, respond, blew, disaster, fair, unanimously, expediency, consummation, sensitivity, radius, result, fail, resigned, hammer, best, lots, rings,
solicitude, pressures, score, scorn, propagated, occupational, magnesium, preserve, discipline, men, extend, nature, rolled, felony, impetus, extent, defiance, carbon, debt, tyranny,
accident, sacrificing, disdain, country, readers, adventures, demanded, estates, planned, logic, argue, adapted, asked, alternate, ...]

NLP data of lexical change are often
at the level of strings... :-(
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Distributional NLP

from text corpus to word vector
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Distributional NLP

from word vector to similarities
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Distributional NLP

from word vector to similarities over time
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HistWords

The NLP data we use 10k English words (w)
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HistWords

The NLP data we use 10k English words (w)

/\ x  hot POS-tagged!
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WordNet Search - 3.1

Word to search for: web Search WordNet

Display Options: (Select option to change) Change

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence”

Noun

¢ S:(n) web (an intricate network suggesting something that was formed by
weaving or interweaving) "the trees cast a delicate web of shadows over the
fawn"

e S:(n) web, entanglement (an intricate trap that entangles or ensnares its
victim)

¢ S:(n) vane, web (the flattened weblike part of a feather consisting of a series
of barbs on either side of the shaft)

e S: (n) network, web (an interconnected system of things or people) "he
owned a network of shops”; "retirement meant dropping out of a whole
network of people who had been part of my life”; "tangled in a web of cloth”

e S:(n) World Wide Web, WWW, web (computer network consisting of a
collection of internet sites that offer text and graphics and sound and
animation resources through the hypertext transfer protocol)

e S: (n) web (a fabric (especially a fabric in the process of being woven))

e S: (n) web (membrane connecting the toes of some aquatic birds and
mammals)

Verb

e S: (v) web, net (construct or form a web, as if by weaving)
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Wordnet 3.1 RDF

RDF-WN containing +/- 150k English lexical entries

N
N A

Ty

[lemon:Lexic alEntry rdfs:ResourceJ
\/ lemon:canonicalForm{ lemon:o Form xn:part_of_speech

[lemon:Form] [lemon:FormJ rdfs:ResourceJ

lemon:writtenRep | lemon:writtenRep |

wn:synset_member

<

® PRINCETON UNIVERSITY

WordNet

A lexical database for English xsd:string xsd:string
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Similarities to distances
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Linking HistWords to Wordnet

- What WN instance level to annotate with change scores?

wn:Synset

wn:synset_member | \@;gloss

[lemon:LeXica,lEntryW

xsd:string |

wn:entail, wn:hyponym, ...
.................................................... ,

Jdexical_domain

~

rdfs:Resource

L =4

lemon:canonicalForm | lemon:o

[lemon:Form]

Form

Llemon:Form]

/

t_of_speech

~

rdfs:Resource
_
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Linking HistWords to Wordnet

- What WN instance level to annotate with change scores?

wn:entail, wn:hyponym, ...
... ,

wn:synset_member | \@igloss Jdexical_domain

~

[lemon:Lemca,lEntry} xsd:string | rde:Resourcej Problem:
lemon:canonicalForm{ lemon:0 Form t_of_speech queries relating
) change scores and
lemon:Form lemon:Form rdfs:ResourceJ lexical entries need a
oWt teTRED | (IO W Tt tEIT R ED v Compllfiated UNION
operation

xsd:string xsd:string
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Linking HistWords to Wordnet

- What WN instance level to annotate with change scores?

wn:synset_member ,

wn:Synset |-

lemon:canonicalForm{ lemon:0thké

[lemon:Form]

lemon:writteniep | lemon:writtenRep |

xsd:string

wn:entail, wn:hyponym, ...
.............................................. ,

Jdexical_domain

~

rdfs:Resource

/

wn:part_of_speech

~

rdfs:Resource
_

xsd:string

Pragmatic solution:
use just the canonical
forms of LEs, making
the relation between
LE and label
one-to-one. Now the
change can be

attached to LE.
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Linking HistWords and Wordnet entries

1. Match HistWords words on canonical form of lexical entries
=> 7.365 matches (out of 10.000)

2. Stem HistWords words and match on canonical forms
=> 8.878 matches (out of 10.000)
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Linking HistWords and Wordnet entries

1. Match HistWords words on canonical form of lexical entries
=> 7.365 matches (out of 10.000)

2. Stem HistWords words and match on canonical forms
=> 8.878 matches (out of 10.000)

105938456-n

wn:hero-n > _bnodel

lemon:canonicalForm lemon:canonicalForm

[Wn:hero-n# Canonica.lFormJ

lemon:writtenRep ,l, lemon:writtenRep

”hero” ”"heroes”
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Linking HistWords and Wordnet entries

1. Match HistWords on canonical form
=> 7.365 matches (out of 10.000)
2. Stem HistWords words and match on canonical forms

=> 8.878 matches (out of 10.000)

Important: one word in HistWords can have match on multiple lexical entries with
the same canonical form but with different parts of speech!

E.g. “web” matches on WN lexical entries web-V and web-N
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Linking HistWords and Wordnet entries

1. Match HistWords on canonical form
=> 7.365 matches (out of 10.000)
2. Stem HistWords words and match on canonical forms

=> 8.878 matches (out of 10.000)
mapped on 12.469 lexical entries

Important: one word in HistWords can have match on multiple lexical entries with
the same canonical form but with different parts of speech!

E.g. “web” matches on WN lexical entries web-v and web-n
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Data model

How we represented matches by stem-and-match:

[105938456-n]

v

/e y

lemon:canonicalForm |

A4

emon:lexicalVariants._____

_bnodel

e

lemon:canonicalForm

[wn:hero-n# Canonica.lFormJ

—

- SO

lemon:writtenRep |

” herOJ'J

T

_bnode2

—_—

lemon:writtenRep |

y
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Data model

How we represented matches by stem-and-match:

[200725507-\;'}

(wn:a.llow-v] - —> _bnodel
jemon:lexmal'\/’arlantslr__z
lemon:canonicalForm | lemon:canonicalForm |
S
[wn:allow—v#CanonicalForm] | _bnode2
SR
lemon:writtenRep | lemon:writtenRep |
? allow” ” allowances”

Side note:

another reason for adding
the change scores to LEs
and not forms is
conservativeness: otherwise
we would have declared
“allowances” to be a verb
and to have the same
synset!
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Data model

How we connected the change scores to the lexical entries:

[lemon:LexicalEntryJ {lexical entry, decade 1, decade 2, change score}

cwi-sc:semgntic_change

[cwi—sc:SemanticOhangeJ

cwi—sc:onset_referenq/ cwi-sc:oﬁﬁe&;eferen fs:value

[ot:Temp oralEnt ity} [ot:Temp oralEntity‘J\ xsd:float

ot:hasBeginnin ot:hasEnd  ot:hasBeginning/ ot:hasEnd
ot:Instant [ot:InstantJ [ot:InstantJ ot:Instant




Data model

How we connected the change scores to the lexical entries:

) cwi-sc:semantic_change._

[1emon:LexicalEntry ]

cwi-sc:semgntic_change

[cwi—sc:SemanticOhangeJ

cwi—sc:onset_referenq/ cwi-sc:oﬁﬁe&;eferen fs:value

[ot:Temp oralEnt ity} [ot:Temp oralEntity‘J\ xsd:float

[decadel]{[decade2]

\ A

ot:hasBeginnin ot:hasEnd  ot:hasBeginning/ ot:hasEnd
ot:Instant [ot:InstantJ [ot:InstantJ ot:Instant
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Resulting dataset

Downloadable (.ttl) from http://github.com/aan680/SemanticChange

+ WN-RDF from http://wordnet-rdf.princeton.edu
Queryable using SPARQL

PREFIX cwi: <http://project.ia.cwi.nl/semanticChange/>
SELECT * WHERE {

?le cwi:semantic_change 1980s-1990s ?value.

} ORDER BY DESC(?value) LIMIT 5

HistWords:
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Example applications

Overall change rate 1810s-1990s
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Part of speech and long-term semantic change
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Example applications

Are words of some semantic categories more prone to change than others?

Mean change score/Domain Mean change score|/Domain
0.909|noun.process 0.814|verb.body
0.872noun.phenomenon 0.791|noun.animal
0.869|noun.event 0.784 |noun.food
0.867|noun.act 0.778 |noun.feeling

0.86|noun.possession 0.737|verb.weather
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Example applications

Do more polysemous words and less polysemous

words change at a different rate?

LI LR A B LA B [ LB L

Rate of semantic change

-2.0-15-1.0-05 00 0S5
Log(polysemy)

Source: Hamilton et al. 2016
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Number of synsets
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a . gay (1900s)

flaunting

tasteful

frolicsome

gay (1990s)

leshian

Compare lexical change across languages, aiming to distinguish between lexical and conceptual

change

spread
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Question time!!!
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