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scores of lexical change derived using distributional NLP
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Outline
- WHY this integration?
- WHAT NLP lexical change data do we have?
- WHAT does Wordnet contain?
- HOW did we integrate the two?
- WHAT can this integrated source be used FOR?
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[writings, yellow, four, woods, preface, aggression, marching, looking, granting, eligible, electricity, rouse, originality, lord, meadows, sinking, hormone, regional, pierce, appropriation, 
foul, politician, bringing, disturb, recollections, prize, wooden, persisted, succession, immunities, reliable, charter, specially, nigh, tired, hanging, bacon, pulse, empirical, elegant, second, 
valiant, sustaining, sailed, errors, relieving, thunder, cooking, contributed, fingers, vassals, fossil, designing, increasing, admiral, hero, avert, reporter, error, atoms, reported, china, 
burgesses, pancreas, natured, substance, pretensions, climbed, reports, controversy, natures, military, numerical, criticism, golden, divide, classification, owed, explained, replace, 
brought, remnant, stern, unit, opponents, painters, spoke, occupying, symphony, music, therefore, strike, sermons, females, holy, populations, successful, brings, hereby, hurt, glass, 
harmless, midst, hold, circumstances, morally, locked, pursue, accomplishment, plunged, temperatures, concepts, revenues, example, misfortunes, triple, unjust, household, artillery, 
organized, currency, caution, british, want, absolute, provincial, complaining, travel, drying, feature, machine, hot, significance, symposium, preferable, dignified, oceans, beauty, shores, 
wrong, destined, types, profess, effective, youths, revolt, headquarters, presiding, baggage, keeps, democratic, wing, wind, wine, senators, welcomed, dreamed, concurrence, reforms, 
vary, quakers, fidelity, wrought, admirably, fit, heretofore, fix, occupations, survivors, distinguishing, fig, nobler, wales, hidden, admirable, easier, glorify, grievous, detachment, effects, 
schools, township, sixteen, silver, structural, represents, clothed, arrow, addicted, interfering, burial, preceded, financial, telescope, concord, series, displacement, commons, contracting, 
fortnight, substantially, cathedral, message, whip, borne, toleration, misfortune, excepting, mason, re, encourage, adapt, engineer, foundation, assured, threatened, strata, sensory, 
assures, faculties, grapes, crowned, estimate, universally, chlorine, enormous, ate, exposing, heading, shipped, musicians, speedy, repealed, appreciable, nouns, channels, wash, 
instruct, olds, exchequer, service, similarly, engagement, cooling, needed, master, listed, legs, bitter, ranging, listen, danish, rewards, collapse, bounty, wisdom, motionless, sulphur, 
positively, peril, showed, coward, tree, nations, project, pneumonia, idle, exclaimed, endure, seminary, feeling, acquisition, willingness, spectrum, shrubs, notwithstanding, dozen, affairs, 
wholesome, person, responsible, eagerly, metallic, recommended, causing, absorbed, amusing, doors, committing, transactions, belligerent, object, diminishing, wells, swiss, affirmation, 
mouth, letter, conceded, retaining, shalt, singer, episode, grove, professor, camp, fugitives, detriment, nineteenth, incomplete, saying, bomb, insects, meetings, nominated, schism, 
undue, soluble, gauge, participate, tempted, lessons, touches, busy, liberated, holder, bush, bliss, touched, rich, heartily, rice, plate, remotest, terrors, foremost, pocket, altogether, relish, 
societies, contributes, patch, release, hasten, respond, blew, disaster, fair, unanimously, expediency, consummation, sensitivity, radius, result, fail, resigned, hammer, best, lots, rings, 
solicitude, pressures, score, scorn, propagated, occupational, magnesium, preserve, discipline, men, extend, nature, rolled, felony, impetus, extent, defiance, carbon, debt, tyranny, 
accident, sacrificing, disdain, country, readers, adventures, demanded, estates, planned, logic, argue, adapted, asked, alternate, …]

NLP data of lexical change are often 
at the level of strings… :-(
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scores of lexical change derived using distributional NLP
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scores of lexical change derived using distributional NLP
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Distributional NLP
from text corpus to word vector
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Distributional NLP
from word vector to similarities
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Distributional NLP
from word vector to similarities over time
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HistWords
The NLP data we use 10k English words (w) 

 x

37 cross-decade 

cosine sim’s: 

cos-sim(wt, wt + 1) 1810s-1820s, …, 1990s-2000s

cos-sim (wt, w1990s) 1810s-1990s, …, 1980s-1990s
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HistWords
The NLP data we use 10k English words (w) 

 x

37 cross-decade 

cosine sim’s: 

cos-sim(wt, wt + 1) 1810s-1820s, …, 1990s-2000s

cos-sim (wt, w1990s) 1810s-1990s, …, 1980s-1990s

not POS-tagged!
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scores of lexical change derived using distributional NLP
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Wordnet 3.1 RDF 
RDF-WN containing +/- 150k English lexical entries
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scores of lexical change derived using distributional NLP
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Similarities to distances
The NLP data we use 10k English words (w) 

 x

37 cross-decade 

cosine dist’s: 

cos-dist(wt, wt + 1) 1810s-1820s, …, 1990s-2000s

cos-dist(wt, w1990s) 1810s-1990s, …, 1980s-1990s
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Linking HistWords to Wordnet
- What WN instance level to annotate with change scores?
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Linking HistWords to Wordnet
- What WN instance level to annotate with change scores?

-
Problem: 
queries relating 
change scores and 
lexical entries need a 
complicated UNION 
operation
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Linking HistWords to Wordnet
- What WN instance level to annotate with change scores?

-
Pragmatic solution: 
use just the canonical 
forms of LEs, making 
the relation between 
LE and label 
one-to-one. Now the 
change can be 
attached to LE.
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Linking HistWords and Wordnet entries
1. Match HistWords words on canonical form of lexical entries

=> 7.365 matches (out of 10.000)
2. Stem HistWords words and match on canonical forms 

=> 8.878 matches (out of 10.000)
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Linking HistWords and Wordnet entries
1. Match HistWords on canonical form 

=> 7.365 matches (out of 10.000)
2. Stem HistWords words and match on canonical forms 

=> 8.878 matches (out of 10.000) 

Important: one word in HistWords can have match on multiple lexical entries with 
the same canonical form but with different parts of speech!

E.g. “web” matches on WN lexical entries web-V and web-N 
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Linking HistWords and Wordnet entries
1. Match HistWords on canonical form 

=> 7.365 matches (out of 10.000)
2. Stem HistWords words and match on canonical forms 

=> 8.878 matches (out of 10.000) 
mapped on 12.469 lexical entries

Important: one word in HistWords can have match on multiple lexical entries with 
the same canonical form but with different parts of speech!

E.g. “web” matches on WN lexical entries web-v and web-n 
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Data model
How we represented matches by stem-and-match:
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Data model
How we represented matches by stem-and-match:

Side note: 
another reason for adding 
the change scores to LEs 
and not forms is 
conservativeness: otherwise 
we would have declared 
“allowances” to be a verb 
and to have the same 
synset!

26



Data model
How we connected the change scores to the lexical entries:

{lexical entry, decade 1, decade 2, change score}
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Data model
How we connected the change scores to the lexical entries:
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Resulting dataset
- Downloadable (.ttl) from http://github.com/aan680/SemanticChange 

+ WN-RDF from http://wordnet-rdf.princeton.edu 
- Queryable using SPARQL

PREFIX cwi: <http://project.ia.cwi.nl/semanticChange/>
SELECT * WHERE {
?le cwi:semantic_change_1980s-1990s ?value.
} ORDER BY DESC(?value) LIMIT 5
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Example applications

Do words of different linguistic categories 
show different degrees of change?
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Example applications
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Example applications

Are words of some semantic categories more prone to change than others?
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Example applications
Do more polysemous words and less polysemous 
words change at a different rate?

Source: Hamilton et al. 2016
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Take - home message
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Future plans
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Compare lexical change across languages, aiming to distinguish between lexical and conceptual 
change
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Induce the dominant sense of each word per decade, using nearest neighbours and grouping their synsets37



Question time!!!
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