
Efficient Joins on Heterogeneous Processors
Henning Funke, Sebastian Breß, Stefan Noll, Jens Teubner

DBIS Group, Dept. of Computer Science
TU Dortmund University

Germany
firstname.lastname@cs.tu-dortmund.de

ABSTRACT

Coprocessor hardware like graphics processors is frequently
used to accelerate computations. Many applications achieve an
increased throughput when processing data that is cached on
the coprocessor, compared to the host processor alone. This
does usually not apply to real world applications for two rea-
sons. Firstly data sizes often exceed a coprocessor’s memory
capacity. Secondly it is desirable to compute on all available
processors simultaneously and to manage the load condition,
the work should be distributed evenly between processors.
For both reasons extensive data transfers are necessary, which
has lead to blaming the bus systems to be the dominating
bottleneck for coprocessing. Especially for memory intensive
workloads like in database query processing the advantages
can marginalize when data transfers and memory accesses are
not used carefully.

We investigate this set of problems in the context of
databases by executing joins on multiple heterogeneous pro-
cessors. We run a single pass join concurrently on CPU and
GPU that is based on state-of-the-art hashing algorithms. We
achieve an optimal load balancing and find that additional
heterogeneous processors can substantially increase the overall
throughput. Even when joining data sizes beyond a coproces-
sors memory capacity, throughput is rarely limited by the PCIe
link.

When executing the join jointly on GPU and CPU, we
observed an effect that has not been discussed in previous
work. As shown in Fig. 2, the overall performance degrades as
we add more CPU resources to compute the join. We attribute
this to memory transfers between host and coprocessor, that
encounter a race condition on main-memory. When executing
a join concurrently on GPU and CPU, the overall throughput
degrades, when the host system is put under stress (see Figure
1 and 2). The CPU is prioritized and steals bandwidth from the
GPU although more GPU utilization would be more efficient.
We consider main-memory bandwidth as performance factor
for coprocessing and aim to find ways to optimize resource
utilization.

1 2 3 4 5 6
number of CPU threads

th
ro

ug
hp

ut

Fig. 1: Probe throughput of a multithreaded hash join on a
CPU. The performance scales well to the number of 4 physical
cores.

0 1 2 3 4 5 6
number of CPU threads (plus GPU)

th
ro

ug
hp

ut
CPU
GPU

Fig. 2: Probe throughput of a join running concurrently on
GPU and CPU. For a small number of CPU threads, the
performance scales well, but when increasing the load we
experience a degradation of coprocessor performance.

REFERENCES

[1] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk, “GPU Join Processing
Revisited,” in Proceedings of the Eighth International Workshop on Data
Management on New Hardware. ACM, 2012, pp. 55–62.

[2] C. Gregg and K. Hazelwood, “Where is the data? Why you cannot debate
CPU vs. GPU performance without the answer,” in Performance Analysis
of Systems and Software (ISPASS), 2011 IEEE International Symposium
on. IEEE, 2011, pp. 134–144.

[3] P. W. Frey, R. Goncalves, M. Kersten, and J. Teubner, “Spinning
Relations: High-Speed Networks for Distributed Join Processing,” in
Proceedings of the Fifth International Workshop on Data Management
on New Hardware. ACM, 2009, pp. 27–33.

[4] D. A. F. Alcantara, Efficient Hash Tables on the GPU. University of
California at Davis, 2011.


