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Toward GPUs being mainstream in
analytic processing

An initial argument using simple scan-
aggregate queries

Jason Power || Yinan Li || Mark D. Hill
Jignesh M. Patel || David A. Wood

DaMoN 2015
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Summary

= GPUs are energy efficient
= Discrete GPUs unpopular for DBMS
= New integrated GPUs solve the problems

= Scan-aggregate GPU implementation
= Wide bit-parallel scan
= Fine-grained aggregate GPU offload

= Up to 70% energy savings over multicore CPU

= Even more in the future
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Analytic Data 1s Growing

u Data iS gI’OWing The Digital Universe: 50-fold Growth from the Beginning of
. 2010 to the End of 2020

rapidly
= Analytic DBs

. o . (Exabytes) 20,000

increasingly important

I
Source: IDC’s Digital Universe Study. 2012.

Want: High performance Need: Low energy
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GPUs to the Rescue?

= GPUs are becoming more general
= Easier to program

= Integrated GPUs are everywhere

= GPUs show great promise [Covindaraju ‘o4, He 14, He 14, Kaldewey 12

Satish 10, and many others]

= Higher performance than CPUs
= Better energy efficiency

= Analytic DBs look like GPU workloads
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GPU Microarchitecture
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Compute Unit
I-Fetch/Sched
SP SP SP |eee| SP
SP || SP || SP |eee| SP
SP || SP || SP |eee| SP
Register File
Scratchpad
L1 Cache Cache
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Discrete GPUs

CPU chip

Cores

PClIe Bus

sng AIOWIIA

Discrete GPU

‘ Memory Bus ‘
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Discrete GPUs

CPU chip

Cores

sng AIOWIIA

11

Discrete GPU
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Discrete GPUs
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Discrete GPUs

@Copy data over PCle
= Low bandwidth
= High latency

@Small working memory
©High latency user—kernel calls

@ORepeated many times

98% of time spent not computing
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Integrated GPUs \

Heterogeneous
chip

CPU.cores I I I

Memory Bus
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Heterogeneous System Arch. A

N

API for tightly-integrated accelerators

Industry support

= Initial hardware support today
= HSA foundation (AMD, ARM,Qualcomm, others)

No need for data copies
P 1z

= Cache coherence and shared address space 4

No OS kernel interaction )

= User-mode queues
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Outline

= Background

= Algorithms
= Scan
= Aggregate

= Results
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Analytic DBs W

Resident in main-memory
Column-based layout

WideTable & BitWeaVing [Li and Patel ‘13 & ‘14]

= Convert queries to mostly scans by pre-joining tables
= Fast scan by using sub-word parallelism

= Similar to industry proposals [SAP Hana, Oracle Exalytics, IBM DB2 BLU]

Scan-aggregate queries

UNIVERSITY OF WISCONSIN



Running Example

Shirt Shirt
Color Amount

2 1

2
1 1 Red 0

2 5 glue ;

3 7 Yellow 3

0 2

3 1

1 4

3 2
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Shirt Shirt
Color Amount

2

- W o whNhnN-=- DN
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Running Example
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1

N B2 NN - W

Count the number of
green shirts in the
inventory

Scan the color
column for green (2)

@ Aggregate amount
where there is a match
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Traditional Scan Algorithm

Column
Data

Compare
Code
(Green)

Result

BitVector
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10

10

10

Shirt
Color

— 2 (10)
2 (10)
10 1 (01)

2 (10)
3 (11)

11010000 0000... 0 (00)

3 (11)
1 (01)
3 (11)
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Vertical Layout

mer
2 (105

ct 2 (10)

c2 1 (01)

3 2 (10) -------
c4 3 (11) -

c5 0 (00) 1 0

6 3 (11) Y

¢z 1 (01) 110110110 00101011 10000000
c8 3 (11)

co 0 (00)
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CPU BitWeaving Scan W

Column
Coumn 141011011|{00101011) 10000000

Compare
coPa111111111{ [00000000

Result
BitVector 11010000 0000...

CPU width: 64-bits, up to 256-bit SIMD

6/1/2015 UNIVERSITY OF WISCONSIN 18
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GPU BitWeaving Scan W

Column
Data 11011011 00101011 10000000

ggg;pareﬂﬂﬂﬂ 11111111 11111111

Result
BitVector 11010000 0000...

GPU width: 16,384-bit SIMD

6/1/2015 UNIVERSITY OF WISCONSIN 19



GPU Scan Algorithm

= GPU uses very wide “words”
= CPU: 64-bits or 256-bits with SIMD
= GPU: 16,384 bits (256 lanes x 64-bits)

* Memory and caches optimized for bandwidth

= HSA programming model
= No data copies
= Low CPU-GPU interaction overhead
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Result
BitVector

Result

6/1/2015

(1fior 0000 0000. ..

1+3+5+. ..
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GPU Aggregate Algorithm W

N

Result
BitVector @ﬁ@l 0000 0000... ) On CPU

Column
Offsets 0,1,3,...
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GPU Aggregate Algorithm W

Shirt
) Amount

On GPU

Column
Offsets 0,1,3,...

Result 1+3+5+., ..

N-BAN\IEAQ)_\
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Aggregate Algorithm

= Two phases
= Convert from BitVector to offsets (on CPU)
= Materialize data and compute (offload to GPU)

= Two group-by algorithms (see paper)

= HSA programming model
= Fine-grained sharing
= Can offload subset of computation

6/1/2015 UNIVERSITY OF WISCONSIN
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Outline

= Background
= Algorithms

» Results




Experimental Methods

= AMD A10-7850
4-core CPU
8-compute unit GPU

16GB capacity, 21 GB/s DDR3 memory

Separate discrete GPU
= Watts-Up meter for full-system power

» TPC-H @ scale-factor 10

6/1/2015 UNIVERSITY OF WISCONSIN
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Scan Performance & Energy W

250 I l . .
Discrete GPU - FOour core

== One core Integrated GPU
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Scan Performance & Energy A
250 ‘ . . |
Discrete GPU === Four core
== One core Integrated GPU

200+
g 150
g
S 100}

50}

Takeaway:

Integrated GPU most efficient for scans
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TPC-H Queries

Query 12 Performance Query 12 Energy
0.40 : ] : 16
0.35! ] Aggregatc? portion || 14
B Scan portion

0.30} . 12

w 0.25} : 10
2 4

§ 0.20} 1 5 8
0

A 0.15 — 6

0.10 4

0.05 2

0.00 0

One Four Integrated One Four Integrated

Core Core GPU Core Core GPU
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TPC-H Queries

Query 12 Performance Query 12 Energy
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TPC-H Queries

Query 12 Performance Query 12 Energy
0.40 : ] : 16
0.35! ] Aggregatc? portion || 14
B Scan portion
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TPC-H Queries

Query 12 Performance Query 12 Energy

0.40 16 7~ N\

More energy:
Decrease in latency does
not offset power increase

2
©
S sl
8 6 /
n Less energy: i
Decrease in latency AND 4
decrease in power 2}
0.004 - : 0 : .
One Four Integrated One Four Integrated
Core Core GPU Core Core GPU

6/1/2015 UNIVERSITY OF WISCONSIN 32



(@R

Future Die Stacked GPUs W

N

= 3D die stacking
DRAM
= Same physical &
logical integration
GPU
= Increased compute E—
= Increased bandwidth
Power et al.

Implications of 3D GPUs on the Scan Primitive
SIGMOD Record. Volume 44, Issue 1. March 2015
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Conclusions

Discrete | Integrated | 3D Stacked
GPUs GPUs GPUs
High © Moderate High ©
Memory : :
High © Low © High ©
High ® Low © Low ©

v -emory Low @ High © Moderate

Capacity
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HSA vs CUDA/OpenCL W

N

=]

= HSA defines a heterogeneous architecture

Cache coherence

Shared virtual addresses

Architected queuing

Intermediate language

= CUDA/OpenCL are a level above HSA

= Come with baggage
= Not as flexible
= May not be able to take advantage of all features

6/1/2015 UNIVERSITY OF WISCONSIN 36
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Scan Performance & Energy
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Group-by Algorithms
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All TPC-H Results
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Average TPC-H Results

Average Performance Average Energy
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What’s Next?

= Developing cost model for GPU
= Using the GPU is just another algorithm to choose
= Evaluate exactly when the GPU is more efficient

= Future “database machines”

= GPUs are a good tradeoff between specialization and
commodity
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Conclusions

= Integrated GPUs viable for DBMS?

= Solve problems with discrete GPUs
* (Somewhat) better performance and energy

= Looking toward the future...
= CPUs cannot keep up with bandwidth
= GPUs perfectly designed for these workloads
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