
BY THEIR FRUITS SHALL YE KNOW THEM
A DATA ANALYST’S PERSPECTIVE ON MASSIVELY PARALLEL SYSTEM DESIGN

Holger Pirk Sam Madden Mike Stonebraker

A CRUCIAL DISTINCTION

≠

INSPIRATION

MY PLEDGE OF LOYALTY

SCIENTIFIC RATIONALE

Pr
oc

es
se

d
In

st
ru

ct
io

ns
 p

er
 S

ec
on

d

1T

1P

1E

Processed Bytes per Instruction
1 10 100

 Processing 500GB/s

GENE AMDAHL TAUGHT US THAT
SYSTEMS NEED TO BE BALANCED

Pr
oc

es
se

d
In

st
ru

ct
io

ns
 p

er
 S

ec
on

d

1T

1P

1E

Processed Bytes per Instruction
1 10 100

AMDNvidia

 Processing 500GB/s

NVIDIA AND AMD PROCESS LOT
OF SMALL DATA WORDS

Memory

SIMT Cores
Instruction Scheduler

SIMT

Pr
oc

es
se

d
In

st
ru

ct
io

ns
 p

er
 S

ec
on

d

1T

1P

1E

Processed Bytes per Instruction
1 10 100

AMDNvidia

Intel

 Processing 500GB/s

INTEL PROCESSES FEWER LARGE
DATAWORDS

Memory

SIMD CoreSIMD Core

SIMD CoreSIMD Core

SIMD CoreSIMD Core

SIMD CoreSIMD Core

SIMD CoreSIMD Core

MANY-CORE SIMD

Pentium Cores

512 Bits

Memory

SIMD CoreSIMD Core

SIMD Core

SIMD Core

SIMD Core

SIMD Core

SIMD Core
Scatter/Gather

Unit

SIMD WITH SCATTER/GATHER

Pr
oc

es
se

d
In

st
ru

ct
io

ns
 p

er
 S

ec
on

d

1T

1P

1E

Processed Bytes per Instruction
1 10 100

AMDNvidia

Intel

 Processing 500GB/s

ALL OF THEM CAN PROCESS WAY
MORE DATA THAN THEY CAN LOAD

SPEC BANDWIDTH-WISE, PHI
OUTPERFORMS CURRENT GPUS

G
B/

s
M

em
or

y
Ba

nd
w

id
th

0

100

200

300

400

Phi GTX 780

Pr
oc

es
se

d
In

st
ru

ct
io

ns
 p

er
 S

ec
on

d

1T

1P

1E

Processed Bytes per Instruction
1 10 100

AMDNvidia

Intel

 Processing 500GB/s

OUR QUESTION: DOES IT MATTER?
DOES PHI CHANGE ANYTHING?

THE OBSTACLE COURSE

Facts Dimension

π

Ɣ

DATA-CENTRIC APPLICATIONS
HAVE TYPICAL CHOKEPOINTS

Bandwidth

Computation Synchronization

Capacity

DATA-CENTRIC APPLICATIONS
HAVE TYPICAL CHOKEPOINTS

Facts Dimension

π

Ɣ

Tuple Width

of ConflictsHash Complexity

Access Locality

PHI VS. GTX 780

Facts Dimension

π

Ɣ

Bandwidth

FIRST CHOKEPOINT

4 8 16 32 64 128 256 512

Stride in Bytes

0.04

0.08

0.16

0.32

0.64

1.28

Ti
m

e
pe

r A
cc

es
s

in
 n

s

GTX 780 Xeon Phi

BANDWIDTH OF PHI LOOKS
SIMILAR TO GPU AT FIRST GLANCE

4 8 16 32 64 128 256 512

Stride in Bytes

0.04

0.08

0.16

0.32

0.64

1.28

Ti
m

e
pe

r A
cc

es
s

in
 n

s

GTX 780 Xeon Phi

A SECOND GLANCE REVEALS
SOMETHING ODD…

A Non-Linear
Cost Function

4 8 16 32 64 128 256 512

Stride in Bytes

0.04

0.08

0.16

0.32

0.64

1.28

Ti
m

e
pe

r A
cc

es
s

in
 n

s

GTX 780 Xeon Phi

A SECOND GLANCE REVEALS
SOMETHING ODD…

Not Dominated (only)
by Cache Misses

Facts Dimension

π

Ɣ

Capacity

SECOND CHOKEPOINT

64 512 4K 32K 256K 2M 16M

Size of Lookup Table in Bytes

0.02

0.04

0.08

0.16

0.32

0.64

1.28

Ti
m

e
pe

r A
cc

es
s

in
 n

s

GTX 780 Xeon Phi

Xeon Phi Lower Bound GTX 780 Lower Bound

PHI BENEFITS FROM LARGER
CACHES

Facts Dimension

π

Ɣ
Computation

THIRD CHOKEPOINT

1 2 4 8 16 32

Number of Murmur Rehashes

0.05

0.10

0.20

0.40

0.80

Ti
m

e
pe

r h
as

h
in

 n
s

Xeon Phi GTX 780

COMPUTATION PERFORMANCE IS
VERY SIMILAR…

Facts Dimension

π

Ɣ
Synchronization

THIRD CHOKEPOINT

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Number of Values per Bucket

0.0

5.0

10.0

15.0

Ti
m

e
pe

r A
cc

es
s

in
 n

s

GTX 780 Xeon Phi

…AND SO IS HASH-BUILDING

RECAP

• Phi & GPU mostly en par in

• Computation

• Synchronization

• Cache-Utilization

• But what is up with the memory access

PHI IN DEPTH

SCATTER/GATHER

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGATHERDPD - Gather Float64 Vector With Signed Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W1 92
/r /vsib

vgatherdpd zmm1 {k1},
Uf64(mvt)

Gather ϐloat64 vector Uf64(mvt) into ϐloat64
vector zmm1 using doubleword indices and k1
as completion mask.

Description

A set of 8 memory locations pointed by base address BASE_ADDR and doubleword
index vector V INDEX with scale SCALE are converted to a ϐloat64 vector. The result
is written into ϐloat64 vector zmm1.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT _SUBSET). There are only
two guarantees about the function: (a) the destinationmask is a subset of the sourcemask
(identity is included), and (b) on a given invocationof the instruction, at leastone element
(the least signiϐicant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
gather/scatter sequence have been loaded/stored and hence, the write-mask bits all are
zero).

Note that accessed element bywill always access 64 bytes ofmemory. Thememory region
accessed by each element will always be between elemen_linear_address & (∼0x3F) and
(element_linear_address & (∼0x3F)) + 63 boundaries.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully loaded.

The instruction will #GP fault if the destination vector zmm1 is the same as index vector
V INDEX .

Operation

mvt

Reference Number: 327364-001 297

LET’S LOOK AT THE
DOCUMENTATION

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGATHERDPD - Gather Float64 Vector With Signed Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W1 92
/r /vsib

vgatherdpd zmm1 {k1},
Uf64(mvt)

Gather ϐloat64 vector Uf64(mvt) into ϐloat64
vector zmm1 using doubleword indices and k1
as completion mask.

Description

A set of 8 memory locations pointed by base address BASE_ADDR and doubleword
index vector V INDEX with scale SCALE are converted to a ϐloat64 vector. The result
is written into ϐloat64 vector zmm1.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT _SUBSET). There are only
two guarantees about the function: (a) the destinationmask is a subset of the sourcemask
(identity is included), and (b) on a given invocationof the instruction, at leastone element
(the least signiϐicant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
gather/scatter sequence have been loaded/stored and hence, the write-mask bits all are
zero).

Note that accessed element bywill always access 64 bytes ofmemory. Thememory region
accessed by each element will always be between elemen_linear_address & (∼0x3F) and
(element_linear_address & (∼0x3F)) + 63 boundaries.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully loaded.

The instruction will #GP fault if the destination vector zmm1 is the same as index vector
V INDEX .

Operation

mvt

Reference Number: 327364-001 297

LET’S LOOK AT THE
DOCUMENTATION

???

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGATHERDPD - Gather Float64 Vector With Signed Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W1 92
/r /vsib

vgatherdpd zmm1 {k1},
Uf64(mvt)

Gather ϐloat64 vector Uf64(mvt) into ϐloat64
vector zmm1 using doubleword indices and k1
as completion mask.

Description

A set of 8 memory locations pointed by base address BASE_ADDR and doubleword
index vector V INDEX with scale SCALE are converted to a ϐloat64 vector. The result
is written into ϐloat64 vector zmm1.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT _SUBSET). There are only
two guarantees about the function: (a) the destinationmask is a subset of the sourcemask
(identity is included), and (b) on a given invocationof the instruction, at leastone element
(the least signiϐicant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
gather/scatter sequence have been loaded/stored and hence, the write-mask bits all are
zero).

Note that accessed element bywill always access 64 bytes ofmemory. Thememory region
accessed by each element will always be between elemen_linear_address & (∼0x3F) and
(element_linear_address & (∼0x3F)) + 63 boundaries.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully loaded.

The instruction will #GP fault if the destination vector zmm1 is the same as index vector
V INDEX .

Operation

mvt

Reference Number: 327364-001 297

LET’S LOOK AT THE
DOCUMENTATION

???

!☠"

8 64 512 4K 32K 256K 2M 16M

Size of Lookup Table in Bytes

0.06

0.13

0.25

0.50

1.00

2.00

4.00

Ti
m

e
pe

r A
cc

es
s

in
 n

s

Scalar Vectorized Ratio

GATHER-LOADING ONLY YIELDS
MODERATE LOOKUP IMPROVEMENT…

4 8 16 32 64 128 256 512

Stride in Bytes

0.03

0.06

0.13

0.25

0.50

1.00

2.00

4.00

Ti
m

e
pe

r A
cc

es
s

in
 n

s

Scalar Vectorized Ratio

…SAME FOR PROJECTIONS

PREFETCHING

4 8 16 32 64 128 256 512 1K 2K 4K
0.03

0.06

0.13

0.25

0.50

1.00

2.00

THE PHI PREFETCHER SEEMS
OVERLY AGGRESSIVE

With Prefetcher Bypassing Prefetcher

Expected Behavior

4 8 16 32 64 128 256 512

Stride in Bytes

0.03

0.06

0.13

0.25

0.50

1.00

2.00

4.00
Scalar Vectorized Ratio

Overhead

4 8 16 32 64 128 256 512 1K 2K 4K

Stride in Bytes

20

40

80

160

320

G
B

/s

Cache-Overhead Adjusted Transfer Rate

ONLY WHEN FACTORING IN TRANSFER OVERHEAD
IS THE NOMINAL PHI BANDWIDTH ACHIEVED

TAKEAWAY

• Phi is en-par with mid-level GPUs compute-intensive applications

• Data-intensive performance is weird, though:

• Prefetcher seems overly aggressive

• Gather implementation seems half-baked: to few cache ports?

THANK YOU

