
TLB misses — the Missing Issue of Adaptive Radix Tree?

Petrie Wong§ Ziqiang Feng† Wenjian Xu† Eric Lo† Ben Kao§

§ Department of Computer Science, The University of Hong Kong
† Department of Computing, The Hong Kong Polytechnic University

§{kfwong2, kao}@cs.hku.hk
†{cszqfeng, cswxu, ericlo}@comp.polyu.edu.hk

ABSTRACT
Efficient main-memory index structures are crucial to main-
memory database systems. Adaptive Radix Tree (ART) is
the most recent in-memory index structure. ART is designed
to avoid cache miss, leverage SIMD data parallelism, min-
imize branch mis-prediction, and have small memory foot-
print. When an in-memory index structure like ART has
significantly few cache misses and branch mis-predictions, it
is natural to question whether misses in Translation Looka-
side Buffer (TLB) matters. In this paper, we try to confirm
whether this is the case and if the answer is positive, what
are the measures that we can take to alleviate that and how
effective they are.

1. INTRODUCTION
Efficient main-memory index structures are crucial to main-

memory database systems such as H-Store [7] and Heka-
ton [3]. Examples of fast in-memory index include Cache-
Sensivitve B+-Tree (CSB+-Tree) [15], Fast Architecture Sen-
sitive Tree (FAST) [9], and Adaptive Radix Tree (ART) [11].
CSB+-Trees ensure their nodes fit into multi-level of cache
so as to reduce the cache miss rate. In addition to reduc-
ing cache miss, FAST leverages Single Instruction Multiple
Data (SIMD) instructions to carry out data operations in
parallel. ART is the most recent in-memory index struc-
ture. Similar to CSB+-Tree and FAST, ART is also de-
signed to avoid cache miss and leverage SIMD data paral-
lelism. Furthermore, ART limits its tree height by adopting
a radix tree structure, thereby largely reducing its branch
mis-prediction cost. Overall, experiments have shown that
ART outperforms all existing in-memory index structures in
both search and update with a small memory footprint [11].
Currently, ART is the key index structure in HyPer [8].

When an in-memory index structure like ART has signif-
icantly fewer cache misses and branch mis-predictions, it is
natural to question whether misses in Translation Lookaside
Buffer (TLB) would become a bottleneck [1]. In this paper,
we try to confirm whether this is really the case and if the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
DaMoN’15, May 31 - June 4, 2015, Melbourne, VIC, Australia
Copyright 2015 ACM 978-1-4503-3638-3/15/06 ...$15.00.
http://dx.doi.org/10.1145/2771937.2771942 .

answer is positive, what are the measures that we can take
to alleviate that and how effective those measures are.

2. BACKGROUND OF ART
Adaptive radix tree (ART) [11] is a high performance

and space-efficient general purpose index structure for main
memory databases, specially tuned for modern hardware.

An example of an ART index is shown in Figure 1. It
is a byte-wise radix tree that uses the individual bytes of a
key for indexing. As a result, all operations have a complex-
ity of O(k), where k is the key length in byte. The ART
in Figure 1 is used to index 3-byte keys. Keys in ART are
stored implicitly and are represented by the paths from the
root to the leaves. The i-th level indexes the i-th byte of
the keys. For example, to lookup a value indexed by key
0x010203 in Figure 1, it first looks up the first byte 0x01 of
the key in the first level (the root), follows the pointer to the
second level and looks up the second byte 0x02, and then
follows the pointer to the third level (the leaf) and looks up
the last byte 0x03. As ART implicitly stores keys in lex-
icographical order, it supports not only exact lookups but
also range scans and prefix lookups. In order to reduce the
memory footprint, ART collectively supports nodes of four
different sizes. The nodes that index the key 0x010203 are
of type Node256, which is simply an array of 256 pointers.
With that representation, the next node can be efficiently
found using a single lookup of the next key byte. However,
if many entries are null, that representation is not space-
efficient. Another type of node is called Node4, which con-
sists of an array of length 4 for keys and another array of
the same length for pointers. In Figure 1, when looking up
a value indexed by key 0xFDEEFF it first looks up the byte
0xFD of the key in the first level (which is of type Node256)
and follows the pointer to the second level (which is of type
Node4). Within that node, the second byte 0xEE of the key
is first searched within the key array using SIMD 4-way in-
structions. Then it follows the pointer of the corresponding
entry in the pointer array to the third level (the leaf). In
Figure 1, the one that holds the last byte 0xFF of the key
0xFDEEFF is of type Node48. Node48 does not store the keys
explicitly. Instead, a 256-element array is used, which can
be indexed with key bytes directly. The element in the array
points into a second array which contains up to 48 pointers.
Node48 is used to hold between 17 and 48 child pointers.
This indirection saves space in comparison to Node256 be-
cause each element requires only 6 bits (26 ≥ 48). The last
type of node which does not appear in Figure 1 is Node16.
This type of node is similar to Node4 except that its arrays

…
…

…
…

…
…

…

… EE …

01 02 03 04 01 02 03 04
key array pointer array

00 01 FFFD FE

Node256

00 01 02
Node256

Data

00 01 02 03

Node256

Data

…

01 02 03 FF 1 2 3
index array child pointer

Node48

…Node4

pointer array

48

Figure 1: Adaptive Radix Tree

have space for 16 entries.
ART chooses the node type depending on the number of

non-null children. For example, when a node of type Node4
is full, ART will replace that with a node of type Node16.
Generally, ART has few branch mis-predictions because byte
matching within Node48 and Node256 is done through offset
calculation instead of comparison. Furthermore, its memory
footprint is smaller when comparing with a pure radix tree
because of the use of adaptive node size, which also leads to
fewer cache misses.

3. TLB MISSES IN ART
Figure 2 shows the average stall time due to TLB miss

as a percentage of the latency of a lookup in ART. We ran
the experiments on a desktop with an Intel Core i7 2630QM
CPU, which has 4 cores, 8 threads, 2.00 GHz clock rate, and
2.9 GHz turbo frequency. Each core has 256KB unified L2
Cache, 32KB L1i cache and 32KB L1d cache. All cores share
6MB L3 cache and 16GB 1600 RAM. We used Linux 3.2 in
32-bit mode as operating system and GCC 4.6 as complier.

We generated 32-bit integers as the keys. By default, we
randomly generated n = 1, 000, 000 keys. Following [11],
we generated both dense keys and sparse keys. Dense keys
range from 0 to n−1 and sparse keys range from 0 to 232−1.
The sizes of ART under dense keys and sparse keys are 19
MB and 22 MB, respectively.

For real OLTP workloads, key accesses often posses cer-
tain skewness [12, 17]. So we generate index lookup work-
loads using Zipfian distribution, where a zipf factor zipf = 0
means a uniform distribution (i.e., all keys are equally hot)
and a very high zipf = 3 factor means there are only a
few items that are very hot. Each workload consists of 256
million ART index lookups.

From Figure 2 we see that the stall time due to TLB
miss constitutes up to 23% of the overall index lookup time.
When the workload is unreasonably skew (zipf = 3), there
are only one or few very hot items and very few page table
entries (PTE) are needed. Consequently, TLB could afford
to keep all those entries and almost no TLB miss is incurred.
However, when the skewness is close to what realistic work-
loads should possess (e.g., zipf = 1 to 2), we see the stall
time due to TLB miss would become a non-negligible factor

of the whole index access latency. Having seen that, we next
ask if we can alleviate that issue effectively.

4. CAN HUGE PAGE HELP?
Our first direction is to investigate whether the use of huge

page in ART can help. The regular page size of most mod-
ern processor architectures is 4KB. However, recent modern
processor architectures can support multiple page sizes [6].
For example, Xeon E5 4650 processor can support page sizes
of 2MB and 1GB , in addition to 4KB regular page sizes.
Previous study has indicated that using huge page is a good
tactic to reduce TLB misses (e.g., [2]). So, if ART nodes
are stored using huge pages, the number of pages spanned
by ART nodes shall be reduced, and that can reduce the
pressure on the TLB. However, we would like to point out
that modern processors have different number of TLB en-
tries for different page sizes. Table 1 shows the number of
TLB entries for Intel processor under Sandy Bridge micro
architecture. Processors under that micro architecture has
64 L1 DTLB entries and 512 L2 STLB entries for regular
pages (4KB), but it has only 32 L1 DTLB entries for huge
pages (2MB). So while the number of pages spanned by ART
nodes could be reduced by using huge pages, the number of
TLB misses may not be reduced accordingly — after all, the
number of huge page entries are fewer than that of regular
page entries in TLB. On the other hand, a page table entry
would also write-through the processors’ L1/L2/L3 cache
when a TLB miss occurs. So, when the number of page ta-
ble entries is reduced, the pressure on the processors’ cache
is also reduced, leading to fewer cache misses and thus pos-
sibly higher throughput. In a nutshell, we can at least come
up with three factors that are associated with the use of
huge page:

• Factor 1: The use of huge page means fewer page table
entries are needed.

• Factor 2: But TLB has fewer slots to hold huge page
entries.

• Factor 3: The use of huge page indirectly reduces the
pressure on the processors’ cache and could possibly
lead to fewer cache misses.

TLB Page Size

Name Level 4KB 2MB 1GB
DTLB 1st 64 32 4
ITLB 1st 128 8 none
STLB 2nd 512 none none

Table 1: TLB Capacity in Intel Sandy Bridge pro-
cessors

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3s
ta

ll
ti
m

e
 d

u
e

 t
o

 T
L
B

 m
is

s
/i
n
d

e
x
 l
o

o
k
u
p

 l
a

te
n

c
y
 (

%
)

Zipf

Dense
Sparse

Figure 2: Stall time due to TLB miss
Index lookup latency

(%)

Factor 1 and Factor 2 are subtle factors of TLB miss. In
order to study the influence of the use of huge page to the
performance of ART, we carried out experiments to study
the improvement of lookup throughput of ART by using
(2MB) huge page over regular page. We did not carry out
experiments of using huge page of size 1GB because our
experimental platform does not support that. Figure 3 il-
lustrates that the use of huge page provides positive
lookup throughput improvement over the use of reg-
ular page.

To understand which factor(s) we mentioned above con-
tribute to the lookup throughput improvement, we present
the performance counters of two selected cases: zipf = 1
and zipf = 1.4 in Table 2. Both cases fall into skewness that
realistic workloads possess. From the performance counters,
we see that by the use of huge page, there are no more TLB
misses (see underlined numbers for a highlight), meaning
Factor 1 somehow outweighs Factor 2 in this set of experi-
ments. Furthermore, we see that the use of huge page also
reduces the cache misses (Factor 3).

We are particularly interested in knowing why the lookup
throughput improvement is especially pronounced (38% im-
provement for sparse and 21% for dense; the maximum)
at zipf = 1.4. By looking at Table 2, we see that when
zipf = 1, L1/L2/L3 cache misses still dominate the num-
ber of TLB misses (see the bold numbers for a highlight).
That is because the number of hot items is still quite a
lot and the total size of the hot items is larger than the
cache. But when zipf = 1.4, the number of L2/L3 cache
misses is substantially reduced because the number of hot
items is much smaller and they fit into L2/L3 cache. As
a result, TLB misses become one of the dominating factors
under zipf = 1.4. So, when the number of TLB misses
are reduced by the use of huge page, that translates to the

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

T
h
ro

u
g
h
p
u
t
Im

p
ro

v
e
m

e
n
t
(%

)

Zipf

Dense
Sparse

Figure 3: Throughput Improvement by using Huge
Page over Regular Page

removal of a dominating factor under zipf = 1.4 but the
removal of a non-dominating factor under zip = 1. That ex-
plains why the lookup throughput improvement is especially
pronounced under zipf = 1.4.

5. CAN WORKLOAD-CONSCIOUS NODE-
TO-PAGE REORGANIZATION HELP?

Normally, tree nodes in ART are allocated through dy-
namic memory allocation functions such as malloc. So,
whether two nodes of ART are within the same page is all
up to the operating system dynamic memory allocator (e.g.,
the slab allocator in Linux [16]), whose goal is to eliminate
fragmentation over the whole memory space. Recall that
in OLTP workloads, key accesses tend to be skewed: some
keys are “hot” and accessed frequently, others are “cold” and
accessed infrequently. Imagine that if ART is able to put
all hot nodes into only one (huge) page, then the page ta-
ble entry of that huge page shall consistently stay in TLB,
meaning there would be almost no TLB miss for all hot key
accesses.

In the following, we consider an approach that takes over
OS’s default control and organize the hot ART nodes into
the same page. This approach follows the workload-conscious
node reorganization method proposed in [17]: (i) key ac-
cesses are logged as part of query execution; (ii) then, the
access logs are analyzed (in another thread) to compute the
access frequencies of the keys; (iii) finally, a node-to-page
reorganization takes place to arrange all keys into the page
according to their access frequencies.

In order to reduce the overhead, each work thread samples
probabilistically key accesses and writes to a dedicated cir-
cular buffer log. Periodically, the log is analyzed to compute
the access frequencies of the keys by a separate thread. A
node-to-page reorganization process starts after each analy-
sis by creating a new memory space. Then, it starts with the
hottest key and performs a lookup of that key on ART. For
each node accessed, that node is copied to a page of the new
memory space. The process repeats with each key accord-
ing to their access frequencies, in descending order. When a
page of the new memory space is full, it starts another new
page in that space.

The advantage of this approach is that it requires no mod-

Dense Sparse
zipf = 1 Regular Huge Regular Huge

Cycles 399.30 347.71 418.84 358.65
Instructions 250.54 249.95 217.04 216.67

TLB visit 59.40 59.59 53.74 53.82
TLB miss 1.32 0.00 1.89 0.00
L1 miss 5.63 4.70 7.37 5.67
L2 miss 4.21 3.87 5.21 4.77
L3 miss 2.27 2.24 2.84 2.78

Misp. Branch† 1.82 1.97 1.04 1.49

Dense Sparse
zipf = 1.4 Regular Huge Regular Huge

Cycles 125.70 104.18 138.63 100.09
Instructions 249.98 250.03 216.48 216.59

TLB visit 59.42 59.52 53.82 53.65
TLB miss 0.92 0.00 1.47 0.00
L1 miss 5.05 4.27 6.57 5.05
L2 miss 0.97 0.50 1.76 0.86
L3 miss 0.00 0.00 0.00 0.00

Misp. Branch† 1.49 1.54 1.08 1.03
† per 1K lookup

Table 2: Performance Counters Per Lookup

ification to the code of the original ART methods such as
insert() and lookup(). We implement the node-to-page
reorganization as an external function reorganize(), which
is invoked periodically. The downside of this approach is
that the tree cannot be updated during node-to-page reor-
ganization takes place.

Figure 4 shows the effectiveness of such approach. We
report the throughput of ART with or without workload-
conscious node reorganization under different workload skew-
ness. The throughput of ART with workload-conscious node
reorganization is reported as the throughput after executing
1% of the index lookup requests and carrying out node-to-
page reorganization.

From the figure, we observe that the workload-conscious
node reorganization is effective when the data is
sparse but is ineffective when the data is dense. To
explain, we have to understand that when the data is sparse,
each radix (each ART node) should not contain many chil-
dren and thus small nodes like Node4 are used. A Node4
consists of 4 bytes offset, 4 pointers, and 16 bytes header,
which is about 36 bytes in size. When regular page is used
(Figures 4a, c and e), each 4K page can hold about 113 ART
nodes. Since there are 512 STLB entries, that means the
STLB can buffer 512× 113 = 57856 nodes. In this case, by
using workload-conscious node reorganization, those 57856
nodes are surely the most frequent ones and they all get
hit in TLB. In contrast, when the data is dense, each radix
(each ART node) should full of children and thus Node256
are all used in ART. A Node256 consists of 256 pointers.
So, including the header, such a node is least 1KB in size.
When regular page is used, each 4K page can hold only 3
ART nodes. Since there are 512 STLB entries, that means
the STLB can buffer 512× 3 = 1536 nodes. In this case, by
using workload-conscious node reorganization, those 1536
nodes are surely the most frequently ones. Comparing this

of keys 512k 1M 2M 4M 8M 16M
Sparse 14 22 60 127 188 310
Dense 10 19 38 77 154 308

Table 4: Memory Usage (MiB) with Varying Data
Size

 0.001

 0.01

 0.1

 1

 10

1M 2M 4M 8M 16M

T
im

e
 (

s
)

of Keys

Dense
Sparse

Figure 5: ART Reorganization Time versus Number
of Keys

number (1536) with the one (57856) we got on sparse data,
we understand why the benefit of workload-conscious node
reorganization under dense data is not as significant as under
sparse data, in the context of regular page.

When the data is dense, ART contains fewer but larger
nodes like Node256. When huge page is used (Figures 4b,
d and f), there would be few pages needed. So all page
table entries can stay in TLB, giving almost no TLB miss
(refer to Table 3). This makes node-to-page reorganization
immaterial (Figure 4b). When the data is sparse, ART con-
tain many small nodes like Node4. So, a huge page can
hold many ART nodes but also more pages are needed be-
cause of the small nodes usually contain space when no chil-
dren. Therefore, we observe benefits brought by workload-
conscious node reorganization (Figure 4d). We repeat the
experiments on 64-bit length keys and they are similar to
the 32-bit length keys data set. The results are presented in
Figure 4e and f.

Lastly we study how the ART’s reorganization cost varies
with the number of keys. Figure 5 shows that the reorga-
nization time increases with the number of keys in general.
Also, reorganization under sparse keys consumes more time
than dense keys. The reorganization time essentially relates
to the memory footprint of the ART. Larger memory foot-
print implies more node movement (reorganization) to be
carried out, resulting in longer execution time. As shown in
Table 4, the memory footprint increases with the data size
in general, because large-size node types need to be used.
Moreover, the memory usage under sparse keys grows more
rapidly than that of dense keys, which explains the difference
between sparse keys and dense keys in Figure 5.

6. RELATED WORK

0

5M

10M

15M

20M

25M

30M

35M

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

T
h
ro

u
g
h
p
u
t
(l
o
o
k
u
p
/s

)

Zipf

ART with reorganization
ART

0

5M

10M

15M

20M

25M

30M

35M

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

T
h
ro

u
g
h
p
u
t
(l
o
o
k
u
p
/s

)

Zipf

ART with reorganization
ART

a)Dense / Regular Page b)Dense / Huge Page

0

5M

10M

15M

20M

25M

30M

35M

40M

45M

50M

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

T
h
ro

u
g
h
p
u
t
(l
o
o
k
u
p
/s

)

Zipf

ART with reorganization
ART

0

5M

10M

15M

20M

25M

30M

35M

40M

45M

50M

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

T
h
ro

u
g
h
p
u
t
(l
o
o
k
u
p
/s

)

Zipf

ART with reorganization
ART

c)Sparse / Regular Page d)Sparse / Huge Page

0

5M

10M

15M

20M

25M

30M

35M

40M

45M

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

T
h
ro

u
g
h
p
u
t
(l
o
o
k
u
p
/s

)

Zipf

ART with reorganization
ART

0

5M

10M

15M

20M

25M

30M

35M

40M

45M

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

T
h
ro

u
g
h
p
u
t
(l
o
o
k
u
p
/s

)

Zipf

ART with reorganization
ART

e)Sparse (64bit) / Regular Page f)Sparse (64bit) / Huge Page

Figure 4: Effectiveness of Workload-Conscious Node-to-Page Reorganization

ART ART with Reorganization
Dense Sparse Dense Sparse

zipf = 1 Regular Huge Regular Huge Regular Huge Regular Huge

Cycles 392.33 341.96 414.19 356.61 396.44 342.73 356.08 350.06
Instructions 250.24 249.85 217.24 217.19 250.19 250.00 216.49 216.30

TLB visit 59.50 59.59 53.71 53.67 59.58 59.58 53.37 53.31
TLB miss 1.32 0.00 1.89 0.00 1.34 0.00 1.78 0.00
L1 miss 5.63 4.70 7.32 5.63 5.68 4.73 7.26 5.66
L2 miss 4.21 3.86 5.26 4.75 4.20 3.87 5.15 4.77
L3 miss 2.10 2.08 2.61 2.56 2.10 2.09 2.47 2.44

Misp. Branch† 1.07 1.46 1.53 1.13 2.14 1.61 22.27 21.54
ART ART with Reorganization

Dense Sparse Dense Sparse
zipf = 1.4 Regular Huge Regular Huge Regular Huge Regular Huge

Cycles 124.89 103.80 136.02 103.59 99.69 126.97 76.35 74.09
Instructions 250.29 249.62 216.79 250.12 217.19 249.86 175.07 174.95

TLB visit 59.46 59.47 53.74 53.60 59.45 59.41 37.70 37.61
TLB miss 0.92 0.00 1.48 0.00 0.91 0.00 0.00 0.00
L1 miss 5.05 4.26 6.57 5.04 5.04 4.26 3.25 3.31
L2 miss 0.97 0.49 1.70 0.83 0.95 0.49 0.26 0.01
L3 miss 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Misp. Branch† 1.40 1.42 0.40 0.73 2.23 2.62 0.63 0.74
† per 1K lookup

Table 3: Performance Counters Per Lookup (with/without node-to-page-reorganization)

TLB On modern processors, a virtual address (VA) to
physical address (PA) translation must be carried out for
each instruction or data access. Such translations are origi-
nally serviced by a page table in memory. To accelerate this
process, the Translation Lookaside Buffer (TLB) is added
to cache a limited number (e.g., 64) of translation entries
for the processor’s quick access. As a result, each data ac-
cess request must consult TLB first before the data can be
addressed physically. This fact puts the TLB in the criti-
cal path of the programs. A TLB miss may then stall the
processor and cause wasted resources.

The TLB issue in main memory joins and sorts is first
noted in [13] and studied for more recent hardware in [10,
2, 14]. Kim et al. [10] suggested limiting the partition fan-
out to at most 2×NTLB to avoid excessive TLB thrashing.
Balkesen et al. [2] demonstrated through experiments that
by configuring a large page size one can significantly reduce
the number of TLB misses during hash joins. They also
advocate using an in-cache buffer to amortize the TLB miss
penalty across several items, which is followed by [14].

Zhou and Ross [18] and Hankins and Patel [5] identi-
fied the important impact of TLB performance on memory-
resident index trees. Hankins and Patel [5] suggested there
is a balance to strike between reducing cache misses and
reducing TLB misses in CSB+-tree [15]. The Fast Archi-
tecture Sensitive Tree (FAST) is (re)designed carefully to
reduce both cache misses and TLB misses [9].

Workload-conscious Making data structures workload-
conscious is another way to reduce hardware penalty. For
example, data morphing [4] arranged the data layout based
on analysis of the query workload, so that a workload of het-
erogeneous operations can be executed in a cache-efficient
manner. Stoica and Ailamaki [17] used access logs to iden-
tify hot data and cold data in the database. They then
reorganized the data items in memory pages to separate hot
and cold data into different regions. As a result, disk I/O’s

are reduced and hit rate is improved.

7. CONCLUSIONS
In this paper, we study whether TLB miss would be an

important factor under ART, given that ART is good at re-
ducing cache misses and branch mis-predictions. Our exper-
iments show that TLB miss does matter when the ac-
cess workload possess realistic skew. Correspondingly,
we first study whether the folklore of using huge page help.
Our experiments illustrates that the use of huge page
provides positive lookup throughput improvement
over the use of regular page. We also study whether we
can carry out workload-conscious node-to-page reorganiza-
tion to reduce TLB miss. Our experiments illustrates that
that helps when the data to be indexed is sparse.

8. REFERENCES
[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A.

Wood. Dbmss on a modern processor: Where does
time go? In VLDB” 99, Proceedings of 25th
International Conference on Very Large Data Bases,
September 7-10, 1999, Edinburgh, Scotland, UK, pages
266–277, 1999.

[2] C. Balkesen, J. Teubner, G. Alonso, and M. Ozsu.
Main-memory hash joins on multi-core cpus: Tuning
to the underlying hardware. In Data Engineering
(ICDE), 2013 IEEE 29th International Conference on,
2013.

[3] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson,
P. Mittal, R. Stonecipher, N. Verma, and M. Zwilling.
Hekaton: Sql server’s memory-optimized oltp engine.
In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data,
pages 1243–1254. ACM, 2013.

[4] R. A. Hankins and J. M. Patel. Data morphing: An
adaptive, cache-conscious storage technique. In
Proceedings of the 29th International Conference on
Very Large Data Bases - Volume 29, VLDB ’03.
VLDB Endowment, 2003.

[5] R. A. Hankins and J. M. Patel. Effect of node size on
the performance of cache-conscious b+-trees.
SIGMETRICS Perform. Eval. Rev., 31(1), June 2003.

[6] Intel Corporation. Intel Architecture Instruction Set
Extensions Programming Reference, 2014.

[7] R. Kallman, H. Kimura, J. Natkins, A. Pavlo,
A. Rasin, S. Zdonik, E. P. Jones, S. Madden,
M. Stonebraker, Y. Zhang, et al. H-store: a
high-performance, distributed main memory
transaction processing system. Proceedings of the
VLDB Endowment, 1(2):1496–1499, 2008.

[8] A. Kemper and T. Neumann. Hyper: A hybrid
oltp&olap main memory database system based on
virtual memory snapshots. In Data Engineering
(ICDE), 2011 IEEE 27th International Conference on,
pages 195–206. IEEE, 2011.

[9] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D.
Nguyen, T. Kaldewey, V. W. Lee, S. A. Brandt, and
P. Dubey. Fast: fast architecture sensitive tree search
on modern cpus and gpus. In Proceedings of the 2010
ACM SIGMOD International Conference on
Management of data, pages 339–350. ACM, 2010.

[10] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D.
Nguyen, N. Satish, J. Chhugani, A. Di Blas, and
P. Dubey. Sort vs. hash revisited: Fast join
implementation on modern multi-core cpus. 2009.

[11] V. Leis, A. Kemper, and T. Neumann. The adaptive
radix tree: Artful indexing for main-memory
databases. In Data Engineering (ICDE), 2013 IEEE

29th International Conference on, pages 38–49. IEEE,
2013.

[12] J. J. Levandoski, P.-A. Larson, and R. Stoica.
Identifying hot and cold data in main-memory
databases. In Data Engineering (ICDE), 2013 IEEE
29th International Conference on, pages 26–37. IEEE,
2013.

[13] S. Manegold, P. A. Boncz, and M. L. Kersten. What
happens during a join? dissecting cpu and memory
optimization effects. In Proceedings of the 26th
international conference on very large data bases,
pages 339–350. Morgan Kaufmann Publishers Inc.,
2000.

[14] O. Polychroniou and K. A. Ross. A comprehensive
study of main-memory partitioning and its application
to large-scale comparison-and radix-sort. In
Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 755–766,
2014.

[15] J. Rao and K. A. Ross. Making b+-trees cache
conscious in main memory. In ACM SIGMOD Record,
volume 29, pages 475–486. ACM, 2000.

[16] A. Silberschatz, P. Galvin, and G. Gagne. Operating
System Concepts. Wiley, 2005.

[17] R. Stoica and A. Ailamaki. Enabling efficient os paging
for main-memory oltp databases. In Proceedings of the
Ninth International Workshop on Data Management
on New Hardware, DaMoN ’13, 2013.

[18] J. Zhou and K. A. Ross. Buffering accesses to
memory-resident index structures. In Proceedings of
the 29th international conference on Very large data
bases-Volume 29, pages 405–416. VLDB Endowment,

2003.

