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ABSTRACT

Concurrency control (CC) algorithms must trade off strict-
ness for performance, with serializable schemes generally
paying high cost—both in runtime overhead such as con-
tention on lock tables, and in wasted efforts by aborting
transactions—to prevent anomalies. We propose the serial
safety net (SSN), a serializability-enforcing certifier for mod-
ern hardware with substantial core count and large main
memory. SSN can be applied with minimal overhead on top
of various CC schemes that offer higher performance but ad-
mit anomalies, e.g., snapshot isolation and read committed.

We demonstrate the efficiency, accuracy and robustness of
SSN using a memory-optimized OLTP engine with different
CC schemes. We find that SSN is a promising approach to
serializability with low abort rates and robust performance
for various workloads.

1. INTRODUCTION
Concurrency control (CC) algorithms interleave read/write
requests from multiple users simultaneously, while giving the
(perhaps imperfect) illusion that each transaction has exclu-
sive access to the data. Serializable executions are those that
are equivalent to some serial executions, which would be de-
sirable for users, because they never have anomalies (e.g.,
lost update) and can preserve integrity constraints over the
data. Enforcing a cycle-free transaction dependency graph
is a necessary and sufficient condition to achieve serializabil-
ity, and is the focus of this work. Some CC schemes, such as
two-phase locking (2PL) and serializable snapshot isolation
(SSI) [5], forbid all cycles to guarantee serializability. But
they also forbid many valid serializable schedules.

These serializable CC schemes are often implemented with
centralized data structures, which hardly scale on today’s
massively parallel, large main memory hardware due to con-
tention (e.g., on lock tables [14,22]). That is, modern hard-
ware, where it is common to fit the whole working set—
even the whole database—in memory and I/O operations
are completely out of the critical path, puts more pressure on
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Figure 1: Relative merits of existing CC schemes (solid dots)
vs. the serial safety net (hollow dots).

CC and makes serializable CC schemes even more impracti-
cal. Many recent systems thus opt for lightweight optimistic
concurrency control (OCC) [17, 29], or sacrifice serializabil-
ity in favor of high concurrency and high throughput. For
example, PostgreSQL’s default isolation level is read com-
mitted [25], although SSI has been implemented to ensure
full serializability [24]. OCC is known to be unfriendly to
heterogeneous workloads that have a significant amount of
analytical operations [13], an important application of mod-
ern memory-optimized systems. On the other hand, sacrific-
ing serializability allows dependency cycles and permits data
corruption from concurrency effects. In some most widely-
used database systems, non-serializable CC is the default,
and sometimes there is no available isolation level that guar-
antees serializability.

Figure 1 illustrates the relative strictness vs. performance
trade-off for several well-known CC schemes. At one ex-
treme, strict 2PL ensures serializability but offers low con-
currency because readers and writers block each other. At
the other extreme, a system with no CC whatsoever (No
CC) offers maximum concurrency but admits often intolera-
ble anomalies (e.g., dirty reads and lost writes). Read com-
mitted (RC) and its lock-based variant (RCL), offer much
stronger semantics than No CC, with a low performance
cost, and are often used in practice. Snapshot isolation
(SI) makes a very attractive compromise, offering reason-
ably strict semantics and fairly high performance, while SSI
offers full serializability but lowers concurrency significantly.
Fully precise serialization graph testing (SGT) [6] allows all
(and only) cycle-free executions, but is impractical as every
commit requires an expensive search for cycles over the de-
pendency graph.
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This paper proposes the serial safety net (SSN), an ef-
ficient, general-purpose mechanism to enforce serializability
on top of a variety of CC schemes that forbid dirty reads and
lost writes. Most CC schemes, including SI and RC, meet
these requirements. SSN does not dictate access patterns—
the underlying CC scheme does that—but instead tracks de-
pendencies and aborts transactions that might close a depen-
dency cycle. SSN admits false positives, but is much more ac-
curate than the prior practical serializable CC schemes (e.g.,
2PL and SSI). As illustrated by the figure, SSN guarantees
serializability with concurrency levels not drastically worse
than the underlying CC scheme. In particular, RC+SSN al-
lows higher concurrency than 2PL and SSI. See Appendix C
for a comparison between SSN and other cycle prevention
schemes on their relative merits.

SSN consists of two parts: an easily-computed priority
timestamp π(T ) for transaction T that summarizes “dan-
gerous” transactions that committed before T but must be
serialized after T , and a conservative validation test that
is applied when T commits: if transaction T tries to com-
mit at time c(T ), and U has already committed and had
a conflict with T (i.e., U must be serialized before T ), then
π(T ) ≤ c(U) ≤ c(T ) is forbidden (because U might also need
to be serialized after T , forming a cycle in the dependency
graph). We prove that maintaining this exclusion window
suffices to prevent all cycles in the serial dependency graph,
and thus guarantees that all executions are serializable.

One unique aspect of SSN is that it works in spite of
bugs, omissions, or unanticipated behaviors in the under-
lying CC scheme (so long as the basic requirements still
hold). This protection is important, because CC schemes
tend to be complex to implement, and bugs can lead to
subtle problems that are difficult to detect and reproduce.
Unanticipated behaviors are even more problematic. For
example, a read-only anomaly in SI arises only if a reader
arrives at exactly the wrong moment [8]. This anomaly was
not discovered until SI had been in use for many years. As-
suming SSN is implemented correctly—hopefully achievable,
given its simplicity—bugs or unexpected behaviors in the
CC scheme that would confuse applications, will instead trig-
ger extra transaction aborts caused by SSN. The application
sees only serializable executions that preserve data integrity.

SSN can be implemented efficiently with minimal over-
head. Our evaluation on a four-socket, 24-core Xeon server
with 64GB of main memory shows that SSN can scale as well
as the underlying CC scheme (e.g., RC and SI). Compared
to SSI, SSN can provide ∼50% lower abort rates in general,
∼2x higher commit rates for update-intensive transactions,
and robustness against retrying aborted transactions.

We next give background on serial dependency graphs
that we use throughout the paper to understand serializabil-
ity properties, followed by the design and implementation of
SSN. We then present evaluation results and conclude. Fi-
nally, an appendix that covers the formal proof of SSN and
related discussions is provided for interested readers.

2. SERIAL DEPENDENCY GRAPHS
We model the database as a multi-version system [1], which
consists of a set of items. Each transaction comprises a se-
quence of reads and writes, each dealing with a single item.
In this model, each item is seen as a totally-ordered sequence
of versions. A write always generates a new version at the
end of the item’s sequence; a read returns some version in

the item’s sequence. Insertions and deletions are represented
using a special “invalid” value. Insertions are updates that
replace invalid versions. Deletion flags an item as invalid
without physically deleting it, and the item can continue
to participate in CC if needed. The physical deletion is per-
formed in background once the record is no longer needed [9].

Accesses by transaction T generate serial dependencies
that constrain T ’s place in the global partial order of trans-
actions. Serial dependencies can take two forms:

• Ti
w:x
←−− T (read/write dependency): T accessed a ver-

sion that Ti created, so T must be serialized after Ti.

• T
r:w
←−− Tj (anti-dependency): T read a version that Tj

overwrote, so T must be serialized before Tj .

A read implies a dependency on the transaction that cre-
ated the returned version, and an anti-dependency from the
transaction that (eventually) produces the next version of
the same item (overwriting the version that was read). A
write implies a dependency on the transaction that gener-
ated the overwritten version. Accessing two versions of the
same item (e.g., a non-repeatable read) within a transaction

implies a serialization failure: T1

r:w
←−− T2

w:r
←−− T1.

We use T ← U to represent a serial dependency of either
case: either T

w:x
←−− U or T

r:w
←−− U , and we say that T is

a direct predecessor of U (i.e., U is a direct successor of
T ). The set of all serial dependencies between committed
transactions forms the edges in a directed graph G, whose
vertices are committed transactions and whose edges indi-
cate required serialization ordering relationships. When a
transaction commits, it is added to G, along with any edges
involving previously committed transactions. T may also
have potential edges to uncommitted dependencies, which
will be added to G if/when those transactions commit.

Note that our notation puts the arrowhead of a depen-
dency arrow near the transaction that must be serialized
before the other; this is the reverse of the usual notation
(as in [1]) but it makes the arrowhead look similar to the
transitive effective ordering relation symbol we define next.

We define a relation ≺ for G, such that Ti ≺ Tj means
Ti is ordered before Tj along some path through G (i.e.,
Ti ← . . . ← Tj); we say that Ti is a predecessor of Tj (or
equivalently, that Tj is a successor of Ti). When considering
potential edges, we can also speak of potential successors and
predecessors; these are transactions for which the potential
edges (along with edges already in G) require them to be
serialized after (or respectively before) T .

The key result of the serialization theory is that acyclic G

ensures that the execution is serializable [1]. A cycle in G

produces Ti ≺ Tj ≺ Ti, and indicates a serialization failure
(because G then admits no total ordering).

The simplest cycles involve two transactions and two edges:

• T1
w:x
←−− T2

w:x
←−− T1. T1 and T2 saw each others’

writes (isolation failure).

• T1
w:x
←−− T2

r:w
←−− T1. T2 saw some, but not all, of T1’s

writes (atomicity failure).

• T1
r:w
←−− T2

r:w
←−− T1. T1 and T2 each overwrote a

value that the other read (write skew).

In our work, a central concept is the relationship between
the partial order of transactions that G defines, and the total
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Figure 2: A pictorial motivation and description of SSN. Subsets of G are shown in a serial-temporal layout where forward
and back edges always have positive and negative slopes, respectively.

order defined by their commit times. At the moment trans-
action T commits, we take a timestamp (a physical or virtual
clock measured in time units, or simply a monotonically in-
creasing sequence number), and call it c(T ). An edge in G

is a forward edge when the predecessor committed first, and
a back edge when the successor committed first. A forward
edge can be any type of dependency, but (for the types of CC
algorithms we deal with, with write isolation) back edges are
always read anti-dependencies (where the overwrite commit-
ted before the read). We denote forward and back edges as

T1

f
←− T2 and T1

b
←− T2, respectively. Let us write T0

b∗
←− Tk

for the reflexive and transitive back-edge situation where T0

is reachable from Tk without following any forward edges,

e.g., T0

b
←− T1

b
←− T2

b
←− T3 . . .

b
←− Tk−1

b
←− Tk; note that

T
b∗
←− T always holds.

3. SSN: THE SERIAL SAFETY NET
Given a CC scheme that admits cycles in the serial depen-
dency graph, SSN can be layered on top as a pre-commit pro-
tocol to abort transactions that will form cycles if commit-
ted. Although SSN can be overlaid on various CC schemes,
we require the CC scheme forbid lost writes and dirty reads
(unless it is the transaction reading its own writes), which is
effectively as strong as RC.

In addition to the commit timestamp c(T ), SSN associates
two other timestamps, π(T ) and η(T ), with T at commit.
These values are, respectively, low and high watermarks used
to detect conditions that might indicate a cycle. We define
π(T ) as the commit time of T ’s oldest successor U reached
through a path of back edges:

π(T ) = min
(

c(U) : T
b∗
←− U

)

= min
({

π(U) : T
b
←− U

}

∪ {c(T )}
)

The first equation captures the definition, where T ’s suc-
cessor U that overwrote versions read by T , committed first,
forming a back edge which represents a read anti-dependency.
The second, equivalent recursive equation, shows how this
would be computed from only the immediate successors of
a transaction in G, without traversal of the whole graph.

Note that π(T ) ≤ c(T ), and the values of c(T ) and π(T )
are fixed once T has committed; π will not change because
committed T only acquires new successors via forward edges,
which do not influence π(T ).

The essence of SSN is a certification that prevents a trans-
action T from committing if an exclusion window check is
violated for some direct predecessor U :

Definition 1. A dependency edge U ← T in G violates
the exclusion window of T if π(T ) ≤ c(U) ≤ c(T ).

Intuitively, the first inequality certifies whether T ’s pre-
decessor U could also be a successor (because U committed
after T ’s oldest successor), indicating a cycle in G. When im-
plementing exclusion window checks, we can use two obser-
vations to simplify the process. First, we need only consider
predecessors that committed before T (the second inequal-
ity), which means the check can be completed during pre-
commit of T (regardless of what happens later). Second, of
those predecessors that committed before T , we only need to
examine the most recently-committed one. Using the follow-
ing definition of η(T ), an exclusion window violation occurs
if π(T ) ≤ η(T ), so T must abort:

η(T ) = max
({

c(U) : U
f
←− T

}

∪ {−∞}
)

We next illustrate visually why tracking π(T ) and enforc-
ing exclusion windows might prevent cycles in G. Formal
descriptions are provided in Appendix A.

Examples. Figure 2(a) gives a serial-temporal represen-
tation of a cycle in G. The x-axis gives the relative serial
dependency order (as implied by the edges in G); the y-axis
gives the global commit order. In this figure, forward edges
have positive slope (e.g., T5 ← T1), while back edges have
negative slope (e.g., T4 ← T3). A transaction might ap-
pear more than once (connected by dashed lines, e.g., T1 in
Figure 2(a)), if a cycle precludes a total ordering.
Visually, it is clear that T1 violates the exclusion win-

dow of T2 (because π(T2) = c(T5) < c(T1) = η(T2));
Figure 2(b) depicts information that is available to T2 as lo-
cal knowledge. Without knowing the predecessors of T1, T2
must assume that T1 might also be a successor. Figure 2(c)
demonstrates a case where the exclusion window is satisfied:
T3 committed before π(Tx)—even earlier than Tx’s oldest
successor—so T3 could not be a successor and Tx will not
close a cycle if committed; T1 cannot have any predecessor
newer than π(Tx) as that would violate its own exclusion
window; any later transactions that links T1 with Tx would
suffer an exclusion window violation.

Finally Figure 2(d) illustrates a false positive case, where
T3 aborts due to an exclusion window violation, even though
no cycle exists. We note, however, that allowing T3 to com-
mit would be dangerous: some predecessor to T1 might yet
commit with a dependency on T4, closing a cycle without
triggering any additional exclusion window violations.

Safe retry. Users submit transactions supposing they
will commit, however, the underlying CC scheme might abort



transactions due to various reasons, such as write-write con-
flicts. Ideally, the CC scheme should ensure a transaction’s
successful commit: at least does so after retrying (the “safe
retry property” [24]), unless it is the user’s decision to abort.

SSN guarantees the safe retry property: Suppose SSN
aborts transaction T because U violates its exclusion win-
dow, and that the user retries immediately with T ′. An

exclusion window violation requires S ← T
b
←− U , where

π(U) < c(S) < c(T ). Because U committed before T ′ be-
gan, T ′ will read the version U created without forming an
anti-dependency.

The importance of safe retry is often overlooked, and many
serializable schemes do not share this property, including
2PL (T ′ could deadlock with the winner of a previous dead-
lock) and OCC [17,29] that relies on read set validation (the
overwriter could still be in progress, causing another failure).

Write-intensive workloads. We expect write-intensive
workloads to perform better under RC+SSN than under SSI:
A major source of transaction failures under SSI is temporal
skew, where a transaction attempts to overwrite a version
created after its snapshot. By allowing transactions to al-
ways access the latest version (except when forbidden by
SSN), RC should lower the risk of encountering temporal
skew in a short transaction.

4. IMPLEMENTATION
In this section, we describe how SSN can be implemented
for a multi-version system, describing how each read, write
and commit request is processed. We assume that there is
storage associated with each version, and transaction, where
we can put the information SSN requires. To overlay SSN on
a locking-based single-version system, we will need to store
information in lock entries as proxies for the versions, and
keep some locks (in non-blocking modes) longer than the
underlying CC would have done. We leave this as future
work and focus on multi-version systems in this paper.

SSN can be implemented efficiently, requiring space and
computation linear to a in-flight transaction’s footprint, plus
constant space for each version. SSN summarizes depen-
dencies between transactions using various timestamps that
correspond to commit times. For in-flight and recently-
committed transactions, these timestamps can be stored in
the transaction’s context. For older transactions, the times-
tamps can be maintained in versions without a need to re-
member the committed transactions that influenced them.
SSN supports early detection of exclusion window violations,
aborting the transaction immediately if a too-new (too-old)
potential predecessor (successor) dooms it to failure.

Table 1 summarizes the metadata which SSN tracks for
each transaction T and version V . Version-related states per-
sist for the life of the version, while transaction states are dis-
carded after the transaction ends. Although SSN increases
per-version space overhead, we note that many MVCC im-
plementations already track some of these values.1

Read protocol. When reading versions, transaction T

will record in t.pstamp the largest v.cstamp it has seen to
reflect T ’s dependency on the version’s creator. To record its
read anti-dependency on the transaction that overwrote V

(if any), T records the smallest v.sstamp in t.sstamp. The
transaction then verifies the exclusion window, aborts if a

1For example, PostgreSQL also maintains the equivalent of
v.cstamp and v.prev.

Value Meaning

t.cstamp Transaction end time, c(T )

t.status Status: in-flight, committed, or aborted

t.pstamp Predecessor high-water mark, η(T )

t.sstamp Successor low-water mark, π(T )

t.reads Non-overwritten read set

t.writes Write set

v.cstamp Version creation stamp, c(V )

v.pstamp Version access stamp, η(V )

v.sstamp Version successor stamp, pi(V )

v.prev Pointer to overwritten version

Table 1: Metadata required by SSN.

Algorithm 1 SSN commit protocol

1 def ssn_commit(t):

t.cstamp = next_timestamp() # begin pre-commit

4 for v in t.writes: # finalize \eta(T)

t.pstamp = max(t.pstamp, v.pstamp)

7 # finalize \pi(T)

t.sstamp = min(t.sstamp, t.cstamp)

for v in t.reads:

10 t.sstamp = min(t.sstamp, v.sstamp)

ssn_check_exclusion(t)

t.status = COMMITTED

13

# update \eta(V)

for v in t.reads:

16 v.pstamp = max(v.pstamp, t.cstamp)

for v in t.writes:

19 v.prev.sstamp = t.sstamp # update \pi(V)

# initialize new version

v.cstamp = v.pstamp = t.cstamp

violation is detected. If the transaction is aborted, the safe
retry property means it can be retried immediately, mini-
mizing both wasted work and latency. If the version has not
yet been overwritten, it will be added to T ’s read set and
checked for late-arriving overwrites during pre-commit.

Write protocol. When updating a version, T updates
its predecessor timestamp t.pstamp with v.pstamp (rather
than v.cstamp, because a write will never cause inbound
read anti-dependencies, but it can trigger outbound read
anti-dependencies). Then T records V in its write set for
final validation at pre-commit, in case more reads came later.
Additionally, we must remove V from T ’s read set, if present:
updating π(T ) using the edge T

r:w
←−− T would violate T ’s

exclusion window and abort unnecessarily.
Commit protocol. Before the actual commit happens,

we conduct a pre-commit phase to check the exclusion win-
dow. A post-commit phase then propagates appropriate
timestamps into affected versions. Pre-commit begins when
T requests for a commit timestamp c(T ), which determines
its global commit order, as depicted in Algorithm 1. After
initializing c(T ), T is no longer allowed to perform reads or



writes. It then computes π(T ), following the formula given
in Section 3. The computation only considers π(V ) of reads
that were overwritten before c(T ).

The transaction next computes η(T ) using a similar strat-
egy, but must account for more dependency edge types. Re-
call that T can acquire predecessors in two ways: reading
or overwriting a version causes a dependency on the trans-
action that created it; overwriting a version also causes a
dependency on all readers of the overwritten version. The
read and write protocols account for the former by checking
c(V ), and pre-commit accounts for the latter using η(V ).

Once π(T ) and η(T ) are both available, a simple check for
π(T ) ≤ η(T ) identifies exclusion window violations. Trans-
actions having η(T ) < π(T ) are allowed to commit. During
post-commit, the transaction updates c(V ) for each version
it created, π(V ) for each version it overwrote, and η(V ) for
each non-overwritten version it read.

Phantom protection. An acyclic dependency graph
implies serializability only in the absence of phantoms. Al-
though SSN can be extended to detect phantoms by tracking
coarse-grained dependencies in predicate-based selections,
we leave that to future work. The current implementation
extends the underlying CC scheme to prevent phantoms, us-
ing well-known techniques such as index versioning [29] and
locking [10,20,21,29].

5. EVALUATION
We implement SSN in our prototype OLTP system based on
Silo [29], a representative memory-optimized database sys-
tem that uses OCC. To support multi-versioning, we have
modified Silo with global ordering and table-private indirec-
tion arrays [27], with each entry pointing to the head of the
corresponding tuple’s version chain. A preliminary descrip-
tion about our system can be found in [13]. In the same
system, we implemented RC, SI, and SSI. An overview for
each of them is given below.

1. Read Committed (RC). Reads return the newest com-
mitted version of a record and never block; writes add a
new version that overwrites the latest one, blocking only
if the latter is uncommitted. Allows dependency cycles
but forbids isolation failures (dirty reads and lost writes).

2. Snapshot Isolation (SI). Each transaction reads from
a consistent snapshot, consisting of the newest version of
each item that predates a timestamp (typically, the trans-
action’s start time). Writers must abort if they would
overwrite a version created after their snapshot. Allows
write skews, but forbids isolation failures and enforces
write atomicity.

3. Serializable Snapshot Isolation (SSI). Like SI, but

forbids the “Dangerous Structure”: T1

r:w
←−− T2

r:w
←−− T3

with T3 committed first. No cycles are possible.

We apply SSN over both RC (RC+SSN) and SI (SI+SSN)
to compare their performance. Our prototype OLTP system
provides an efficient implementation of parallel pre-commit
for SSI. The SSN implementation follows the same paral-
lel pre-commit paradigm. We also show the performance
numbers obtained when running the same workloads with
original Silo (denoted as “OCC”) for reference. We are inter-
ested in how SSN performs in general (commit throughput),
SSN’s performance for write-intensive transactions, accuracy
(abort rate), and effectiveness of the safe retry property.
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Figure 3: TPC-C Payment throughput when retrying is dis-
abled (left) and enabled (right).
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We run experiments on a quad-socket server with four
Intel Xeon E7-4807 CPUs (24 physical cores in total) and
64GB main memory. To evaluate SSN under a contentious
scenario, we modify the TPC-C implementation so that each
transaction uses a random warehouse. For each run, we fix
the number of concurrent threads to the scale factor.

Write-intensive transactions. As we have mentioned
in Section 3, compared to SSI, SSN+RC should be more
friendly to preserving write-intensive transactions. We choose
the Payment transaction in TPC-C to test this property.
Figure 3 shows the throughput (commit and abort rates) of
the Payment transaction when running the standard TPC-
C transaction mix. On the left side of the figure we show
how different CC schemes perform when the system does
not retry aborted transactions (i.e., aborted transactions
are dropped). Both SSN variants (RC+SSN and SI+SSN)
perform almost 2x better than SSI, and OCC performs the
best—which is expected as OCC is known to be friendly for
write-intensive transactions.

However, as shown on the right side of Figure 3, the orig-
inal Silo collapsed as core count increases when it needs
to retry aborted transactions (until commit). It does not
scale beyond one socket (6 physical threads in our system).
Our profiling results show that Silo spent more than 60%
of total CPU cycles on retrying index insertions (mostly for
New-Order), minimizing the available cycles for Payment
and other transactions. As mentioned in the beginning of
this section, we use indirection arrays for multi-versioning
in our prototype system. This design makes tuple inser-
tion more efficient: Silo needs to first retry index insertion
before finalizing the tuple write at commit time, putting
tremendous pressure on the index, while our system only
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Figure 5: TPC-C commit/abort rates when transaction retry is disabled (a-b) and enabled (c-d).

needs to insert to the index after successfully appended an
entry in the table’s indirection array, amortizing most con-
tention on the index. The relative performance of SSN and
SSI remained similar to the case where we aborted transac-
tions are dropped. Therefore, we conclude that Silo is not
robust against retries, and SSN is significantly more friendly
to write-intensive transactions than SSI.

Transaction breakdowns. To further understand how
different types of transactions perform under SSN, the y-axis
of Figure 4 presents the relative percentage of each trans-
action’s commit in the TPC-C mix, for the different CC
schemes in the x-axis, including the transaction mix speci-
fied by the TPC-C spec [28] for comparison. The experiment
was conducted with 24 threads and aborted transactions
are dropped. Consistent with our findings on the Payment
transaction shown in Figure 3, compared to other schemes
and the ideal case, SSI has a much smaller percentage of
finished Payment transactions, indicating its bias against
update-intensive transactions: SSI exaggerates the fact that
SI could starve more updates compared to OCC schemes.
Also, OCC is more friendly to write-intensive transactions,
with around 136% and 39% more committed Payment trans-
actions/s than SSI and SSN schemes, respectively. SSN’s
breakdowns in the figure are similar to SI’s: under SI it
does not starve updates like SSI does.

Commit and abort rates. We run the standard TPC-
C mix to observe the commit and (especially) abort rates.
As shown in Figure 5(a), almost all schemes scale well. In
Figure 5(b) we show the corresponding abort rates: SSI and
OCC both have abort rates more than 2x of SSN variants.
Compared to SSI, SSN allows more serializable schedules.
Though hard to see from the figures, RC+SSN performed
slightly better than SI+SSN, as it allows certain serializable
schedules that are not possible in SI.

When we enable the system to retry aborted transactions,
the commit rates are similar to Payment’s, with SSI being
in the middle of SSN and OCC, as shown in Figure 5(c).
The abort rates, however, differ drastically among different
CC schemes. As shown in Figure 5(d), SSI’s abort rate
skyrocketed as we run more concurrent transactions, though
it showed a declining trend beyond 12 threads. The abort
rate of both SSN variants are comparable to that of SI. Note
that OCC in this experiment has actually kept the lowest
abort rate. However, as we explained earlier, the system
spent most of its time contending on index insertion, getting
little useful work done, as reflected by the extremely low
commit rate shown in Figure 5(c).

6. RELATED WORK
Gray et al. [11] defined various isolation levels. The recent
focus is on multi-version CC schemes, especially SI which is
defined academically and proven non-serializable [3]. Defini-
tions of isolation properties based on patterns of dependency
edges are given by Adya [1].

Certification approaches to serializability are a form of op-
timistic CC [16]. The exactly accurate approach of SGT [6]
was also extended to multi-version systems [12, 26]. A dif-
ferent approach tests for cycles before transactions start in
a real-time database system [18]. SSI [5] is a certification
that runs specifically along with SI. Various improved forms
of SSI was also implemented [24]. Lomet et al. [19] choose
a commit timestamp from an allowed interval, whereas we
use the commit time as timestamp, and track excluded val-
ues. Hekaton [17] rejects all back-edges. Unlike SSN, these
techniques cannot be combined with CC schemes that is not
based on a snapshot for reading (e.g., RC).

A different class of proposals ensures serializable execution
by doing static pre-analysis of the application mix [2, 7, 15].
Unlike SSN, they are not suitable with ad-hoc queries.

7. CONCLUSIONS
This paper presented and evaluated the serial safety net
(SSN), a cheap certifier that can overlay a variety of con-
currency control schemes and make them serializable. We
prove the correctness of SSN, demonstrate its effectiveness
in a real main-memory OLTP system on modern hardware
with substantial core count and large main memory. We
find that SSN is superior to prior state-of-the-art, in being
more accurate (fewer aborts), more general (not requiring
SI), more robust against retries and more friendly to write-
intensive transactions.
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APPENDIX

A. CORRECTNESS
We provide the formal proof for SSN in this section. Based
on the database model we set up in Section 2, we first set
the stage by giving the key result of serialization theory:

Theorem 2. Let an execution with schedule h have a se-
rialization graph G(h) with no cycles. Then the execution is
serializable 2.

As mentioned in previous sections, SSN requires the un-
derlying CC scheme forbid lost writes and dirty reads:

Definition 3. Let a certifiable scheduler be any concur-
rency control scheme that forbids lost writes and dirty reads
(other than a transaction reading its own writes).

Definition 3 effectively allows any CC scheme at least as
strong as read committed. In particular, the CC scheme
is free to return any committed version from a read (not
necessarily in a repeatable fashion), and can delay accesses
arbitrarily.

Given a non-serializable schedule h produced by a certifi-
able scheduler, we first identify the “dangerous” edges in its
dependency graph G(h) that SSN targets at. We then prove
that these edges exist in any dependency cycle that arises
under a certifiable scheduler.

We argue the correctness of SSN as follows.

Theorem 4. Let h be any non-serializable history pro-
duced by a certifiable scheduler. Then the dependency graph
G(h) contains at least one exclusion window violation.

Proof. By Theorem 2 and the hypothesis that h is non-
serializable, G(h) must contain a cycle involving n ≥ 2 trans-
actions.3 Name the transactions in that cycle, so that Tn

2This has many formulations such as [4] and [23], the pre-
sentation with this form of dependency definition is in [1].

3We ignore self loops, since our model excludes them. In
reality transactions will be allowed to read their own writes.
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Figure 6: SSN allows all schedules that do not have “peaks,” and also “peaks”where no predecessor of T violates the exclusion
window. Other schemes tend to reject the “valleys” that arise frequently under MVCC.

committed first: Tn ← T1 ← T2 ← . . . ← Tn−1 ← Tn. Be-
cause Tn committed first in the cycle, its predecessor—which
is also a successor—must be reached by a back edge; choose

the lowest value of k such that Tk
b∗
←− Tn holds. Then

π(Tk) ≤ c(Tn). Further, the predecessor of Tk (Tk−1, or
Tn if k = 1) must be reached by a forward edge. Com-
bining the two facts shows an exclusion window violation:
π(Tk) ≤ c(Tn) ≤ c(Tk−1) < c(Tk). Since we have shown
that Tk always exists and always has a predecessor that vi-
olates its exclusion window, we conclude that G(h) always
contains an exclusion window violation.

Definition 5. A certifiable scheduler is said to apply SSN
certification if it aborts any transaction T that, by commit-
ting, would introduce an exclusion window violation into the
dependency graph. That is, SSN forces T to abort if there
exists a potential edge U ← T where π(T ) ≤ c(U) ≤ c(T ).

Theorem 6. Consider a certifiable scheduler that applies
SSN certification. Then all executions produced by the sched-
uler are serializable.

Proof. By contradiction: If there is any execution of
the scheduler that is non-serializable, Theorem 4 shows that
there is an edge in the dependency graph that violates the ex-
clusion window; however the certification check in the sched-
uler does not allow any such edge to be introduced.

B. SAFE RETRY
We formally prove SSN’s safe retry property here: Sup-

pose SSN aborts transaction T because U violates its ex-

clusion window, and that the user retries immediately with
T ′. Then U cannot cause T ′ to abort (though newly arrived
transactions could).

Theorem 7. SSN provides the “safe retry” property, as-
suming the underlying CC scheme does not allow T to see
versions that were overwritten before T began.

Proof. An exclusion window violation requires S ← T
b
←−

U , where π(U) < c(S) < c(T ). Because U committed be-
fore T ′ began, T ′ will read the version U created and no
anti-dependency will be created.

C. DISCUSSION
We now compare SSN with other cycle prevention schemes,
and reason about their relative merits. Figure 6 highlights
several“shapes”that transaction dependencies can take when
plotted in serial-temporal form. Of all the serializable sched-
ules shown, SSN rejects only the last. In contrast, 2PL ad-
mits only the first (all others contain forbidden back edges).
SSI always admits cases (a) and (b), always rejects (d), and
often rejects (c) and (f).4 Case (e) cannot even arise under
SI, let alone SSI. Thus, the improved cycle test in SSN al-
lows it to tolerate a more diverse set of transaction profiles
than existing schemes, including schedules forbidden by SI.

4SSI allows (c) if the leftmost transaction is read-only and
sufficiently old, but rejects (f) if a (harmless) forward anti-
dependency edge joins T with its predecessor.
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