
The Effects of Virtualization on Main Memory Systems

Martin Grund, Jan Schaffner, Jens Krueger, Jan Brunnert, Alexander Zeier
Hasso-Plattner-Institute at the University of Potsdam

August-Bebel-Str. 88
Potsdam, Germany

{martin.grund, jan.schaffner, jens.krueger, jan.brunnert,
alexander.zeier}@hpi.uni-potsdam.de

ABSTRACT
Virtualization is mainly employed for increasing the utiliza-
tion of a lightly-loaded system by consolidation, but also to
ease the administration based on the possibility to rapidly
provision or migrate virtual machines. These facilities are
crucial for efficiently managing large data centers. At the
same time, modern hardware — such as Intel’s Nehalem mi-
croarchitecure — change critical assumptions about perfor-
mance bottlenecks and software systems explicitly exploiting
the underlying hardware — such as main memory databases
— gain increasing momentum.

In this paper, we address the question of how these spe-
cialized software systems perform in a virtualized environ-
ment. To do so, we present a set of experiments looking
at several different variants of in-memory databases: The
MonetDB Calibrator, a fine-grained hybrid row/column in-
memory database running an OLTP workload, and an in-
memory column store database running a multi-user OLAP
workload.

We examine how memory management in virtual machine
monitors affects these three classes of applications. For the
multi-user OLAP experiment we also experimentally com-
pare a virtualized Nehalem server to one of its predecessors.
We show that saturation of the memory bus is a major lim-
iting factor but is much less impactful on the new architec-
ture.

1. INTRODUCTION
With the proliferation of cloud computing and the Soft-

ware as a Service model the sharing of computing resources
has become increasingly important. A widespread technique
to increase the utilization of servers in a data center is to use
virtualization. In this paper, we analyze the impact of vir-
tualization on main memory database performance. While
at first thought one would expect significant cache trash-
ing due to the fact that the design of modern main-memory
databases often directly exploits specific concepts of the un-
derlying hardware (e.g. prefetching, vectorization) [14], we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAMON’10 Indianapolis, Indiana USA
Copyright 2010 ACM 978-1-4503-0189-3 ...$10.00.

show that virtualization does in fact not inhibit these op-
timizations. The reason is that main memory databases
essentially eliminate one layer in the storage hierarchy since
data that is being operated upon is kept in DRAM. When
solely reading memory pages the hypervisor must often not
be called, which limits the overhead incurred by virtualiza-
tion.

We address the question of how these specialized main
memory database systems perform when used in conjunction
with virtualization. To do so, we present a set of experiments
looking at several different variants of in-memory databases:
The MonetDB Calibrator, a fine-grained hybrid row/column
in-memory database running an OLTP workload, and an in-
memory column database running a multi-user workload.

Our experiments with the calibrator show TLB misses
which are invisible in a physical system because they are
hidden between L2 cache misses are visible in a virtual-
ized environment. Thus, there is a quantifiable overhead for
memory address translation in virtual machines. HYRISE,
our hybrid row/column in memory database, exhibits very
similar patterns of behavior when run natively compared to
running in a virtualized environment. The relatively modest
overhead increases with the amount of data being read by
a query. The in-memory column store database running a
multi-user variant of the TPC-H benchmark exhibits a con-
stant throughput degradation of 7% when run in a virtu-
alized environment at normal utilization. When increasing
the utilization by running the benchmark in multiple VMs
on the same physical host at the same time, response time
degrades up to 60%, although more than sufficient CPU re-
sources and main memory are a available for handling the
workload. We identify the bottleneck to be the main mem-
ory bus and show that this degradation in response time is
largely alleviated when the VMs are run on servers based
on Intel’s Nehalem platform, where each CPU has a private
memory controller.

2. CHALLENGES IN MEASURING VIRTU-
ALIZED SYSTEMS

The common approach to observe the performance of a
main memory system is to use hardware performance coun-
ters available in modern CPUs. Those performance counters
can be read by platform independent software layers such as
PAPI [13]. The advantage of such performance counters is
that they provide very precise information about the state
of the system. This and other approaches that fall into the
category of sample based profiling work very well as long as
such performance counters are available.

In virtualized systems, however, such performance coun-
ters are typically not available. Even though with paravir-
tualization the hypervisor is only a very thin layer on top
of the actual virtual machine (VM), virtualization of such
performance counters is complex. Since each virtual ma-
chine has an “own” view of the available CPUs, each virtual
machine sees a different state of the available performance
counters. When virtualizing such counters, for each context
switch of the scheduler the state of the VM has to be pre-
served and restored. Due to this complex behavior, it is not
precisely quantifiable how big the performance overhead of
performance counter virtualization is.

Furthermore not only the VM is of interest for perfor-
mance measurements but also the hypervisor. In this case
metrics of how often the running process has to leave the
VM layer and call into the hypervisor are of importance.

For our experiments we tried different approaches: on the
one hand we evaluated the performance of the system in a
non-virtualized (“‘physical”’) environment and compared to
a virtualized system, on the other hand we used Xenoprof[6]
for profiling performance counters in the virtual environment
in addition to simple time based measuring.

As a last point it is important to mention that due to
the additional hypervisor layer choosing the right memory
allocator becomes important. Since memory management is
handed down to the hypervisor by the VM operating system
and thus uses calls that exit the VM using a hypervisor with
a thread local storage is of great importance to avoid leaving
the VM for each malloc call.

3. EXPERIMENTS
The goal of our evaluation was to test the complete stack

in different ways by increasing the complexity of the tested
system step by step. The first level of our test is simply test-
ing size and latency of the caches of the underlaying hard-
ware. The next level tests the performance of a fine-grained
main memory database with single-threaded workload, and
as a last step evaluate the performance of a multi-tenant
setup optimized for hosted scenarios.

3.1 Hardware Setup
In this section we describe the test setup we used during

our experiments. The main component for our test is one
IBM series blade with an Intel XEON E5450 CPU running
at 3.0 Ghz. The blade server is equipped with 4 × 16 GB
of memory (64G B in total). The base system for all ex-
periments is a recent Debian distribution running a 2.6.21
Linux kernel. For virtualization we use a Xen 3.4 hyper-
visor, the virtualized systems are the same Debian systems
with a kernel that has Xen capabilities. The advantage of
our approach is that the virtualized systems are equal to
the physical systems in terms of kernel version and installed
software. The Xen installation supports two different virtu-
alization approaches: paravirtualization and full virtualiza-
tion. Paravirtualization requires a modified version of the
operating system to call the hypervisor API instead of native
resources, while full virtualization in contrast does not re-
quire a modified operating system but usually requires com-
plete emulation of system components by the virtualization
software. We left full virtualization out of scope since it re-
quires to emulate all system resources and would therefore
induce additional virtualization overhead. An initial test
confirmed that full virtualization yielded significantly lower

Description Physical System Virtualized System
L1 Size 32kb 32kb
L1 Miss Latency 10 cycles 10 cycles
L1 Replace-Time 12 12
L2 Size 6MB 6MB
L2 Miss Latency 197 cycles 196 cycles
L2 Replace-Time 334 cycles 333 cycles
TLB Miss-Latency - 23 cycles

Table 1: Calibrator Results Physical vs. Virtualized
System

performance.

3.2 MonetDB Calibrator
The Calibrator as presented in [5] is a small software tool

written in C to determine the systems properties about the
cache sizes and access latency of the different memory hier-
archy levels.

In our set of experiments the Calibrator represents the
lowest possible level for measurements. It only accesses lo-
cal memory and performs a well defined set of operations.
Comparing the access latency in a virtualized and physical
environment should give a first hint on possible performance
penalties. The tests are executed without the help of any of
the hardware performance counters available and thus rely
only on time based measurements.

Table 3.2 shows the results of a measurement run on both
the physical and virtual test systems. In both cases we used
a data region of 1 GB. From the result of the test run we can
derive an interesting fact: In both cases the detected sizes
for L1 and L2 cache are identical, as are the times for the
latency. The only observed difference between both systems
is the cost for TLB misses. While on the physical system no
TLB — even though the TLB exists — could be detected,
the Calibrator detects a TLB on the virtualized system. The
reason for this behavior is that the latency of the TLB is
hidden behind the latency of an L2 cache miss. However, in
a virtualized system address translation is handed down to
the hypervisor and thus creates additional overhead.

Even though this micro-benchmark shows that the abso-
lute memory access performance in a virtualized system is
equivalent to the physical system the additional overhead for
address translation can become a problem, since it becomes
more important when more data is being read.

3.3 HYRISE — A Hybrid Main Memory Stor-
age Engine

In the second series of experiments we wanted to evalu-
ate the performance impact of virtualization when using our
fine grained hybrid main memory database prototype called
HYRISE. A hybrid main memory database system allows to
store data both using a columnar and row-oriented represen-
tation. A course grained hybrid system allows to choose the
storage representation for each relation, while in our fine-
grained prototype we allow arbitrary vertical partitioning of
any relation into groups of attributes. The goal of this ver-
tical partitioning is to create the best possible layout for one
relation in terms of performance for a given workload. Using
two experiments from our original layouter to determine the
influence parameters for row and column storage we com-
pare the performance for virtualized and physical systems.

3.3.1 Experiments Overview

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 0 10 20 30 40 50 60 70 80 90 100P
er

fo
rm

an
ce

 G
ai

n
fo

r o
th

er
 A

llo
ca

to
rs

Columns in Projection

Google Allocator
Intel TBB Allocator

Figure 3: Comparing Different Memory Allocators

1. Projectivity — In this experiment we load two tables:
one with 100 single column groups and another table
with one group of 100 columns. During the experi-
ment we increase the number of projected attributes.
The goal of this benchmark is to observe the impact
of partial projections in different setups.

2. Selectivity — In this experiment we load two tables:
one with 16 single column groups and one table with
one group spanning 16 attributes. We now execute a
query that reads the complete width of the table while
varying selectivity from 0 to 1.

3.3.2 Evaluation
The general observation from Figure 1(a) is that the vir-

tualized system behaves just as the physical system. The
observations from Figure 1(b) and 1(c) show that the per-
formance of the virtualized system depends on the amount of
data read. This assumption can be verified when looking at
the results of the selectivity experiment. The setup of the ex-
periment is as follows: For row-wise attribute storage a table
is loaded that is 16 integer values wide, for the column-wise
storage a table with 16 groups of one integer attribute each
is loaded. A list of randomly uniform distributed positions
is generated at which the data shall be read. This gener-
ates a probable cache miss pattern as shown for e.g. in [5].
For each column a distinct memory location has to be read,
requiring to load a complete cache line even though only a
fraction of it is used. Contrary when reading selective data
from the row store only the requested cache line is touched
and read completely.

TLB from the previous experiment. On the physical sys-
tem the latency of the TLB is hidden by the L2 miss and
thus cannot be measured, while the address translation on
the virtual system is more expensive and the latency of the
TLB becomes measurable.

As a last step we evaluated the performance gain when
using a different allocator for the experiments. The advan-
tage of other allocators such as the Intel TBB Allocator is
that they use thread local memory storage to avoid heap
contention and memory reuse. For the projectivity experi-
ment in row-wise storage using those allocators improves the
performance by approx. 10% as can be seen in Figure 3.3.2.

3.4 Virtualizing OLAP Workloads
In the following, we will discuss how the use of virtualiza-

tion affects OLAP workloads. Column-oriented databases
are well known to be suitable for analytic workloads [12,
15]. Since this paper focuses on main memory databases,
we use SAP’s in memory column database TREX [9, 10, 4],
the database engine underlying SAP’s Business Warehouse

Accelerator, for our experiments. We are interested in un-
derstanding the effects of virtualizing the CPU and the phys-
ical system’s main memory in the case of a main memory
column store. For this purpose, we run a multi-user version
of the TPC-H benchmark1, which will be described in the
next paragraph. Afterwards, we will discuss our findings.

3.4.1 Experiment Setup
For the experiments presented in this paper we adapted

the Star Schema Benchmark [8], a modified version of the
TPC-H benchmark which has been adjusted for OLAP work-
loads. At the level of the data model, the most important
differences between TPC-H and SSB are the following:

1. The TPC-H tables lineitem and orders are combined
into one table called lineorders. This change trans-
forms the TPC-H data model from 3rd Normal Form
(3NF) into a star schema, which is common practice
for data warehousing applications.

2. The TPC-H table partsupp is dropped because it con-
tains data on the granularity of a periodic snapshot,
while the lineorder table contains data on the finest
possible granularity: the individual line items. It is
sufficient to store the data on the most fine-grained
level available and to obtain numbers on a more coarse
granularity by aggregation.

While TPC-H has 22 independent data warehousing queries,
SSB has four query flights with three to four queries each.
A query flight models a drill-down, i.e. all queries compute
the same aggregate measure but use different filter criteria
on the dimensions. This structure models the exploratory
interactions of users with business intelligence applications.
We modified SSB so all queries within a flight are performed
against the same TREX transaction ID to ensure that a con-
sistent snapshot is used.

We also extended SSB with the notion of tenants and
users. While multi-tenancy can be implemented on multiple
levels (i.e. shared machine, shared process, and shared ta-
bles [3]), we chose the shared machine variant for the exper-
iments presented here. With shared machine multi-tenancy,
every tenant either gets their own database process or a
distinct virtual machine. Since this paper is focused on vir-
tualization, we chose the latter. For our multi-tenant OLAP
use case, the use of independent virtual machines is desir-
able when high isolation among the tenants is required. In
our particular setup, each tenant has the same number of
rows in the fact table.

3.4.2 Basic Overhead of Virtualization Compared To
a Physical System

As a first simple experiment, we ran the workload with
one single tenant natively on the machine and increased the
number of parallel users for our tenant from 1 to 12. We then
ran the same experiment inside a Xen virtual machine on the
same server which was configured such that it can use all the
resources available on the physical system (CPU and main
memory). Please note that size of the tenant in compressed
columns was significantly smaller than the 32 GB available
on the machine, so that no paging occurred even with the
additional RAM consumed by the Xen processes enabling
the virtualization.

1http://www.tpc.org/tpch/

 1e+06

 1.1e+06

 1.2e+06

 1.3e+06

 1.4e+06

 1.5e+06

 1.6e+06

 1.7e+06

 0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
in

 m
s

Columns in Projection

1 x 100 attributes physical
1 x 100 attributes virtual

(a) Row Storage

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 10 20 30 40 50 60 70 80 90 100

O
ve

rh
ea

d
- 1

 is
 P

hy
si

ca
l S

ys
te

m

Columns in Projection

100 x 1 attributes
Physical System

Trendline

(b) Column Storage

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 0 10 20 30 40 50 60 70 80 90 100

O
ve

rh
ea

d
- 1

 is
 P

hy
si

ca
l S

ys
te

m

Columns in Projection

1 x 100 attributes
Physical System

Trendline

(c) Row Storage

Figure 1: Projectivity comparison (a) and by overhead for column-wise (b) and row-wise (c) attribute storage

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
ve

rh
ea

d
- 1

 is
 P

hy
si

ca
l S

ys
te

m

Selectivity 0..1

Overhead for 16 x 1 attribute
Physical System

Trendline

(a) Column Storage

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
ve

rh
ea

d
- 1

 is
 P

hy
si

ca
l S

ys
te

m

Selectivity 0..1

Overhead for 1 x 16 attribute
Physical System

Trendline

(b) Row Storage

Figure 2: Overhead of selectivity comparison for column (a) and row (b) wise attribute storage

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 2 4 6 8 10 12

Q
ue

rie
s

pe
r s

ec
on

d

Client Threads

virtual physical

Figure 4: Basic Overhead of Virtualization for In-
Memory OLAP

Figure 4 shows that the throughput in terms of queries
per second is 7% lower on average in a Xen-virtualized envi-
ronment. We believe that this overhead is largely due to the
fact that TREX needs to allocate main memory to mate-
rialize intermediate results during query processing. While
read access to main memory is cheap in Xen, the hypervi-
sor must be called when allocating memory. Additionally,
the a column scan is not guaranteed to result in a scan of
a contiguous region in main memory since Xen uses shadow
page tables to give the guest OS the illusion of a contiguous
address space, even though the underlying hardware mem-
ory is sparse [2]. The hypothesis that the overhead can be
largely attributed to the handling of intermediate results is
supported by our observation that the physical configura-
tion spends 5.6% of the CPU cycles in the kernel (switch to
kernel mode triggered by the TREX process), while the vir-
tual configuration spends 6.2% cycles plus additional 3.5%
cycles in the Xen layer. The function names called in those
Xen modules suggest that they are concerned with mem-
ory management tasks. Although we only tested on the
Xen virtualization platform, the 7% overhead is somewhat
a best case since with other virtualization platforms such as
VMWare the guest operating system cannot directly use the

CPU’s memory-management unit and thus needs to call the
hypervisor, which Xen circumvents in the read-only case [2].

3.4.3 Response Time Degradation With Concurrently
Active VMs

A widespread reason for the use of virtualization is to in-
crease the utilization of otherwise lightly loaded servers by
consolidation. This increase in utilization does, however,
not come for free. After quantifying the basic overhead in-
curred by virtualization, we looked into the “background
noise” which results from running multiple virtual machines
concurrently on the same physical host. We configured the
Xen host system such that the physical machine was split
into 4 VMs. Each VM was configured with two virtual CPU
cores which Xen dynamically schedules across the 8 CPU
cores of the physical machime. Since the OLAP workload
under investigation is CPU-bound given that enough band-
width is available so that the CPUs never stall, we believe it
makes sense to slice the physical machine into VMs by dis-
tributing the CPU cores across the VMs. We are interested
in understanding how the performance changes from the per-
spective of an individual VM when increasing the number of
guest systems on the physical host running the same com-
putation intensive workload. We discuss the usefulness of
consolidating multiple OLAP tenants onto the same virtual
machine in [11] since this discussion is beyond the scope of
this paper.

Table 2 shows our averaged results across the multiple
VM configurations that we have examined. Since each VM
is assigned 2 virtual cores we consider a VM to be exposed
to a “normal” load when 2 simultaneously active clients are
permanently issuing scan queries against the VM. The re-
ported values for average response times and throughput are
averages across all client threads of all VMs which are con-
currently running the benchmark at a particular point in

Config name # VMs # Users / VM AVG response time Queries / sec.

1 VM normal 1 2 811 ms 2.46
1 VM high 1 3 1170 ms 2.57
1 VM overload 1 4 1560 ms 2.56
2 VMs normal 2 2 917 ms 4.36
2 VMs normal + 1 VM burn 2 2 909 ms 4.4
2 VMs normal + 2 VMs burn 2 2 916 ms 4.37
3 VMs normal 3 2 1067 ms 5.57
4 VMs normal 4 2 1298 ms 6.16
4 VMs overload 4 4 2628 ms 6.09

Table 2: Response Times and Throughput with Concurrent VMs

time. When using only 1 out of the 4 available VM slots on
the machine the average response time for an OLAP query
under normal load conditions is 811 ms. With a load which is
slightly more than can be handled by the assigned CPU cores
(i.e. 3 client threads) the average response time is 1170 ms
and degrades to 1560 ms when the number of clients threads
exceeds the number of processor cores by a factor 2 (i.e. 4
client threads). The throughput in terms of queries per sec-
ond is unaffected by the varying load. Note that we are
interested in understanding the impact of concurrently ac-
tive VMs when a physical system is partitioned into equally
sized VMs. Therefore, only 2 cores out of the 8 available
ones are used. A virtualized experiment using all available
cores has been presented in section 3.4.2.

The impact of increasing concurrency in terms of simulta-
neously active VMs on average response times is also shown
in Figure 5. When running the SSB workload concurrently
in 2 VMs the average response time is 917 ms across the 4
client threads (2 per VM). In this configuration, 2 out of the
4 available VM slots are unused. An interesting variation of
this configuration is to occupy the CPUs in the 2 spare VM
slots. To do so, we use a tool burning cycles on all available
CPUs 2. However, this does neither affect the average re-
sponse time nor the throughput measured across the 2 VM
slots running the benchmark. Running the benchmark also
in the 3rd and 4th slot at normal load does in contrast nega-
tively impact the average response times (while the through-
put increases as expected). Running all 4 slots in parallel at
normal load results in an average response time of 1298 ms,
which is approximately 60% higher when compared to using
only 1 slot at normal load conditions.

We examined the 13 different queries in the benchmark
in order to estimate how much data is transferred over the
memory bus. We combined the average response time per
query type with the sizes of the compressed columns of the
dimension attributes on which the query has a predicate fil-
ter. We then factored in the size in MB of the requested fact
table attributes multiplied with the selectivities achieved by
the predicate filters3. We then did a “back of the envelope”
calculation indicating that the benchmark requires up two
GB per second per active VM with two simultaneous users.
All columns were fully compressed, i.e. the delta table was
empty (see also [9]). The Intel Xeon E5450 system under
investigation has a main-memory bus bandwidth of 8 GB
per second. We thus conclude that the above results sug-
gest that the bandwidth of the memory bus is saturated and
the CPUs stall on memory read when multiple VMs perform
scans across contiguous memory regions at the same time.

The Intel Xeon E5450 processor which was used in the

2http://pages.sbcglobal.net/redelm/
3The selectivities for the SSB queries are taken from [8]

 80 %

 90 %

100 %

110 %

120 %

130 %

140 %

150 %

160 %

1 2 3 4

R
es

po
ns

e
Ti

m
e

as
 a

 P
er

ce
nt

ag
e

of
R

es
po

ns
e

Ti
m

e
w

ith
 1

 A
ct

iv
e

S
lo

t

Concurrently Active VM Slots

Xeon E5450
Xeon X5650

Figure 5: Impact of Increasing Concurrency on Re-
sponse Times

previous experiments is connected to a single off-chip mem-
ory controller via the system’s front side bus, which has
been the prevalent architecture for many years. The Ne-
halem microarchitecture equips each processor with an in-
tegrated memory controller, and thus memory latency and
bandwidth scalability are improved [7]. Consequently, we
re-ran the experiment using an Intel Xeon X5650 system
(Nehalem). Otherwise, the machine was configured exactly
the same as the Xeon E5450 model. As depicted in Figure 5,
the average response times increase only by up to 6% when
all 4 VM slots are concurrently running the benchmark with
two simultaneous client threads per VM. Please note that a
similar behavior is likely to be observed when running 4 in-
dependent TREX processes on a single physical machine or
even when running all tables for all tenants within the same
TREX process: From the perspective of the memory bus
the three alternatives should be similar. The results on the
Nehalem platform indicate that when building a data center
for multi-tenant analytics using a column store in-memory
database it might be more economic to use high-end hard-
ware than commodity machines since more consolidation can
be achieved without affecting end-user response times.

4. RELATED WORK
In the last years main memory DBMS became more and

more important, especially column stores [9]. Especially
for exploiting modern hardware correct understanding and
modeling of such systems is required [5]. Due to the increas-
ing capacity of main memory, larger memory bandwidths
and the increasing number of processing units per system,
these systems become increasingly important for software-
as-a-service applications. While in traditional server sys-
tems the memory bus is saturated with moderate concur-
rency already, newer systems based e.g. on the Nehalem ar-
chitecture [7] allow better scaling and makes such systema

even more interesting for virtualization. Even though virtu-
alization always creates an additional overhead [2, 1], main
memory databases are less affected since one layer in the
storage hierarchy — namely disk I/O — is eliminated.

However while profiling in physical systems is assessable,
for virtualization another layer of complexity is added and
needs to taken care of like shown by Menon et. al [6].

5. CONCLUSION AND OUTLOOK
In this paper we presented three sets of experiments com-

paring the performance of main memory access in physical
and virtual environments. In the first step we used a simple
micro-benchmark, in the second step a more complex hy-
brid main memory database prototype and in the last step
we ran the Star Schema Benchmark on a commercial main
memory column database. The results of our experiments
show that the single access to the different levels of CPU
cache and main memory is not slower, but as more data is
being read a general performance degradation occurs. From
our experiments we see that currently the memory address
translation has the biggest impact on performance.

The results for the Star Schema Benchmark show that in
multi-VM scenarios the available memory bandwidth can be
a serious bottleneck. This limits the optimal distribution of
available hardware. With the new Intel Nehalem hardware
architecture this changes significantly. Due to the vastly in-
creased memory bandwidth the available processing power
can be better distributed among virtual machines. Com-
pared to the old architecture where using a 4 VM setup
the average response time dropped by 60% using the new
Nehalem architecture shows that the performance overhead
when using 4 VMs drops to only 6%.

With the increasing importance of virtualization optimiza-
tions for such systems have to be considered. On the hard-
ware side these are optimizations by the hardware vendors
to increase the performance of address translations in vir-
tualized systems like Intel EPT, or to embed special virtual
machine instructions into the CPU. On the software side,
optimizations for memory access become more and more im-
portant. Using special allocators to avoid heap contention
with thread-local memory storage are a first possibility. An-
alyzing the best possible allocation strategies in virtual en-
vironments is future work.

To summarize, we see that main memory DBMS present a
very interesting use case for virtualization. Even though an
performance overhead exists it is manageable and has to be
compared to the advantages of hardware consolidation and
better system balancing for SaaS scenarios.

Acknowledgements
The authors would like to thank Thomas Willhalm from
Intel Corporation for his valuable comments and feedback.

6. REFERENCES
[1] K. Adams and O. Agesen. A comparison of software

and hardware techniques for x86 virtualization. In
J. P. Shen and M. Martonosi, editors, ASPLOS, pages
2–13. ACM, 2006.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L.
Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In

M. L. Scott and L. L. Peterson, editors, SOSP, pages
164–177. ACM, 2003.

[3] D. Jacobs and S. Aulbach. Ruminations on
multi-tenant databases. In A. Kemper, H. Schöning,
T. Rose, M. Jarke, T. Seidl, C. Quix, and
C. Brochhaus, editors, BTW, volume 103 of LNI,
pages 514–521. GI, 2007.

[4] B. Jaecksch, W. Lehner, and F. Faerber. A plan for
olap. In I. Manolescu, S. Spaccapietra, J. Teubner,
M. Kitsuregawa, A. Léger, F. Naumann, A. Ailamaki,
and F. Özcan, editors, EDBT, volume 426 of ACM
International Conference Proceeding Series, pages
681–686. ACM, 2010.

[5] S. Manegold, P. A. Boncz, and M. L. Kersten. Generic
database cost models for hierarchical memory systems.
In VLDB, pages 191–202. Morgan Kaufmann, 2002.

[6] A. Menon, J. R. Santos, Y. Turner, G. J.
Janakiraman, and W. Zwaenepoel. Diagnosing
performance overheads in the xen virtual machine
environment. In M. Hind and J. Vitek, editors, VEE,
pages 13–23. ACM, 2005.

[7] D. Molka, D. Hackenberg, R. Schöne, and M. S.
Müller. Memory performance and cache coherency
effects on an intel nehalem multiprocessor system. In
PACT, pages 261–270. IEEE Computer Society, 2009.

[8] P. E. O’Neil, E. J. O’Neil, X. Chen, and S. Revilak.
The star schema benchmark and augmented fact table
indexing. In R. O. Nambiar and M. Poess, editors,
TPCTC, volume 5895 of Lecture Notes in Computer
Science, pages 237–252. Springer, 2009.

[9] H. Plattner. A common database approach for oltp
and olap using an in-memory column database. In
U. Çetintemel, S. B. Zdonik, D. Kossmann, and
N. Tatbul, editors, SIGMOD Conference, pages 1–2.
ACM, 2009.

[10] J. Schaffner, A. Bog, J. Krüger, and A. Zeier. A hybrid
row-column oltp database architecture for operational
reporting. In BIRTE (Informal Proceedings), 2008.

[11] J. Schaffner, D. Jacobs, B. Eckart, J. Brunnert, and
A. Zeier. Towards enterprise software as a service in
the cloud. In Proceedings of the 2nd IEEE Workshop
on Information and Software as Services (WISS),
2010.

[12] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and
S. B. Zdonik. C-store: A column-oriented dbms. In
K. Böhm, C. S. Jensen, L. M. Haas, M. L. Kersten,
P.-Å. Larson, and B. C. Ooi, editors, VLDB, pages
553–564. ACM, 2005.

[13] D. Terpstra, H. Jagode, Y. Haihang, and J. Dongarra.
Collecting performance data with papi-c. Proceedings
of 3rd Parallel Tools Workshop, Sep 2009.

[14] M. Zukowski, S. Heman, N. Nes, and P. Boncz.
Super-scalar ram-cpu cache compression. In ICDE ’06,
page 59, Washington, DC, USA, 2006. IEEE
Computer Society.

[15] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz.
Super-scalar ram-cpu cache compression. In L. Liu,
A. Reuter, K.-Y. Whang, and J. Zhang, editors,
ICDE, page 59. IEEE Computer Society, 2006.

