
Wimpy Node Clusters:
What About Non-Wimpy Workloads?

Willis Lang
University of Wisconsin
wlang@cs.wisc.edu

Jignesh M. Patel
University of Wisconsin

jignesh@cs.wisc.edu

Srinath Shankar
Microsoft Corp.

srinaths@microsoft.com

ABSTRACT
The high cost associated with powering servers has introduced new
challenges in improving the energy efficiency of clusters running
data processing jobs. Traditional high-performance servers are largely
energy inefficient due to various factors such as the over-provisioning
of resources. The increasing trend to replace traditional high- per-
formance server nodes with low-power low-end nodes in clusters
has recently been touted as a solution to the cluster energy prob-
lem. However, the key tacit assumption that drives such a solution
is that the proportional scale-out of such low-power cluster nodes
results in constant scaleup in performance. This paper studies the
validity of such an assumption using measured price and perfor-
mance results from a low-power Atom-based node and a traditional
Xeon-based server and a number of published parallel scaleup re-
sults. Our results show that in most cases, computationally com-
plex queries exhibit disproportionate scaleup characteristics which
potentially makes scale-out with low-end nodes an expensive and
lower performance solution.

1. INTRODUCTION
Datacenter deployment is a big investment for any enterprise.

Facilities often cost hundreds of millions of dollars while data-
centers are populated with many thousands of servers. Such dat-
acenter costs are ultimately factored into the company bottom line
through the monthly amortized costs. The largest proportions of
this monthly total cost of ownership (TCO) are the server costs,
power distribution and cooling, and the actual energy costs. Hamil-
ton states that the amortized (3 year server, 10 year infrastructure)
monthly costs for a 50,000 machine datacenter breaks down to
54% for servers, 21% for power distribution and cooling, 13% for
energy, and the balance for remaining networking and infrastruc-
ture costs. Thus, energy and energy related costs can account for
a third of the monthly TCO, and several studies have shown that
these costs are projected to increase as a proportion of the monthly
TCO [6, 5]. Consequently, there has been expanding interest in
reducing datacenter power costs [4] (see Section 4).

In this paper, we study the price/performance characteristics of
parallel scale-out clusters where our notion of price includes server
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costsand direct energy costs thereby accounting for 67% of the
monthly TCO.

To reduce the monthly TCO, a growing number of recent studies
have focused on redesigning datacenter server clusters with low-
cost, low-power “wimpy” nodes [3, 23]. The argument for wimpy
nodes is that they are relatively well-balanced [24]. With low-
end CPUs and the use of low-power components, these nodes are
claimed to be more energy-efficient. However, low-end nodes lag
far behind traditional nodes in performance. Therefore, a small
cluster of traditional nodes must be replaced by a larger cluster of
low-end nodes.

These previous studies have generally come to the conclusion
that a scale-out deployment of large clusters of “wimpy” nodes is
the most effective solution. However, these published results fo-
cused on simple key-value workloads [3] and web-search environ-
ments [23], where near-perfect performance scaleup complements
the poor performance of individual wimpy nodes. In [3], the au-
thors admit that their approach targets“data-intensive, computa-
tionally simple applications”. Consequently, their system is de-
scribed as adatastoreinstead of adatabaseto emphasize that they
do not provide transactional and relational interfaces. Such simple
data lookup environments lack the complexities of more complex
data processing workloads, and the focus of this paper is to con-
sider if the same conclusions apply for complex data processing
workloads.

Recently, proponents of wimpy node clusters theorize that such
architectures will also be able to handle more complex workloads
such as sorting [32]. However, these arguments are based on sin-
gle node, performance/Watt comparisons of Atom and Nehalem-
based servers. Without the analysis of how performance is affected
with increasing scale-out, which is the focus of this paper, such ar-
guments are largely based on theoretical ideal performance. The
purpose of this paper is to show that for complex database work-
loads, previously observed results show that parallel data process-
ing overhead is significant enough to dilute the benefits of large
wimpy node clusters.

There are two factors that come into play when evaluating the
efficiency of traditional versus low-end cluster deployments: (1)
The individual node price/performance when processing the parti-
tioned data; and (2) The effects of diminishing returns when under-
going parallel scaleup(constant response time when the datasize
and computing resources increase proportionally) due to startup-
interference-skew factors (see Section 2 for further discussion).

Consider Figure 1(a), where our price and performance metrics
are plotted for various types of nodes and different TPC-H work-
loads on a commercial DBMS. The amortized monthly TCO is cal-
culated as the sum of the amortized node cost as well as the monthly
energy costs for the node continuously running TPC-H (see Sec-
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Figure 1: (a) Amortized Monthly TCO (includes energy costs)
as a function of Performance over various hardware configura-
tions and TPC-H scale factors. (b) Price/Performance metric of
Amortized Monthly TCO ($) and Performance (QphH@Size)
System details can be found in Section 3.1. QphH@Size is the
unit for the TPC-H Power Test.

tion 3). (Here, for the node cost, we have simply divided the pur-
chase cost over 36 months. More complex interest-based amorti-
zation can also be applied.) Performance is provided by the TPC-
H Power Test [30]. ‘Atom’ and ‘Xeon’ represent Atom (low-end
node) and Xeon (traditional node) processors respectively. Both
types of nodes were then outfitted with either SSD or mechanical
HDD disks (see Section 3.1 for detailed node specs). Figure 1(a)
plots costs versus performance for different node configurations
and TPC-H scale factors. There are two interesting patterns to ob-
serve. First, SSDs provide better performance than regular disks.
Second, the Atom nodes lag far behind the Xeon nodes in perfor-
mance, which means that we must deploy significantly more Atom
nodes in a cluster to equal the performance of a Xeon cluster.

We combined the two metrics in Figure 1(a) into a single price/
performance metric as shown in Figure 1(b). When we consider the
more expensive SSD configurations of the Atom and Xeon, we no-
tice that all their results for various TPC-H scale factors are tightly
clustered together at the cheapest end of the price/performance spec-
trum. Even though the purchase cost for the systems increase with
SSDs, the performance increase outpaces the cost increase and so
we see better price/performance (similarly seen in [2]). This sug-
gests that if we partition the TPC-H workload and use multiple
Atom nodes, we can achieve similar performance as a Xeon node
at a similar price point (assuming perfect parallel scaleup).

For example, assuming ideal scaleup, we could run a TPC-H
scale 10 workload partitioned on 5 Atom-SSD nodes (i.e., 2GB per

node) in the same time as a scale 2 workload on a single Atom-
SSD node. This can also be done with even smaller partition sizes
per Atom-SSD node, thereby changing the cluster size. If we used
a 1GB partition size, we would need 10 Atom nodes. Since the
measured performance for TPC-H scale 1 on the Atom is greater
than 1000 QphH, ideal scaleup would infer a cluster performance
greater than 10000 QphH. This would outperform a single Xeon-
SSD running TPC-H scale 10 (9000 QphH).

The problem is that parallel database research has already shown
two decades ago that such ideal proportional scaleup is far from
guaranteed [9]. We show published examples of deviations in Sec-
tion 2, Figure 2. Essentially, replacing traditional clusters with in-
creasing numbers of low-power nodes may result in diminishing
returns. Further, such scaleup profiles are largely determined by
the query being run and the parallel processing system.

Therefore, while we have shown real price/performance results
for the traditional server versus modern low-power wimpy node
(detailed results in Section 3.3- 3.4), the interesting problem that
we focus on in this paper is how these results fit into various scaleup
models. Since the parallel scaleup for a given workload is depen-
dent on the parallel software system and node hardware configura-
tion, we need to examine the effects of different scaleup models on
a low-power cluster versus a traditional cluster. To this end, we will
present several real scaleup profiles from various published paral-
lelized data processing systems (see Section 2) and use our results
in Figure 1 to show that traditional server clusters may be more cost
effective than a massively scaled-out wimpy node clusters.

The remainder of this paper is organized as follows: Section 2
reviews the fundamental goals, metrics, and pitfalls in parallelizing
queries in a parallel DBMS, we present our results in Section 3.
Section 4 discusses related work, and we present our conclusions
in Section 5.

2. PARALLEL DATABASES AND SCALEUP
This section recalls the lessons learned from more than two decades

of parallel database research. Specifically, we discuss the factors
that impact the ability to achieve ideal parallel scaleup when de-
ploying larger clusters.

To start, we clarify the parallelism goals that often get misused
with the overloaded term cluster “scale-out”. Often, scale-out is
used as a blanket term for increasing the size of a parallel data
processing cluster to achieve ideal performance benefits. However,
as defined in [9], this idea can be divided into two distinct goals:
linearspeedupand linearscaleup.

For example, given 100 machines processing 1TB of data in
1min, if the parallel system has the ideal linearspeedupproperty,
400 machines could process the same 1TB in 15sec. On the other
hand, given the same cluster nodes, a parallel system exhibiting
ideal linearscaleupcould process 10TB with 1000 machines in
1min. Scale-up can be further broken up into transactional or batch
which essentially describe throughput or latency-based definitions
of performance respectively.

DeWitt and Gray [9] identified three main threats to success-
ful scaleup behavior of a parallel DBMS: startup, interference, and
skew. Startup costs refer to overhead in time needed to start the
parallel processing jobs. For example, if synchronization is re-
quired across hundreds of nodes for starting a short query, then
this cost can make up a significant fraction of the total response
time. The impact of such costs often diminishes with long running
queries.Interference costs are those caused by processes that need
to share resources such as memory or disk. Finally, the last impedi-
ment ofskewrefers to the behavior that with increased parallelism
and decreasing per node computation time, the the variance of node
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Figure 2: (a) DB-X running a 535MB/node SELECT query [19]. (b) Vertica running a 20GB/node SELECT aggregate
query [19]. (c) DB-X running a join query (large table 20GB/node, small table 1GB/node) [19].

computation time can start to dominate the average runtime.
Consider Figure 2 where we have plotted the scaleup profiles of

a simple selection query, another selection query but with an ag-
gregate operation, and a third query with a join and an aggregation
operation. These queries are taken from the recent paper by Pavlo
et al. [19]. We present these real scaleup results, not for comparison
purposes, but to illustrate the point that in practice, scaleup is often
not ideally proportional for complex data processing workloads.

Figure 2(a) reports scaleup response time for a commercial par-
allel database, DB-X, running a simple SELECT scan where each
node had 535MB partitions shows that there is significant response
time degradation as the cluster size increases.

SELECT * FROM Data WHERE field LIKE ‘%XYZ%’;

Table ‘Data’ has two rows ‘key’ and ‘field’ with sizes 10 and 90
characters respectively. Even for a workload as simple as a scan,
the response time degradation at a 100X scaleup factor is 1.6 times
worse than ideal.

Figure 2(b) shows an aggregate selection query with a scaleup
from one node to 100 nodes. On a different commercial database,
Vertica [33], the following query was run on a 233B wide table:

SELECT sourceIP, SUM(adRevenue)

FROM UserVisits GROUP BY SUBSTR(sourceIP,1,7);

Each node stored 20GB partitions of the table. This result showed
that a different commercial parallel database also exhibits dimin-
ishing returns when the environment is scaled up; at 100X scaleup,
there is a 1.4X performance degradation from the ideal performance.

Finally, Figure 2(c) shows a scaleup model for a complex join
query on DB-X between the ‘UserVisits’ table in the above query,
to a 108B table (1GB/node). The query also has an aggregation and
date range predicate:

SELECT INTO Temp sourceIP, AVG(pageRank) as avgPageRank,
SUM(adRevenue) as totalRevenue

FROM Rankings AS R, UserVisits AS UV
WHERE R.pageURL = UV.destURL

AND UV.visitDate BETWEEN Date(‘2000-01-15’)
AND DATE(‘2000-01-22’)

GROUP BY UV.sourceIP;

For DB-X, at 100X scaleup, the response time degradation is
2X worse than the ideal scaleup performance. Full details of the

queries can be found in [19].
All three scaleup models show that there is a large startup cost

between the one node ‘cluster’ and any multinode cluster. As a
result, we have fitted logarithmic models to the DB-X results and
an exponential model to the Vertica result to account for the initial
drop in performance. The chosen models provided the best corre-
lation coefficient of various regression models we applied.

The core point of this discussion is to show that scaleup perfor-
mance is not ideally constant for complex data processing work-
loads; in which casewimpy node scale-out to save energy and
purchasing costs may not be more cost effective than traditional
servers if equivalent performance is sought. Equivalently, in real
(as opposed to ideal) scaleup environments, price/performance de-
grades as the scaleup factor is increased (i.e., it gets more expen-
sive to achieve the same level of performance). Next, we will show
experimental results incorporating our price/performance results in
Figure 1 and analyze the cost effectiveness of traditional clusters
versus low-power/low-cost clusters.

3. EXPERIMENTAL EVALUATION
In this section, we discuss our experimental results which in-

cludes energy measurements of our nodes under different work-
loads using a commercial database system as well as scaleup ex-
periments using published scaleup results. We start by describing
the node characteristics and costs, followed by the measurement
methods, and finally we present our results.

3.1 Server Costs and Specifications
In our tests, we use an Atom node (wimpy) and a typical high-

end server-class Xeon node. Both ran the same commercial database
system on Windows 7 Pro (Atom) and Windows Server 2008 (Xeon)
which share the same kernel [26].

Atom Node: The Atom node had a dual core, hyper-threaded
Intel D510 Atom processor with accompanying Intel motherboard
($80). The motherboard was filled with the maximum allowed
2x2GB GSkill DDR2 memory ($95). Our power supply was an
80plus certified Corsair VX450 ($65). We tried two different power
supplies units (PSU); a cheap 120W PSU and a 450W Corsair.
Even though the Corsair can provide almost 4X more power than
the cheap PSU, we found that the power drawn by the system with
the Corsair was almost half of that when using the cheap PSU.
Given this, we chose the larger, but more efficient Corsair. We
had two disk configurations: (1) theSSD configuration had an
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Figure 3: Raw measured response time and energy consump-
tion of the TPC-H Power Test under various scale factors.
TPC-H scale factors are represented by the shapes square, di-
amond, upward triangle, and downward triangle for scale fac-
tors 1, 2, 3, and 10 respectively. Shading of shapes correspond
to different system configurations.

OCZ SATA2 64GB drive ($200) for the OS and DBMS applica-
tions and an Intel X-25E 32GB drive ($383) as the database data
storage drive; (2) the mechanicalHDD configuration used two WD
Caviar Green SATA2 32MB Cache drives each with 500GB stor-
age where both drives were used for database data storage ($120).
The mechanical HDD configuration costs $360 while the SSD con-
figuration costs $823.

Xeon Node: The Xeon node is an HP Proliant DL380GS with
two quad core Xeon E5410 processors and 16GB of memory. The
server has eight 146GB 10K RPM SAS drives with two in RAID1
for the OS and DBMS applications, another two in RAID1 for the
DBMS log, and four drives for database data storage. This configu-
ration cost approximately $3500. Each SAS drive can be purchased
at $270 a drive. Our SSD configuration consists of removing the
four data drives and replacing them with two Intel X25-E SSDs
(priced as above). The server cost now is approximately $3186.
This drop in cost between the high capacity SAS configuration and
SSD configuration is similar to [2].

To keep this study manageable, we only explored a limited num-
ber of IO hardware configurations. Tuning this IO system for price,
performance and energy is an interesting topic for future research,
and beyond the scope of this paper.

3.2 Energy Measurement
AC current was measured at the wall outlet using a Fluke i200s

AC current clamp (1.5% accuracy at 0.5A). The Fluke clamp was
connected to an NI USB-6008 Multifunction DAQ and collected
using NI’s LabView, sampling at 1KHz. RMS current was calcu-
lated using a sliding window of 16 sample points (1 period) given
an AC frequency of 50Hz. The RMS voltage was measured at
118V. Power was calculated as the product of the RMS current and
the RMS voltage. Finally, energy consumption was calculated by
summing the time discretized real power values over the length of
the workload.

Throughput (tpsE)
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Figure 4: Raw measured throughput and energy consumption
of a 10min window running TPC-E.

3.3 Single Node TPC-H
The raw energy and response time data that was used to create

Figure 1 is shown in Figure 3. In this figure, we plotted the mea-
sured response time to complete the TPC-H Power Test against the
energy consumed by the node during the run. There are a number
of interesting features to note in Figure 3. First, for any given scale
factor of TPC-H, the Atom node with the SSD configuration always
consumes the least amount of energy. This is unsurprising given the
low voltage of the Atom processor and SSDs. Second, the Xeon
node with any storage configuration always finishes faster than the
Atom-SSD node. This is also unsurprising given that the Xeon
node has eight cores while the Atom only has two (four w/hyper-
threading) and the Xeon node also has four times the memory of
the Atom node.

Using these results, we calculated the amortized monthly total
cost of ownership (TCO) using the node purchase prices (see Sec-
tion 3.1) and a $0.07kWh datacenter energy cost [11]. Furthermore,
we calculated the TPC-H Power@Size metric using the definition
provided in [30]. Figure 1 shows our single node TPC-H results
after transformation to a price/performance metric.

3.4 Single Node TPC-E
While TPC-H is a benchmark for decision support system (DSS),

we also wanted to understand the performance and energy con-
sumption profiles for OLTP workloads. Figure 4 shows a TPC-
E throughput versus energy consumption plot similar to Figure 3.
Here we have measured the throughput (in transactions per sec-
ond/E – tpsE [31]) over a 10min period. This measurement period
was preceded by a 10min warm up time where both systems stabi-
lized. The energy measurements represent the energy consumption
over 10min. Here we notice that the Xeon nodes always provide
very high tpsE for both 1000 and 2000 scale factors because the
system is essentially CPU bound at scale 1000 and 2000. The Atom
nodes have significantly lower throughput but also about an order
magnitude lower energy consumption.

Figure 5 shows the similar price/performance plot as Figure 1,
but now for TPC-E. We notice that while Figure 4 shows that there
was massive differences in energy consumption between the Xeon
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Figure 5: (a) Amortized Monthly TCO (includes energy costs)
as a function of Performance over various TPC-E scale factors.
(b) Price/Performance metric of Amortized Monthly TCO ($)
and Performance (tpsE@Size)

nodes and the Atom nodes, Figure 5 shows that the actual price/
performance values for the nodes is only factors in difference and
in the case of scale 1000, the Atom-SSD node has the same price/
performance as the Xeon nodes.

TPC-E is a workload that was designed to reflect a more realis-
tic benchmark compared to TPC-C, and is well-known to not have
the easily-partitionable characteristics of TPC-C. Thus the impedi-
ments to perfect scaleup (see Section 2) will likely affect the scale-
out story for TPC-E like workloads. In this paper, we do not con-
sider TPC-E further, and focus only on the DSS TPC-H workload.

3.5 TPC-H Parallel Scaleup
Now, we examine the price and performance metrics for various

scale-out clusters built from either traditional server nodes, or low-
power Atom nodes. As we have seen in Figure 2(a-c), since scaleup
characteristics are largely determined by the query workload, we
apply these example scaleup models of Figure 2 to examine cluster
price/performance. While these models are from various parallel
systems and hardware,the goal here is to show how the scale-out
of our nodes would affect scaleup price/performance given various
possible scaleup models.

3.5.1 Modeling Cluster Performance
This section will describe the way we have applied the pub-

lished scaleup models to our single node measurements in order

to get cluster performance for a parallel data processing workload.
First, the response time models we presented in Figure 2 are con-
verted to give scaleup factors. Consider this example that illus-
trates how this is done: given that the DB-X Join response time
model shows that using two nodes the workload response time will
be 1.14X the response of one node, then the scaleup factor will be
2× 1/1.14 = 1.75. This scaleup factor can then be used with our
measured performance data to provide cluster performance.

Performance for axy GB TPC-H dataset usingx nodes aty GB
partition each is calculated asP (y)M(x) whereP (y) is the perfor-
mance for the single node (Section 3.3) running TPC-H at scaley
andM(x) is the modeled scaleup factor given a cluster ofx nodes
(using the models in Figure 2). The ideal scaleup factor forx nodes
isM(x) = x. For example, given a single node 10GB performance
value ofP (10) = 9000QphH, the ideal cluster performance for
M(2) nodes is18000QphH while the modeled performance is
9000QphH × 1.75 = 15840QphH for the Join model.

3.5.2 Wimpy Clusters vs One Xeon
The purpose of this section is to examine the effect of the startup

costs, seen in Figure 2, on the cost of the Atom-SSD clusters as
compared to a single Xeon-SSD node (which has no startup or any
other parallel scale-out).

In Figure 6(a-c), we have applied each of the scaleup models of
Figure 2 to the results shown in Figure 1. We have also included the
data points for the ideal (constant) scaleup model. Since Figure 1
has shown us that outfitting nodes with SSDs typically decreases
price/performance for both Atom and Xeon nodes, for our analysis
here, we have used the SSD configurations of our nodes. To begin,
consider Figure 6 which shows the results of scaleup when one
Xeon node is compared to a cluster of Atom nodes.

For this discussion, we use the price and performance results for
the Xeon-SSD node when running a TPC-H workload at scale 10.
Based on the results shown in Figure 1(b), the Atom-SSD running
TPC-H scale 2 has a similar price/performance rating as the Xeon-
SSD at scale 10. Figure 1(b) shows that the Atom-SSD at TPC-H
scale 2 (diamond) and the Xeon-SSD at TPC-H scale 10 (down-
ward triangle) both have a price/performance of $0.011.

To match the Xeon-SSD workload size, Atom-SSD cluster will
be made up of5 Atom-SSD nodes each with 2GB partitions. This
means that the monthly TCO of the Atom cluster will be5 times
the single node monthly TCO (at TPC-H scale 2). If we had ideal
scaleup, then this Atom-SSD cluster would also provide5 times
the performance of a single Atom-SSD node thereby retaining a
price/performance of $0.011. However, Figure 2 shows that this
ideal scaleup does not happen and we calculate the performance of
such a cluster using the methods described in Section 3.5.1.

In Figure 6(a), we show the price as a function of performance
for two setups when applying the DB-X Scan scaleup model of
Figure 2(a). Since we are only using a single Xeon-SSD, there is no
scaleup effects and the modeled price and performance is identical
to the ideal. The Atom cluster price/performance is 18% worse
than the Xeon node for a 10GB workload.

Similarly, for Figure 6(b) and (c), we have applied the Vertica
Aggregate scaleup (Figure 2(b)) and DB-X Join scaleup (Figure 2(c))
respectively. The Atom cluster price/performance is 13% and 31%
worse than the Xeon node for the Vertica Aggregate and DB-X Join
models respectively. It is clear that if the scaleup behavior, such as
those in Figure 2(a-c), has poor degradation, this will be reflected
in the cluster performance.

The results in this section are for a single Xeon node and an
Atom cluster. The next section compares multi-node Xeon clusters
to larger Atom clusters.
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Figure 6: Parallel scaleup of a 10GB TPC-H workload on Atom and Xeonclusters using different published scaleup models
(5 Atom-SSD nodes and 1 Xeon-SSD node respectively). Atom nodes have 2GB partitions and the Xeon node has the entire
10GB dataset. For all figures, the effects of an ideal constant scaleup is shown. (a): DB-X Scan scaleup model (Figure 2(a)).
(b): Vertica Aggregation scaleup model (Figure 2(b)). (c): DB-XJoin scaleup model (Figure 2(c)).

3.5.3 Wimpy Clusters vs Traditional Clusters
This section compares various levels of Atom-SSD scaleup for

a 60GB TPC-H workload where the Xeon-SSD cluster is made of
6 nodes, each running 10GB partitions. We applied the DB-X Join
scaleup model from Figure 2(c) as it represented the most com-
plex workload of the three we discussed. Modeling was done as
described in Section 3.5.1.

Figure 7(a-c) shows the price as a function of performance simi-
lar to Figure 6. In these figures, the amount of data (partition size)
per Atom-SSD node decreases from 3GB (Figure 7(a)) to 1GB
(Figure 7(c)).

In the progression of decreasing partition size for the Atom clus-
ter, as the partition size decreases, the size of the Atom cluster in-
creases. First, we notice that the 20 node Atom cluster is cheaper
than the Xeon cluster in Figure 7(a). However, its performance is
about half of the Xeon-SSD cluster. If we consider the price/ per-
formance, the 20 node Atom cluster is 55% higher than the 6 node
Xeon cluster.

Next, in Figure 7(b), where the Atom cluster is 30 nodes large,
both clusters have roughly equivalent performance. However, we
notice that the cost of the Atom cluster is 20% higher than the Xeon
cluster. In this case, the 30 node Atom cluster is 23% higher in
price/performance than the 6 node Xeon.

Finally, in Figure 7(c), we notice that as the Atom cluster in-
creases with decreasing partition size, the performance increases.
However, this is an effect of the increasing performance of the
Atom-SSD as it works on a smaller, in memory dataset (at 1GB par-
tition). It is quite clear in Figure 7(c), where the 60 node Atom-SSD
cluster has higher performance than the 6 node Xeon-SSD cluster,
that the cost to deploy such a wimpy node cluster is significantly
higher than the Xeon-SSD cluster. While the Atom cluster’s per-
formance is 2X better than the Xeon, it is 2.4X more costly. This
translates to a 19% increase in price/performance over the Xeon
cluster.

Since this analysis has held the Xeon-SSD cluster size constant
while we varied the Atom-SSD cluster size, it is necessary to com-
pare the cluster price/performance when both clusters vary in size.

Consider Figure 8, where we plot the (a) performance, (b) price,
and (c) price/performance as a function of the dataset size for both
clusters when the Join scaleup model is applied (Figure 2(c)). Here
we partition the data so each Atom-SSD has 2GB partitions and
each Xeon-SSD has 10GB partitions.

Figure 8(a) shows that as the clusters scaleup, the Atom-SSD
cluster starts to exhibit higher performance than the Xeon-SSD
cluster. This is because the Xeon cluster is growing and starts to
become affected by the DB-X Join scaleup degradation. This per-
formance difference in Figure 8(a) can be explained by the models
in Figure 2 that show that parallel scaleup behavior flattens out as
the cluster sizes increases. While the Atom cluster has slightly bet-
ter performance with larger scaleup, Figure 8(b) shows that this is
accompanied by higher cluster cost. Finally, Figure 8(c) shows the
price/performance of both clusters under scaleup. It shows that the
increase in performance and cost of the Atom-SSD cluster over the
Xeon-SSD cluster is largely proportional.

3.5.4 Discussion
We have shown the effects of various scaleup models on two

types of clusters running TPC-H workloads: an Atom-SSD clus-
ter and a Xeon-SSD cluster. While these models are not directly
drawn from a TPC-H workload, the purpose of using these models
is to show how scale-out of different cluster architectures can be
affected by different scaleup behavior. As such we have applied a
variety of published scaleup models to the TPC-H measurements
we collected.

With computationally simple workloads, such as those of [3],
“wimpy” node clusters are claimed to be more effective than clus-
ters made from traditional nodes. However, this analysis has shown
that for data-intensive workloads ( Figure 6, 7, and 8), large wimpy
node clusters suffer from poor scaleup effects and are therefore po-
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Figure 7: Parallel scaleup of a 60GB TPC-H workload on Atom (with different partition sizes) and Xeon (10GB partitions)
clusters using the join scaleup model from Figure 2(c). (a) 3GB Atom-SSD partitions, (b) 2GB Atom-SSD partitions, (c) 1GB
Atom-SSD partitions.

tentially slower and a costlier solution than smaller Xeon clusters.
The reason for this is because larger wimpy clusters are more af-
fected by a diminishing return scaleup effect than a smaller tradi-
tional cluster.

Furthermore, small relative gains in performance or price/ per-
formance by a larger low-power cluster over a smaller traditional
cluster may not be worth the increase in mean-time-to-failure for
the entire cluster [27, 28]. Providing fault tolerance over a large
number of wimpy nodes requires replication and over-provisioning,
thereby increasing the price/performance of such clusters.

Finally, increasing the cluster size by migrating over to Atom
nodes requires substantially more network infrastructure. For ex-
ample, if we assume that the wimpy node clusters will require 4X
more nodes than the traditional cluster, then given a 16 node Xeon
cluster that requires one 48 port switch, a wimpy 64 node cluster
will require two 48 port switches. High performance network hard-
ware cannot be sacrificed in wimpy node clusters and anecdotally
we found this to be true in real deployments of Atom clusters. Op-
timistically assuming enterprise class 48 port 10 Gigabit switches
cost $10,000 each, the additional amortized switch cost per wimpy
node is $313 which doubles the cost of the spindle-based Atom
node to $700 and increases the SSD-based Atom cost to $1150!

Our results suggest that there may be an interesting middle ground
between wimpy Atom node clusters and traditional Xeon node clus-
ters that lies with hybrid cluster deployments [7]. Such clusters
made up of both wimpy and traditional nodes may be the most ef-
fective deployment. The architectural make-up of such a hybrid
cluster and its scaleup behavior is an interesting avenue of future
research.

4. RELATED WORK
Recent studies on the energy consumption of large clusters [4,

10, 1] have shone a light on existing [22, 21, 18, 5] and future
problems faced by datacenter operators. These studies discussed
the increasing size of datacenter server clusters as well as their dra-

matic energy inefficiency due to the absence of energy proportion-
ality (proportional energy consumption with hardware utilization).

The database community has begun to seriously consider the en-
ergy costs of database management systems [12, 13, 17, 24, 20].
In [24, 25], a well-defined sort metric for the energy efficiency of
a hardware platform was given as well as hints as to the nature
of an energy-efficient system configuration. Furthermore, it was
shown that over the past decade, published TPC-C results used sys-
tems that have increased their power draw six-fold [20], and stud-
ies began revealing the true energy consumption costs of running
database workloads [13, 17]. While these studies have examined
the energy consumption profiles of single nodes running a database,
a ‘local’ approach to energy efficiency, another direction is to treat
a cluster as a holistic entity for energy optimization.

This ‘global’ approach to energy management offers many dif-
ferent directions for research. Both the systems and database com-
munities have produced a number of studies on reducing the en-
ergy consumption of data processing clusters [23, 3, 29, 11]. As
mentioned in this paper, some of these have focused on rethinking
cluster node architecture and using new low-power, low-cost hard-
ware [23, 3]. Approaches such as service consolidation through
virtual machine migration have been explored [29, 8]. Finally, cus-
tom energy-efficient hardware has been presented which targets the
needs of datacenter operators [11].

Powering down cluster nodes has been one method in which
these studies have looked at achieving energy proportionality [14,
15, 16]. In [14], a study on powering down a replicated paral-
lel database cluster with an eye on load balancing was presented.
Powering down MapReduce clusters was discussed in [15]. A new
server architecture that eliminates server idle power draw by rapid
transitioning of component power states is presented in [16].

5. CONCLUSIONS
Our study presents evidence that for complex data processing

workloads, a scale-out solution of a low-power low-end CPU-based
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Figure 8: Analysis of TPC-H workload: (a) Performance, (b) Price,and (c) Price/Performance for Atom-SSD and Xeon-SSD
based clusters using the Join scaleup model (Figure 2(c)). Atom-SSD nodes have 2GB partitions and Xeon-SSD nodes have
10GB partitions.

cluster may not be as cost-effective (or produce equivalent perfor-
mance) as a smaller scale-out cluster of traditional high-end server
nodes. We have shown that depending on the scaleup characteris-
tics of the query workload and the software system, poor scaleup
behavior can occur when increasing the cluster size. Poor scaleup
degrades the price/performance of a larger cluster. Thus, the par-
allel scaleup characteristics of the environment largely determines
the feasibility of so-called “wimpy” node configuration for building
clusters for such complex data processing workloads.

While our results suggest that wimpy node clusters are not suited
for complex database workloads, it does open up the area of hy-
brid (heterogeneous) cluster deployment. Hybrid cluster deploy-
ment strategies, job scheduling, and scaleup analysis are interesting
avenues of future research.
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