
Flashing Databases: Expectations and Limitations

Stephan Baumann
Ilmenau Univ. of Technology, Germany

stephan.baumann@tu-ilmenau.de

Giel de Nijs
VectorWise, Netherlands
giel@vectorwise.com

Michael Strobel
Ilmenau Univ. of Technology, Germany
michael.strobel@tu-ilmenau.de

Kai-Uwe Sattler
Ilmenau Univ. of Technology, Germany

kus@tu-ilmenau.de

ABSTRACT
Flash devices (solid state disks) promise a significant per-
formance improvement for disk-based database processing.
However, database storage structures and processing strate-
gies originally designed for magnetic disks prevent the opti-
mal utilization of SSDs. Based on previous work on bench-
marking SSDs and a detailed discussion of I/O methods, in
this paper, we analyze appropriate execution methods for
database processing as well as important parameters and
boundaries and present a tool which helps to derive these
parameters.

1. INTRODUCTION
Recent progress in the development of flash memory tech-

nology has led to an increasing acceptance of solid state
disks (SSD) as a replacement for classical magnetic disks.
Although SSDs are still more costly and provide less storage
capacity than magnetic disks, they offer significant advan-
tages in terms of read access times and energy consump-
tion. Special properties – such as very short read latencies
and rather expensive writes (caused by the necessary repro-
gram/erase operations) and a finite number of reprogram
operations per cell – make SSDs especially interesting for
read-intensive applications.

Since their beginning days, DBMS have been designed to
work with external storage which is much slower than main
memory and favors sequential access patterns. However, in-
dex structures like the well-known B-tree or clustered data
organization such as MDC [10] and ADC [9] offer row- or
block-wise access opportunities and thus can help to reduce
the data volume in a horizontal way, albeit with the ex-
tra costs implied by random reads. Thus, there is usually a
tradeoff between the minimal block size for which a mag-
netic disk still shows acceptable performance for random
access and the reduction granularity provided by indexing.
The advent of flash memory as external storage has triggered
the development and study of algorithms and data struc-
tures suitable to the new qualities of this storage type, e.g.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Sixth International Workshop on Data Management on
New Hardware (DaMoN 2010), June 7, 2010, Indianapolis, Indiana. Copy-
right 2010 ACM 978-1-4503-0189-3/10/06...$10.00. .

variants of B-tree [13], transaction logging [6], self-tuning
indexing structures for small devices [8], and special query
operator implementations [12].

Based on these observations, two main questions regarding
the usage of SSDs in DBMS arise:

• How well suited are the storage and access structures
of classic DBMS for the optimal utilization of SSDs?

• More generally – which access patterns and profiles are
optimal for SSDs?

Answering these questions requires a detailed analysis of
SSD behavior. However, the face that SSDs are not un-
like black boxes for DBMS developers complicates this task.
These disks implement sophisticated block mapping and
wear leveling strategies which may have a great impact on
performance and make the modeling of disk behavior more
difficult than for magnetic drives. Furthermore, with the
improvement of technology new features are continuously
added, resulting in significant changes from one generation
to the next.

One of the most important contributions on benchmark-
ing flash devices is from Bouganim, Jónsson and Bonnet
[1]. Bouganim et al. introduced the uFLIP benchmark, a
collection of nine micro-benchmarks which consist of differ-
ent basic I/O patterns. Based on tests with several flash
devices, the authors come to the following conclusions (re-
garding read operations): There is some overhead per I/O,
i.e. some latency, which means that larger I/Os should be
preferred. The best block size is 32KB and blocks should be
aligned to flash pages. Concurrent access from a few pat-
terns is acceptable, but concurrent or delayed I/O do not
help to improve performance.

Another mentionable work is the five-minute rule for flash
memory by Graefe [3]. Based on the famous five-minute rule
paper by Gray and Putzolu for trading off I/O capacity and
memory, Graefe has reconsidered this tradeoff for flash mem-
ory instead of magnetic disks. He argues that the optimal
page size for B-tree indexes on flash memory is 2KB (much
smaller than for traditional disks) and that flash memory
shifts the break-even point between table scans and index
search from 10,000 to 500,000 rows, satisfying the query
predicate for a table of 100M tuples.

Based on these observations, we draw the following two
conclusions:

(1) SSDs shift query execution toward index-based query
plans

(2) SSDs favor smaller block sizes.

Consequently, clustered storage structures with small clus-
ters are a promising strategy leading to efficient pre-
selection.

In this work, we strive to verify these hypotheses and de-
rive appropriate access profiles. We do not intend to de-
fine yet another benchmark, but present a tool to help find
the right parameters and analyze important parameters and
boundaries needed for designing storage structures support-
ing efficient clustering and query processing strategies.

2. PRELIMINARIES
Getting a system to exploit the technical advantages and

to avoid the disadvantages of solid state disks requires a
careful calibration of I/O depending on the properties of
the disk. For better understanding, this chapter gives a brief
overview of SSD technology and different I/O methods.

2.1 Solid State Disks
SSDs have previously been explained by various sources.

In the following, we summarize the internals of these disks.
We start with flash memory as this is the base building block
of SSDs, followed by the general architecture. The last part
of this chapter explains the flash translation layer which
manages the requests issued by the system.

2.1.1 Flash Memory
Flash memory is a non-volatile semiconductor memory.

A flash chip consists of a large array of flash cells, where
different types of chips are distinguished according to the
architecture of the array - NOR or NAND - and the type of
the cells - Single Level Cell (SLC) or Multi Level Cell (MLC)
- each with specific advantages and drawbacks. However,
SSDs are throughout based on NAND flash. Therefore, in
this paper, flash always refers to NAND flash.

The cells of a chip are organized into a hierarchy of pages,
blocks and planes. A flash page is the smallest unit of access,
for reads as well as for writes. A flash block is the smallest
unit of cells that can be erased. Typical sizes are 4KB for
a flash page and 128KB for a flash block. In addition, the
chips are divided into a number of planes, for example one
for odd and one for even pages, that are independently ac-
cessible. Every chip may also contain a cache, which allows
for caching of repeatedly read pages.

Flash supports three basic operations: read, program and
erase. A read operation is as follows: the page is first loaded
into the data register of the corresponding plane and then
shifted out over the data bus of the chip. The program oper-
ation is essentially the other way around, the page is shifted
into the data register, and subsequently stored in flash. Intel
states a read latency of 75µs for its SLC NAND flash SSDs
and 85µs for its MLC NAND flash SSDs, as well as a write
latency of 85µs for its SLC NAND flash SSDs and 115µs
for its MLC NAND flash SSDs [4, 5]. Erasing takes signifi-
cantly more time than reading or programming, typically a
few microseconds.

2.1.2 Architecture
Every solid state disk basically consists of a number of

flash packages and a controller, where a flash package is
built of one or more flash chips. A set of flash packages
has its own channel through which it is connected to the

controller supporting independent communication for each
channel. Additionally, the controller is equipped with a host
interface (e.g. SATA) to communicate with the system. The
controller (sometimes also a set of controllers) itself contains
logic for managing requests between the flash packages and
the host interface.

This general architecture offers two opportunities for par-
allelization of requests. First, the controller can distribute
requests among the flash packages. Second, a flash pack-
age supports concurrent processing of requests on its planes.
However, parallelization can only be exploited if there are
sufficient requests that can be distributed among the differ-
ent packages and planes. Therefore, size, count and locality
of the requests are critical factors for performance.

The higher the number of parallel accessible chips, the
higher the number of parallel processable requests which are
needed to obtain maximum performance. Thus, the newest
generations of SSDs support Native Command Queuing,
which facilitates a change of processing order of the requests,
so that the number of independently processable requests in-
creases.

2.1.3 Flash Translation Layer
The flash translation layer (FTL) is the software that

is run in the controller of the SSD. It translates a request
issued to the host interface into (multiple) request(s) to
the flash packages with respect to performance and lifetime
aspects by implementing sophisticated block mapping and
wear leveling mechanisms.

Block Mapping. From the perspective of the operating
system, the SSD is a block device, which can be accessed via
a block interface. In order to provide this block interface,
the FTL needs to implement a mapping function between
the logical block addresses (LBAs) of the logical device
and the physical block addresses (PBAs) of the physical
device, i.e. the flash packages inside the disk. Since a flash
page needs to be in zero-state for programming and must
be erased beforehand if it is not, a static mapping would
always trigger slow erases for updates. Therefore, a dynamic
mapping is used, where updates are handled similar to a
log. Every update results in a new page being programmed
and in an adaption of the mapping function, while the old
page is left outdated. The FTL holds a number of pages
for writes in an allocation pool and tries to reclaim the
outdated pages during idle times.

Wear Leveling. Another issue is that flash cells wear
and become unreliable after a certain number of program
and erase cycles. Obviously, unreliable cells need to be han-
dled to ensure data integrity. But as flash cells only have a
life span of 105 to 106 program and erase cycles, depending
on the type of flash, more sophisticated solutions are needed.
Thus, to maximize the lifetime of each cell, writes are dis-
tributed equally between flash cells to ensure equal wear of
the cells. This mechanism is also known as wear leveling. It
guarantees that write requests always go to one of the least
used free pages, and rarely changed pages are transferred to
frequently changed ones. Over time, this leads to a random
organization of the data, so that even requests of sequential
data are executed by a number of randomly distributed page
requests.

2.2 I/O execution methods
To understand the need for asynchronous I/O, it is im-

portant to first have a good overview of how normal, syn-
chronous I/O works. To get from issuing a read request in an
application to receiving the actual data in this application,
a number of steps at various layers throughout the system
are involved.

2.2.1 Synchronous I/O
The read function call at the application level (in user

space) is implemented in a standard system library. Such
an implementation mainly consists of translating the read
function call to a system call. This system call passes all the
parameters (e.g. file descriptor, location in the file, number
of bytes, the buffer where the data is to be stored) to the
operating system. The read request is further executed by
the operating system in kernel space.

The operating system generally splits up a larger read re-
quest into a number of requests so that each request does
not exceed the maximum request size of the hardware block
device (e.g. 1024 bytes). These requests, together with con-
current requests from (possibly different) applications, are
sent to the block device layer in the operating system. One of
the tasks of the block device layer is scheduling all outstand-
ing requests in such a way that the underlying device can
execute them as efficiently as possible. This is done by the
I/O Scheduler (sometimes called elevator). The re-ordered
requests are sent to the physical storage device (possibly af-
ter passing through a software or hardware RAID system),
where they are executed.

The block device layer receives the data for the executed
read requests. If the request was split into smaller requests,
the results are gathered and assembled. The data is then
copied from kernel space memory to the buffer provided by
the application in user space memory. The operating system
returns from the system call, which in turn returns to the
application. The read request is finished.

2.2.2 Native Command Queuing
All the steps described take time to execute. Starting at

the lower layers, there is a delay between sending a request
to a device and receiving the result. There is also a delay
between receiving a result and sending the next request, be-
cause the result has to be processed by the operating system.
Modern magnetic drives and SSDs have therefore imple-
mented a system called Native Command Queuing (NCQ).
This is a queue of I/O requests, implemented in the storage
device itself, which allows the device to quickly execute a
number of commands in the order it prefers without having
to wait for the operating system. It also enables the oper-
ating system to quickly send a number of commands to the
device without having to wait for the single commands to
be finished. To obtain fast transfer speeds, it is important
to keep this command queue as full as possible.

Similar to the above described latencies, there is another
such delay between user space and kernel space. Not only
does the application have to wait for the storage device to
execute all commands for a specific read request, it also has
to wait for the operating system to copy the result data
back from kernel space to user space. The operating system
in turn cannot issue the next batch of commands to the
device until it has received the next read request from the
application and, hence, has to wait for the application to

have processed the data of the previous request. Due to this
delay, the operating system runs out of requests to send to
the device and the command queue in the device becomes
empty, so the device is idle for some time.

2.2.3 Massively parallel storage systems
The effect of idle devices on the actual data transfer rate

increases as the devices get faster, as a faster device means
that more data can be transferred during idle time. With the
modern fast SSDs, this effect has a huge impact. If the de-
vices are connected in a RAID array, it becomes even worse,
because all devices in the array have to be kept busy. The
SSDs can only operate at full speed when there are suffi-
cient commands to work with, due to their parallel nature.
Adding this parallelism to a RAID array intensifies this into
a massively parallel storage system.

Using synchronous I/O, the only way to minimize this
problem is to issue huge read requests (in the order of hun-
dreds of megabytes) so the operating system has enough
commands to keep the I/O queues of the devices filled. This
is far from a viable solution.

2.2.4 Asynchronous I/O
To solve the issue of the application having to wait on

the operating system and the operating system having to
wait on the application, read requests can be issued asyn-
chronously. In short: the application can issue a number of
requests for data it will need at some time in the future and
continue processing. These requests do not have to be con-
tinuous, so the size of the individual requests can remain
relatively small. This way, the operating system can be pro-
vided with enough requests to keep the command queues of
the devices full and the devices can operate at full speed.
Every time a request is finished, the operating system no-
tifies the application, which then can choose to process the
result data.

2.2.5 Parameters
The exact way I/O operations are performed within an

application is determined by a number of parameters. These
parameters have to be tuned to the system, the workload
and the storage devices to be able to obtain highly efficient
I/O and thus, high bandwidth.

Block size. The minimum size of a single read request
for a certain application is indicated by the block size. This
does not have any relationship with the actual disk block
size (i.e., a sector) and also very little with the memory page
size, although it is probably a multiple of both of these.
The block size is determined by the internal data layout of
the application. Smaller block sizes offer more flexibility,
but a minimum size is needed to be able to perform efficient
I/O. The block size should not be smaller than the SSD
page size and preferably not smaller than the page size. If a
RAID array is used, the block size should preferably not be
smaller than the page size of one device multiplied by the
number of devices in the array to make sure that all drives
are used during the execution of a read request.

Queue depth. The maximum number of outstanding re-
quests the operating system can handle will be called the
queue depth. This is often a configurable parameter. Increas-
ing this number will lead to more possibilities for optimiza-

tion but will also increase the maximum latency of a request.
The queue depth has to be a certain size to have enough si-
multaneously outstanding request to keep the storage device
busy while the application is processing results of previous
requests. This number depends on the specific properties of
the storage device itself as well as the rest of the system.

2.3 Prefetching
The mechanisms described above only work when the I/O

subsystem of an application actually needs to read enough
data to fill up the asynchronous I/O request queue. The
application has to have enough non-I/O work available as
well to stay busy until the I/O operation has been per-
formed. This work could consist of processing previously
completed read requests. Hence, to be able to use asyn-
chronous I/O effectively, an application needs to be able
to predict what data it will need well in advance (depend-
ing on the queue depth) and will need to implement a good,
application-specific prefetching mechanism.

Prefetching is often already implemented by the operating
system or even by a storage device itself. The semi-random
nature of read requests issued by a database system are likely
to confuse these prefetching mechanisms, as they have no
application knowledge. In one possible scenario, an existing
pre-fetcher detects sequential I/O because of a number of
sequential read requests and starts prefetching. The sequen-
tial burst however, is very short and the next requests are in
a different location, invalidating the already prefetched data
and wasting I/O bandwidth. It is therefore important to dis-
able existing pre-fetchers in favor of one with domain knowl-
edge. The operating system prefetching mechanism can of-
tentimes be bypassed (with direct I/O), but if such a mecha-
nism is implemented in a storage device itself, we have to be
very careful with the on-disk data layout. We will elaborate
on this in Section 5.

3. DATA LAYOUT ON DISK
As we have seen in the previous section, parameters such

as block size and queue depth need to be specified for asyn-
chronous I/O. However, it is well known that the perfor-
mance of (asynchronous) I/O operations also depends on
the data layout on disk. For magnetic disks certainly, choos-
ing the block size in which to organize data is a tradeoff for
the database system between the minimal block size that
still provides sufficient bandwidth for highly selective ran-
dom access patterns and the much larger block size that
truly optimizes sequential patterns. In Section 5, we will see
that this is also the case for solid state disks, however, for
smaller block sizes. Another factor to keep in mind is that
a sequential data layout on disk requires significant mainte-
nance. For column store systems such as C-Store ([11]) and
VectorWise (previously called X100 ([14])) however, storing
data fully sequentially is not even beneficial. This can be ex-
plained by the way such systems access data. When a query
requires a table scan over multiple columns, in most cases
the I/O unit will request the first block of more than one of
these columns in order to provide data for further process-
ing alongside the query execution tree. That is, in a column
store, a sequential scan takes the form of multiple concurrent
table scans from the disk access point of view. Additionally,
having different data types and thus different column widths
can lead to requests of varying sizes. Note that the particular
combination of which columns are scanned together varies

a1 a2 a3 a4 b1 b2 b3 b4 b5
b6 b7 b8 c1 c2 c3 c4 c5 c6
c7 c8 c9 ... a5 a6 a7
a8 b9 ...

A B C
Table Disk

Figure 1: Possible data layout for a table with three
columns using a group size of four.

from query to query, so, in general, it cannot be anticipated
in the physical design. Thus, depending on the data type of
a column and the way queries are processed, a request will
have more or less opportunities for sequential access but in
general only for a few consecutive blocks.

Also, in column oriented systems retrieving a certain num-
ber of tuples will generate access to data at a much smaller
granularity than in their row oriented counter-parts. As data
is stored and accessed column by column and (thus) highly
effective compression techniques can be applied, data re-
quests can be order(s) of magnitude smaller than in row
stores. This and the previously mentioned tradeoff between
physical storage optimized for random or sequential access
requires a flexible solution for accessing data on disk. Vec-
torWise tackled this problem by implementing a third I/O
parameter, the group size. This group size defines the min-
imum number of sequentially stored blocks for a column.
To gain a better understanding, Figure 1 shows a table with
three columns of different widths. Each horizontal line inside
the columns marks the end of a group of four blocks. On the
right side we can see how these columns are mapped to disk
using a group size of four (blocks are numbered according
to each column).

Having grouped data organization has multiple advan-
tages: First, random access on small blocks is not influenced
and can be executed the way it would be without group-
ing. Second, requests of larger blocks automatically result
in small sequential access patterns for multiple disk blocks
without additional overhead at the I/O unit. Third, storage
becomes more flexible in comparison to full sequential stor-
age, as disk space is only partitioned at the granularity of
the group size. Also, in comparison to a fully sequential data
layout, the grouped layout has the advantage of less main-
tenance in case of updates or inserts, as the system only
has to ensure that group size number of blocks are aligned
sequentially.

4. EXPECTATIONS
In order to provide fast (random and sequential) access

to data, especially multiple concurrent accesses at a time
with varying granularity as necessary to exploit structures
as ADC or MDC, solid state disks and asynchronous I/O
form a great alliance. To fully benefit from such clusterings
a database system needs to be able to provide fast access
to very small data blocks in addition with high bandwidth

in case multiple requests for very small data blocks are
issued. SSDs in principle contain the technology to support
these requirements but it is up to asynchronous I/O to fully
benefit from this technology.

High Parallelism. As described, a SSD consists of mul-
tiple flash chips which are independently accessible via mul-
tiple channels. As every flash chip and there every plane
is needed to generate high bandwidth, in user space a suf-
ficient amount of data needs to be requested. Using asyn-
chronous I/O there are two basic approaches to reach this
goal: First, the queue needs to be long enough, so that there
are always pending requests in the SSD controller to be dis-
tributed among the parallel units. Or second, the requested
blocks are large enough to be split into sufficient device I/O
requests which then can be executed in parallel. Concerning
clustered storage in database systems, especially the first ap-
proach is of interest and there, in particular the minimal size
of an I/O unit delivering high bandwidth with an acceptable
length of the queue. As described in previous work, a block
size of 32KB is a good choice for SSDs to get high perfor-
mance. But as 32KB still can be considered fairly small, a
longer queue should be necessary to achieve high bandwidth.
For larger blocks, especially blocks larger than the maximum
request size of a disk, the queue depth can be expected to
be smaller without loosing performance.

When using SSDs in RAID setups, the degree of paral-
lelism becomes even higher as all disks need to be supplied
with a sufficient amount of requests. This should reflect in
a (linear) increase in the required number of requests or the
required block size of the requests.

Random = Sequential. Although there is a lower
request latency for sequential reads in comparison to ran-
dom reads according to [2], we expect asynchronous I/O to
minimize the gap between these two input patterns. Again
this expectation is based on the parallel architecture of
SSDs. As a disk’s performance depends on the utilization of
the available parallel units, it should not make a difference
if the requests are supplied by asynchronously issued
sequential or random requests as long as the device queue
has enough requests to keep all units busy. In this scenario
NCQ should also contribute to get equally fast random and
sequential access as requests can be re-arranged to utilize
the parallel architecture of a disk. A second reason for our
expectation is the existence of block mapping and wear
leveling. As even sequential data is distributed by these
functions, a sequential access to a block of data is split
into several disk block accesses spread all over the disk
making random and sequential access looking equal from
a locality aspect. Third, the lack of mechanical parts and,
thus equally fast access to each part of the disk, supports
this expectation.

Benefits of Grouping. In Section 3 we introduced the
concept of grouped storage for column stores. Originally it
was developed for magnetic disks and their gap between ran-
dom and sequential access latencies. Although this gap is
small for solid state disks, they may still profit from group-
ing. However, for a true sequential pattern, it should not
make any difference at all, if data is read in groups or not.
On the other hand, random access to groups of data may
be faster than random access to single blocks, as request-

ing groups may benefit from sequential latencies. Also, for
solid state disks (similar to magnetic disks) we expect per-
formance to decrease as block requests drop below a certain
size. Here, grouping may mitigate this decrease, as group
size block requests are actually sequential block requests.
In combination with asynchronous I/O, this advantage of
grouping should not be as visible as larger queues, and thus,
sufficient parallelism should provide requests for all units
inside the disk.

Above we only discussed the benefits of grouping from
lower sequential access latencies. Another more interesting
benefit of a grouped data layout comes into play, when the
I/O unit can request disk blocks of varying sizes. In such a
case, the block size defines the minimal access granularity
and blocksize ∗ groupsize defines the maximal granularity.
For every multiple of block size between these two values,
the I/O unit only requests a single block, as opposed to the
first approach, where multiple sequential requests were is-
sued. Such a flexible I/O unit could be the key to having
very small random request blocks - as required for column
stores but also for indexed storage in row stores - while se-
quential access or better requests of larger data chunks can
be executed at full bandwidth. So from this point of view,
the tradeoff between the minimal block size that is fast for
random access and the necessary block size that provides
high bandwidth for sequential patterns would disappear.

5. ANALYSIS
This section briefly introduces our analysis tool followed

by a detailed analysis of I/O parameters for database input
operations executed on solid state disks.

5.1 Analysis tool
To validate the theory described above and to realize a

method to empirically determine the parameters needed for
efficient asynchronous I/O on a specific system with a spe-
cific workload, we have implemented a database I/O analysis
tool (or DIAT for short). This tool is able to iteratively test
the I/O bandwidth for all combinations of block size, group
size and queue depth within a certain parameter space. We
can then utilize these results to optimally tune a real-life
system.

After creating a large enough file (4GB by default), the
tool runs a read test for each combination of the three pa-
rameters in the selected parameter space. The read pattern
will consist of reading data in blocks of the specified size,
starting at a random location in the file. A number of blocks
will be read sequentially, determined by the group size (note
here that the group size is only used to define the number
of sequential requests, not for combining multiple block re-
quests as described in Section 3). Between groups, the tool
will jump to another random location in the file. This way
requests are generated for this read pattern and are submit-
ted to the asynchronous I/O facility of the operating system
until the number of outstanding requests equals the queue
depth. When the tool is notified that one or more requests
have been completed, the next requests are generated and
submitted, again until the queue depth is reached. A test run
ends when the previously specified amount of data has been
read. The effective bandwidth is then simply calculated by
test size/test time and output in a format easy for plotting.
Then the next set of parameters is tested.

5.2 System Setup
We evaluated on an Intel Xeon E5505 2.00 GHz with 8GB

main memory, a 1TB Western Digital Caviar Black for our
tool and operating system, a 64 bit Debian, kernel version
2.6.26. Our mainboard is a S5500BC from Intel. As solid
state drives we used 80GB Intel X25-M gen2. Three SSDs
were connected via an Adaptec 1430SA PCIe x4 RAID con-
troller plugged into one of the boards PCIe x8 slots. The
fourth disk was connected directly to one of the onboard
SATA ports leading to a maximum bandwidth of about
1GB/s. As each single drive showed a maximum bandwidth
of about 270MB/s, a total of 1GB/s for the RAID is very
close to the theoretical maximum. This setup was necessary
because bandwidth was limited to about 800MB/s when a)
all disks were connected to the Adaptec controller, b) the
controller was placed into one of the PCIe x4 slots and
c) all drives were connected via onboard SATA ports. We
first tested a single drive, one of the drives connected to the
Adaptec controller, followed by tests on a 4 disk linux soft-
ware RAID 0 created with mdadm1. Before we started with
the actual experiments we compared different disk sched-
ulers and in line with [2] chose noop for our experiments.
The disks had been in use prior to the final experiments
for this paper. They were formatted before each experiment
but no additional care was taken toward an initialization
process as, for example, described in [1]. We believe this to
be sufficient as we have neither read about nor experienced
an influence of the disks state regarding read operations.

5.3 Single SSD
For the single SSD experiments, DIAT created a 32GB

file of which 4GB were requested for each run, i.e. a setting
for each of the parameters queue depth, group size and block
size.

Hight Parallelism. In our expectations we stated that
high parallelism is necessary to use the full bandwidth of
a SSD. We mentioned two possible ways to achieve this:
long queues and large blocks. Figures 2 and 3 present the
bandwidth measured by DIAT for multiple block sizes and
varying queue length for random patterns with fixed group
sizes of 1 and 2. This simulates a data layout where blocks
are not particularly organized on disk or grouped by two,
respectively. To our surprise, we noticed that a queue depth
of 4 is sufficient to reach close to full bandwidth, but (in
line with previous results) a minimum block size of 32KB
is required. Random reads with blocks smaller than 32KB
show better performance for an increasing queue depth of 16
but never deliver full bandwidth. For block sizes larger than
32KB we can see a slight almost linear performance gain up
to 1MB, in total this is only about 5%. Reads of blocks larger
than 1MB show a sudden performance drop, which at the
first sight comes unexpected. However, it can be explained
by the way block requests are passed to the device: Using
blktrace2 we found that requests of 1MB and larger are split
into requests of 512KB before they are actually submitted
to the device. So a 2MB read request with group size 1 is
in truth 4 sequential read requests of 512KB - in our terms
this would be comparable to group size 4 and block size

1mdadm is a Linux tool used to manage software
RAID devices, previously known as mdctl. See also:
http://neil.brown.name/blog/mdadm
2a tool to trace block I/O in a system created by Jens Axboe

512KB. This split causes some overhead in the system that
could contribute to the performance drop monitored, but we
see the main reason for this behavior in the way the disks
process sequential reads. We will explain this in the next
paragraph about grouping as we also have to deal with this
behavior for groups of 4 and larger. One last thing to notice
is that random patterns with only one pending request at a
time do not perform at the maximum possible speed for the
tested block sizes. Patterns with two outstanding requests
only perform optimal for 1MB blocks, but this again is in
truth a pattern requesting 4 blocks of 512KB in size each
and, thus, equivalent to queue depth 4 and block size 512KB.

Sequential patterns, on the other hand, perform more as
expected in comparison to random patterns. As presented
in Figure 4, increasing the queue depth is sufficient to reach
full bandwidth. Also, simply increasing the block size leads
to the same result. But even for sequential patterns, a queue
depths of 4 is needed to get a good performance for small
blocks (32KB). In contrast to random input patterns, in-
creasing the queue depth further will also bring patterns
with blocks smaller than 32KB close to full bandwidth. As
queues of length 128 are needed for 4KB blocks, this may
not be applicable in every system. Finally, for sequential pat-
terns we should notice that the performance drop as seen for
random patterns and block sizes larger than 1MB does not
show. This is of interest for the explanation given in the next
paragraph.

Summing up these observations, a queue depth of at least
4 is needed to get close to full bandwidth for block sizes
between 32KB and 1MB.

Benefit from Grouping. First we want to notice that
true sequential patterns indeed do not show a dependency
on the number of blocks that are requested sequentially, so
we omitted a figure for this case. But random patterns on
the other hand show some surprising properties. As already
mentioned before, block sizes larger than 1MB result in a
bandwidth drop. We also explained that a single request of
such large blocks is in truth a group of 4 or more sequential
requests of size 512KB. Figure 5 shows for a queue depth of 4
that a random input pattern results in a significant penalty
for group size 4 for all block sizes, no matter if the group
of 4 sequential read requests is generated by asynchronous
I/O itself or by splitting larger blocks (see graphs for group
size 1 and 2). In Figure 6 we can see that this bandwidth
drop is not bound to queue depth 4 but rather shows for
all queues that fit into the drive’s NCQ queue, i.e. queues
of at most 32 elements. This is a very interesting behavior
as sequential patterns in general perform well and a larger
group size can be compared to (small) sequential patterns
that are requested with a random offset. Also, if these small
sequential patterns become longer, i.e. increasing group sizes
larger than 4, bandwidth slowly recovers. This would be a
positive effect of grouped requests if there was not the initial
drop at group size 4. Figure 6 also shows that there is almost
no difference, but if so, then only a slight decrease in band-
width from group size 1 to group size 2. So, obviously for a
solid state drive it is a difference if a system issues requests
using multiple small sequential requests (groups) instead of
a single or two requests with the matching block size, when
the amount of “sequentially” read data is the same.

An explanation for this is hidden in the way read requests
are processed. If the system issues a single read request of

 16

 32

 64

 128

 256

 1 4 16 64 256 1024 4096 16384

A
vg

 T
ra

ns
fe

r
S

pe
ed

 (
M

B
/s

)

Block Size (KB)

Single SSD, Random, Group Size: 1

Queue Depth: 1
Queue Depth: 2
Queue Depth: 4
Queue Depth: 8

Queue Depth: 16
Queue Depth: 32
Queue Depth: 64

Queue Depth: 128

Figure 2: Bandwidth single SSD,
group size 1, random access

 16

 32

 64

 128

 256

 1 4 16 64 256 1024 4096 16384

A
vg

 T
ra

ns
fe

r
S

pe
ed

 (
M

B
/s

)

Block Size (KB)

Single SSD, Random, Group Size: 2

Queue Depth: 1
Queue Depth: 2
Queue Depth: 4
Queue Depth: 8

Queue Depth: 16
Queue Depth: 32
Queue Depth: 64

Queue Depth: 128

Figure 3: Bandwidth single SSD,
group size 2, random access

 16

 32

 64

 128

 256

 1 4 16 64 256 1024 4096 16384

A
vg

 T
ra

ns
fe

r
S

pe
ed

 (
M

B
/s

)

Block Size (KB)

Single SSD, Sequential, Group Size: 1

Queue Depth: 1
Queue Depth: 2
Queue Depth: 4
Queue Depth: 8

Queue Depth: 16
Queue Depth: 32
Queue Depth: 64

Queue Depth: 128

Figure 4: Bandwidth single SSD,
group size 1, sequential access

 16

 32

 64

 128

 256

 1 4 16 64 256 1024 4096 16384

A
vg

 T
ra

ns
fe

r
S

pe
ed

 (
M

B
/s

)

Block Size (KB)

Single SSD, Random, Queue Depth: 4

Group Size: 1
Group Size: 2
Group Size: 4
Group Size: 8

Group Size: 16
Group Size: 32

Figure 5: Bandwidth single SSD,
queue depth 4, random access

 16

 32

 64

 128

 256

 1 2 4 8 16 32 64 128

A
vg

 T
ra

ns
fe

r
S

pe
ed

 (
M

B
/s

)

Group Size

Single SSD, Random, Block Size: 32768

Queue Depth: 1
Queue Depth: 2
Queue Depth: 4
Queue Depth: 8

Queue Depth: 16
Queue Depth: 32
Queue Depth: 64

Queue Depth: 128

Figure 6: Bandwidth single SSD,
block size 32KB, random access

 16

 32

 64

 128

 256

 1 4 16 64 256 1024 4096 16384

A
vg

 T
ra

ns
fe

r
S

pe
ed

 (
M

B
/s

)

Block Size (KB)

Single SSD, Random, Queue Depth: 128

Group Size: 1
Group Size: 2
Group Size: 4
Group Size: 8

Group Size: 16
Group Size: 32

Figure 7: Bandwidth single SSD,
queue depth 128, random access

512KB and smaller, the request is directly passed to the de-
vice and processed there. In case the request is larger, the
request is split into 512KB requests, which are then passed
to the device. So any request larger than 512KB is seen by
the disk as multiple sequential 512KB requests. Now, if the
device gets 4 or more sequential requests, it switches into
a sequential read mode, where more blocks are retrieved by
a prefetching mechanism. This particular behavior was also
discovered by [2]. But, as the sequential pattern only lasts
for a small number of blocks, the bandwidth taken by the
prefetching mechanism cannot be amortized by the faster
processing of the few sequential requests and, thus, results in
an overall penalty as (parts of) the prefetched blocks are not
used. For larger groups, though, the“wasted”prefetching can
be amortized the larger the groups are and the performance
of random patterns slowly recovers and becomes comparable
to sequential patterns again, following the general expecta-
tion. Interestingly, this behavior vanishes for queues longer
than 32 as can be seen in Figure 6 or when we compare Fig-
ures 5 and 7. However, 1MB again is the maximum request
size (block size ∗ group size) with high bandwidth, as larger
requests inherit a significant performance penalty compara-
ble to the one seen before. Taking a closer look shows, that
the penalty inherited by grouping 4 blocks is compensated
by queues of 32, group size 8 by a queue depth of 64, and
group size 16 by a queue depth of 128. (Figures for queue
size 32 and 64 are not presented.) So the factor of 8 is a
constant for each pattern. It seems as if the system is able
to detect the right group size if a queue is 8 times as large.
Looking at the numbers for the drive where the command
queue length is described to be 32 this is hard to believe,
though.

In Section 4 we mentioned a second way of how a system
can benefit from grouped data layout - a flexible I/O unit.

By looking at Figures 2 and 3 we already noticed that 32KB
is sufficiently large (for queues of 4 and larger) to get high
bandwidth, so 32KB should be the product of block size ∗
group size. The remaining question now is, how small the
block size can be chosen for random access.

To answer this question, we need to look at the graphs
for queue depth 4. A block size of 2KB gives a bandwidth
of about 50MB/s. This is only about 1/5 of the maximal
achievable bandwidth. As already mentioned 32KB block
size is needed to get this full bandwidth around 250MB/s.
however, this is 16 times the block size of 2KB, with only a
reduction in bandwidth of 1/5. Thus, 2KB is still beneficial,
if only a 2KB block out of the 32KB block is needed and the
I/O unit should just request the 2KB block. In fact, as band-
width always drops less than half, if only half the block size
is requested, the I/O unit should always choose the smaller
block size for a request. However, if multiple non-consecutive
blocks of a 32KB block are requested, additional intelligence
is needed. For example if every other 2KB block is required,
leading to a total request size of 16KB, the system should
request the complete group of 32KB in one piece, as here the
gain through higher bandwidth is larger than the penalty for
requesting twice the amount of data.

Summing up these observations, a grouped data layout
on disk can be beneficial for random patterns, but only if
a system provides dynamic block sizes for disk access. In
that case of block size of 2KB works well and should be
combined with a group size of 16, leading to a combined
group block size of 32KB. Sequential patterns are not
affected by grouping.

Random=Sequential. A last expectation from the com-
bination of SSDs and asynchronous I/O was that we can find
settings where random and sequential patterns equally give

full bandwidth. As we have seen in the previous paragraph,
group sizes of 4 and larger result in lower bandwidth. This
behavior cannot be monitored for sequential patterns. So in
order to achieve high bandwidth for both cases, a group size
smaller than 4 needs to be chosen. Looking again at Figures
2 and 4, we can see that the range of potentially interest-
ing (meaning fast) block sizes becomes wider for queues of
length 4 and larger. There the interval of 32KB to 1MB for
a request can give equally fast random and sequential I/O.
For group size 2 (see Figure 3) the maximum block size is
limited to 512KB for reasons described above. Also if very
small blocks are required by a system, 16KB becomes an
interesting block size at the price of larger queues (32 and
larger).

Summing up these observations, to achieve high band-
width, equally for random and sequential patterns, the group
size should be chosen to be 1 or 2, the queue depth should at
least be 4 and the block size can range from 32KB to 1MB.
In the other cases sequential patterns outperform random
ones.

5.4 4 Disk Raid
For our 4 disk RAID experiments, DIAT created a 256GB

file of which 8GB were requested for each run. The RAID
was created using mdadm with a chunk size of 16KB,
64KB and 256KB leading to stripe sizes of 64KB, 256KB
and 1024KB, respectively, as we have four disks. We focus
on a chunk size of 64KB, but also present differences to
RAID setups using smaller or larger setups where of interest.

Hight Parallelism. As expected the need for parallel
requests is even higher if data is stored in a RAID. Fig-
ures 8 and 9 show (for stripe sizes 256KB and 1024KB) the
bandwidth measured by DIAT for a fixed group size of 1
and varying block sizes and queue depths. We can see that
higher queue depth in general leads to higher bandwidth.
Where a queue depth of 4 was sufficient for the single SSD,
the RAID needs queues of length 16 and up if blocks are
smaller than the stripe size. This is not surprising, as read
requests smaller than the stripe size are not directed to all
devices. So in order to achieve the same degree of parallelism
at the device, more requests need to be issued to the RAID
the smaller the requests are. Also block sizes smaller than
the RAID chunk size are not suitable for fast random reads
unless very large queues (64 and up) are used. If we compare
Figures 8 and 9, we can see a larger increase of the average
transfer speed starting at exactly 64KB and 256KB, respec-
tively. For blocks larger than the stripe size a queue depth
of 4 is sufficient which is similar to the single SSD case, as
each of these requests is split into at least four device re-
quests which are distributed among the four disks. Similar
to the single SSD experiments we can find the bandwidth
drop for large block sizes. This time blocks 8MB and larger
are affected, as this leaves at least 2MB requests per device.
As the I/O scheduler merges the chunk sized requests before
sending them to the device (see [7]), we get the same behav-
ior as described for single SSDs, where requests of 1MB and
larger are split into 512KB requests and the disk detects the
sequential patterns.

Figure 10 shows the same experiment for sequential pat-
terns. Again, increasing queue depth or/and increasing block
size leads to better I/O performance. But in order to achieve
close to full bandwidth the block size needs to be at least

the RAID chunk size or queues need to be reasonably large.
Comparable to random patterns, block sizes equivalent to
the stripe size or larger provide good performance for shorter
queues. Interestingly, and in particular different from the sin-
gle SSD experiment, block sizes of 4MB and larger show a
slightly reduced bandwidth similar to the random patterns.

Summing up these observations, for a RAID of 4 disks a
queue depths of 32 in combination with block sizes between
the RAID chunk and stripe size will deliver high bandwidth.
If blocks are larger than the RAID stripe size, a queue
depth 4 is sufficient.

Benefits of Grouping. Again sequential patterns are
not affected by the group size. As previously described, a
queue depth of 32 delivers good performance for a wide
range of block sizes. Figures 11, 12 and 13 show the band-
width measured by DIAT for this queue depth for the three
different RAID setups. Similar to what we have seen for the
single SSD, requests of groups of 4 and larger are processed
at significantly lower bandwidth, but only for block sizes of
at least the RAID stripe size. This is not a surprise, as these
requests lead to grouped, a.k.a. sequential, requests of at
least four blocks at each device. With an increasing group
size this bandwidth drop can be compensated but not fully
recovered.

However, for block sizes smaller than the stripe size, a
group size of four shows the best performance. Again, the
explanation is simple, as grouping for smaller blocks ensures
that requests are distributed equally among the disks. For
example a grouped request of four blocks at a block size half
the stripe size guarantees two requests per device, where in
comparison four random requests do not necessarily go to
all four devices. However, when grouped requests of blocks
smaller than the stripe size are issued, a system needs to
make sure that not four or more sequential requests are is-
sued per device. For example, requests with a block size of
128KB are only slowed down by groups of 8 and larger on the
RAID with 256KB stripe size and for block sizes of 64KB
this effect shows for groups of 16 and larger. So, different
from the single SSD case, grouping in combination with se-
quential block requests can actually be beneficial in a RAID
setup.

Similar to the single SSD case, the RAID setup also ben-
efits from a grouped data layout in combination with a dy-
namic block size. A block size of 4KB for the RAID setup
is still efficient, if only data at this granularity is needed,
as the ascent of all graphs is less than one. So 4KB could
be the choice for the random access block size. However, the
appropriate block size for larger requests depends on the de-
gree of parallelism supported by the system and the query
load. So for a queue depth of 4 a combined block size larger
than the stripe size is required and for queues of length 32
or longer the combined block size only needs to be larger
than the RAID chunk size.

Summing up these observations, in a RAID setup with
4 disks I/O can also benefit from grouping in two ways. In
case of a fixed block size, a group size of four shows the
highest bandwidth for block sizes half or a quarter of the
stripe size. In case of a dynamic block size for disk access
4KB can be used for fine granular random access, where
disk blocks should be grouped in the order of the RAID
stripe size.

 16

 32

 64

 128

 256

 512

 1024

 1 4 16 64 256 1024 4096 16384

A
vg

 T
ra

ns
fe

r
S

pe
ed

 (
M

B
/s

)

Block Size (KB)

RAID 0, 4 SSDs, Random, Group Size: 1

Queue Depth: 1
Queue Depth: 2
Queue Depth: 4
Queue Depth: 8

Queue Depth: 16
Queue Depth: 32
Queue Depth: 64

Queue Depth: 128

Figure 8: Bandwidth RAID,
stripe size 256KB, group size 1,
random access

 16

 32

 64

 128

 256

 512

 1024

 1 4 16 64 256 1024 4096 16384

A
vg

 T
ra

ns
fe

r
S

pe
ed

 (
M

B
/s

)

Block Size (KB)

RAID 0, 4 SSDs, Random, Group Size: 1

Queue Depth: 1
Queue Depth: 2
Queue Depth: 4
Queue Depth: 8

Queue Depth: 16
Queue Depth: 32
Queue Depth: 64

Queue Depth: 128

Figure 9: Bandwidth RAID,
stripe size 1024KB, group size 1,
random access

 16

 32

 64

 128

 256

 512

 1024

 1 4 16 64 256 1024 4096 16384

A
vg

 T
ra

ns
fe

r
S

pe
ed

 (
M

B
/s

)

Block Size (KB)

RAID 0, 4 SSDs, Sequential, Group Size: 1

Queue Depth: 1
Queue Depth: 2
Queue Depth: 4
Queue Depth: 8

Queue Depth: 16
Queue Depth: 32
Queue Depth: 64

Queue Depth: 128

Figure 10: Bandwidth RAID,
stripe size 256KB, group size 1,
sequential access

 128

 256

 512

 1024

 1 4 16 64 256 1024 4096 16384

A
vg

 T
ra

ns
fe

r
S

pe
ed

 (
M

B
/s

)

Block Size (KB)

RAID 0, 4 SSDs, Random, Queue Depth: 32

Group Size: 1
Group Size: 2
Group Size: 4
Group Size: 8

Group Size: 16
Group Size: 32
Group Size: 64

Group Size: 128

Figure 11: Bandwidth RAID,
stripe size 64KB, queue depth 32,
random access

 128

 256

 512

 1024

 1 4 16 64 256 1024 4096 16384

A
vg

 T
ra

ns
fe

r
S

pe
ed

 (
M

B
/s

)

Block Size (KB)

RAID 0, 4 SSDs, Random, Queue Depth: 32

Group Size: 1
Group Size: 2
Group Size: 4
Group Size: 8

Group Size: 16
Group Size: 32
Group Size: 64

Group Size: 128

Figure 12: Bandwidth RAID,
stripe size 256KB, queue depth
32, random access

 128

 256

 512

 1024

 1 4 16 64 256 1024 4096 16384

A
vg

 T
ra

ns
fe

r
S

pe
ed

 (
M

B
/s

)

Block Size (KB)

RAID 0, 4 SSDs, Random, Queue Depth: 32

Group Size: 1
Group Size: 2
Group Size: 4
Group Size: 8

Group Size: 16
Group Size: 32
Group Size: 64

Group Size: 128

Figure 13: Bandwidth RAID,
stripe size 1024KB, queue depth
32, random access

Random=Sequential. Similar to the single SSD case,
we can find settings where both patterns show equally good
performance. The parameter space for the RAID setup is in
principle only restricted by the random pattern, as sequen-
tial patterns in general perform slightly better. This leads
to the settings found in the first paragraph of this section to
achieve equally high bandwidth for random and sequential
patterns.

6. CONCLUSIONS
Concluding we can say that much of the potential hid-

den in solid state disks can be extracted for database use by
applying asynchronous I/O. In particular the combination
asynchronous I/O with the SSD property of fast random
reads opens the door for very fine grained clustering struc-
tures. In Section 3 we introduced grouping for column stores.
In our evaluation we show, that this grouping approach in
combination with dynamic block sizes for disk access can
provide very fine granular access without loosing perfor-
mance for more coarse data requests. However, our analysis
also pointed out, that the necessary parameters need to be
chosen with care. As we only tested the X-25M, we have to
leave the question open if our results are portable to other
types of SSDs, especially as the market is still growing and
SSD technology is still under heavy development.

7. REFERENCES
[1] L. Bouganim, B. T. Jónsson, and P. Bonnet. uflip:

Understanding flash io patterns. In CIDR’09, 2009.

[2] F. Chen, D. A. Koufaty, and X. Zhang. Understanding
intrinsic characteristics and system implications of
flash memory based solid state drives. In

SIGMETRICS ’09, pages 181–192, New York, NY,
USA, 2009. ACM.

[3] G. Graefe. The Five-minute Rule 20 Years Later (and
how Flash Memory Changes the Rules).
Communications of the ACM, 52(7):48–59, 2009.

[4] Intel Corporation. Intel X18-M/X25-M SATA Solid
State Drive - Product Manual.
http://download.intel.com/design/flash/nand/
mainstream/mainstream-sata-ssd-datasheet.pdf.

[5] Intel Corporation. Intel X25-E SATA Solid State
Drive - Product Manual.
http://download.intel.com/design/flash/nand/
extreme/319984.pdf.

[6] S.-W. Lee and B. Moon. Design of Flash-based
DBMS: an In-Page Logging Approach. In
SIGMOD’07, pages 55–66, 2007.

[7] R. Love. Linux Kernel Development (2nd Edition)
(Novell Press). Novell Press, 2005.

[8] S. Nath and A. Kansal. FlashDB: Dynamic Self-tuning
Database for NAND Flash. In 6th Int. Conf. on
Information Processing in Sensor Networks (IPSN)
2007, pages 410–419, 2007.

[9] P. E. O’Neil, E. J. O’Neil, X. Chen, and S. Revilak.
The Star Schema Benchmark and Augmented Fact
Table Indexing. In R. O. Nambiar and M. Poess,
editors, TPCTC, volume 5895 of Lecture Notes in
Computer Science, pages 237–252. Springer, 2009.

[10] S. Padmanabhan, B. Bhattacharjee, T. Malkemus,
L. Cranston, and M. Huras. Multi-dimensional
Clustering: a New Data Layout Scheme in DB2. In
SIGMOD ’03, pages 637–641, New York, NY, USA,
2003. ACM.

[11] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and
S. Zdonik. C-store: a column-oriented dbms. In VLDB
’05: Proceedings of the 31st international conference
on Very large data bases, pages 553–564. VLDB
Endowment, 2005.

[12] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L.
Wiener, and G. Graefe. Query Processing Techniques
for Solid State Drives. In SIGMOD’09, pages 59–72,
2009.

[13] C.-H. Wu, T.-W. Kuo, and L.-P. Chang. An Efficient
B-tree Layer Implementation for Flash-memory
Storage Systems. ACM Trans. Embedded Comput.
Syst., 6(3), 2007.

[14] M. Zukowski, P. A. Boncz, N. Nes, and S. Héman.
Monetdb/x100 - a dbms in the cpu cache. IEEE Data
Eng. Bull., 28(2):17–22, 2005.

