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OLTP – a challenging workload

• Memory-resident

• High concurrency
– 16-64 ctx today, more coming

– Application is scalable

– DBMS is “fairly scalable”

• Exposes OS overheads
– Synchronization, scheduling

– Any extra serialization hurts!

98% parallel

Shore-MT

99% parallel

Hardware Contexts

Throughput

Today’s hardware

Not the first time OS gets in the way…
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Latching: meet the “contenders”

• Spinning
– Waste CPU for fast response

– Vulnerable to OS scheduler

– Favored for scientific 

workloads (high perf.)

– Ex: time-published MCS
[HiPC’05]

• Blocking**
– Give CPU to other threads

– Integrated with scheduler

– Favored for commercial 

workloads (robust)

– Ex: Solaris adaptive mutex

=> Neither is best for all situations

** In practice needs some spinning

Philosophies are fundamentally opposed
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OLTP benchmark performance
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Contributions

• Problem: OS-related scalability limitations

– Undesirable scheduling decisions

– Expensive synchronization primitives

• Cause: Trade-offs and conflicting goals

– Spinning vs. blocking

– Load vs. contention mgt.

• Solution: Decouple load and contention mgt.

– Address orthogonal issues separately

– Make spinning and blocking complement each other

– Outperform existing solutions by 50%
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In this talk…

• OS-related scalability limitations

• Trading off spinning vs. blocking

• Decoupling load from contention

• Conclusions
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Experimental Setup

• Sun T5220 “Niagara II” Server

– 16 cores** with 64 hardware contexts total

– Solaris 10

• Shore-MT storage manager

– Modified to use different latch types

– Nokia Network Database Benchmark (aka “TM-1”)

• Measurements 

– Hand-instrumented code (e.g. gethrtime)

– Sun profiling tools

– DTrace

** technically 8 dual-pipelined cores
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Spinning and thread preemption
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Spinning and thread preemption

T1
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T3

T4

10 µs

T5

100 ms !

Preempted latch holder = 10000x longer wait times

Next latch holder near end of time slice…

Work

Hold latch

Spin
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Blocking and latch dead time
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Dead time

L

Hand-off to sleeping thread = 10-20µs on critical path

Other waiting threads likely to give up spinning…

Work

Hold latch

Spin

Context switch
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A small step back in time

Database engines justified in using pthread_mutex so far

Client threads
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Scalability limits of blocking
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In this talk…

• OS-related scalability limitations

• Trading off spinning vs. blocking

• Decoupling load from contention

• Conclusions



© 2009 Ryan Johnson 14

Related Approaches

• Admission control

– Request level is too coarse grained

– Knobs: #contexts, request sizes, prob to block, …

– Too many threads = load spikes

– Too few threads = underutilization

• Adaptive/hybrid primitives

– Implicit load control

– Knobs: #threads, #contexts, latch hold time, cache, …

– Too much spinning = preempted latch holders

– Too much blocking = scheduling bottlenecks

Fundamental tensions remain unresolved
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Load and contention up close

• Load control
– # active threads?

– # HW contexts?

– Global property

– Long time scales (ms)

• Contention mgt.
– Latch queue length?

– Latch hold time?

– Local property

– Short time scales (µs)

System: 64 ctx, 91 threads

|Q| = 1

|Q| = 0

|Q| = 2

System: 64 ctx, 32 threads

|Q| = 31

|Q| = 1
|Q| = 2
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Load and contention up close

System: 64 ctx, 91 threads

|Q| = 1

|Q| = 0

|Q| = 2

System: 64 ctx, 32 threads

|Q| = 31

|Q| = 1
|Q| = 2

• Load control
– # active threads?

– # HW contexts?

– Global property

– Long time scales (ms)

• Blocking
– Central OS scheduler

– Decisions every 10-100 ms

=>  Ideal for load control!

• Contention mgt.
– Latch queue length?

– Latch hold time?

– Local property

– Short time scales (µs)

• Spinning
– Arbitrary memory location

– Cache miss costs ns

=>  Ideal for contention mgt!

Keep separation even when load, contention combine
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Decoupling load from contention

System: 64 ctx, 91 threads

|Q| = 31

spin

sleep
blocking

extra threads leave

=> no preemptions

spinning

fast latch hand-off

=> short critical path

Spinning and blocking cooperate instead of competing

Load

Control

Threads check load 

while spinning
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Load control benefit for OLTP
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Conclusions

• OS getting in the way of DBMS

– … yet again …

– Synchronization and scheduling this time

• Overheads come from tensions between

– Spinning vs blocking

– Load vs contention management

• Decoupling load from contention

– Allows spinning and blocking to cooperate

– Matches best behavior of other schemes

– Gives up to 50% higher throughput under load
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Thank you!

http://dias.epfl.ch


