
A new look at the roles of

spinning and blocking

Ryan Johnson, Manos Athanassoulis, Radu Stoica, Anastasia Ailamaki

© 2009 Ryan Johnson 2

OLTP – a challenging workload

• Memory-resident

• High concurrency
– 16-64 ctx today, more coming

– Application is scalable

– DBMS is “fairly scalable”

• Exposes OS overheads
– Synchronization, scheduling

– Any extra serialization hurts!

98% parallel

Shore-MT

99% parallel

Hardware Contexts

Throughput

Today’s hardware

Not the first time OS gets in the way…

© 2009 Ryan Johnson 3

Latching: meet the “contenders”

• Spinning
– Waste CPU for fast response

– Vulnerable to OS scheduler

– Favored for scientific

workloads (high perf.)

– Ex: time-published MCS
[HiPC’05]

• Blocking**
– Give CPU to other threads

– Integrated with scheduler

– Favored for commercial

workloads (robust)

– Ex: Solaris adaptive mutex

=> Neither is best for all situations

** In practice needs some spinning

Philosophies are fundamentally opposed

© 2009 Ryan Johnson 4

OLTP benchmark performance

0

50

100

150

0 32 64 96 128 160 192

Client Threads

Throughput (ktps)

block

spin100% load

Blocking does

not scale well

Spinning falls

off under load

Load + parallelism both high = 50% drop in throughput

© 2009 Ryan Johnson 5

Contributions

• Problem: OS-related scalability limitations

– Undesirable scheduling decisions

– Expensive synchronization primitives

• Cause: Trade-offs and conflicting goals

– Spinning vs. blocking

– Load vs. contention mgt.

• Solution: Decouple load and contention mgt.

– Address orthogonal issues separately

– Make spinning and blocking complement each other

– Outperform existing solutions by 50%

© 2009 Ryan Johnson 6

In this talk…

• OS-related scalability limitations

• Trading off spinning vs. blocking

• Decoupling load from contention

• Conclusions

© 2009 Ryan Johnson 7

Experimental Setup

• Sun T5220 “Niagara II” Server

– 16 cores** with 64 hardware contexts total

– Solaris 10

• Shore-MT storage manager

– Modified to use different latch types

– Nokia Network Database Benchmark (aka “TM-1”)

• Measurements

– Hand-instrumented code (e.g. gethrtime)

– Sun profiling tools

– DTrace

** technically 8 dual-pipelined cores

© 2009 Ryan Johnson 8

Spinning and thread preemption

T1

T2

T3

T4

Work

Hold latch

Spin

© 2009 Ryan Johnson 9

Spinning and thread preemption

T1

T2

T3

T4

10 µs

T5

100 ms !

Preempted latch holder = 10000x longer wait times

Next latch holder near end of time slice…

Work

Hold latch

Spin

© 2009 Ryan Johnson 10

Blocking and latch dead time

T1

T2

T3

T4

Dead time

L

Hand-off to sleeping thread = 10-20µs on critical path

Other waiting threads likely to give up spinning…

Work

Hold latch

Spin

Context switch

© 2009 Ryan Johnson 11

A small step back in time

Database engines justified in using pthread_mutex so far

Client threads

0

10

20

30

40

50

60

0 8 16 24 32 40 48

TM-1 throughput (ktps)

spin

block

schedctl

-30%

Preempted

latch holders

16 contexts

schedctl

Tell OS I hold latch

=> fewer unwanted

=> preemptions

100% load

© 2009 Ryan Johnson 12

Scalability limits of blocking

0

30

60

90

120

150

0 32 64 96 128 160 192
Client threads

TM-1 throughput (ktps)

-40%

OS punishes

schedctl abuse

Context switching

overloads scheduler

Techniques which used to work no longer useful

spin

block

schedctl

64 contexts

100% load

=> Cannot hide tension between spinning and blocking

© 2009 Ryan Johnson 13

In this talk…

• OS-related scalability limitations

• Trading off spinning vs. blocking

• Decoupling load from contention

• Conclusions

© 2009 Ryan Johnson 14

Related Approaches

• Admission control

– Request level is too coarse grained

– Knobs: #contexts, request sizes, prob to block, …

– Too many threads = load spikes

– Too few threads = underutilization

• Adaptive/hybrid primitives

– Implicit load control

– Knobs: #threads, #contexts, latch hold time, cache, …

– Too much spinning = preempted latch holders

– Too much blocking = scheduling bottlenecks

Fundamental tensions remain unresolved

© 2009 Ryan Johnson 15

Load and contention up close

• Load control
– # active threads?

– # HW contexts?

– Global property

– Long time scales (ms)

• Contention mgt.
– Latch queue length?

– Latch hold time?

– Local property

– Short time scales (µs)

System: 64 ctx, 91 threads

|Q| = 1

|Q| = 0

|Q| = 2

System: 64 ctx, 32 threads

|Q| = 31

|Q| = 1
|Q| = 2

© 2009 Ryan Johnson 16

Load and contention up close

System: 64 ctx, 91 threads

|Q| = 1

|Q| = 0

|Q| = 2

System: 64 ctx, 32 threads

|Q| = 31

|Q| = 1
|Q| = 2

• Load control
– # active threads?

– # HW contexts?

– Global property

– Long time scales (ms)

• Blocking
– Central OS scheduler

– Decisions every 10-100 ms

=> Ideal for load control!

• Contention mgt.
– Latch queue length?

– Latch hold time?

– Local property

– Short time scales (µs)

• Spinning
– Arbitrary memory location

– Cache miss costs ns

=> Ideal for contention mgt!

Keep separation even when load, contention combine

© 2009 Ryan Johnson 17

Decoupling load from contention

System: 64 ctx, 91 threads

|Q| = 31

spin

sleep
blocking

extra threads leave

=> no preemptions

spinning

fast latch hand-off

=> short critical path

Spinning and blocking cooperate instead of competing

Load

Control

Threads check load

while spinning

© 2009 Ryan Johnson 18

Load control benefit for OLTP

0

30

60

90

120

150

0 32 64 96 128 160 192

Active Threads

TM-1 Throughput (ktps)

spin

block

decoupled

Decoupled scheme tracks best across whole spectrum

© 2009 Ryan Johnson 19

Conclusions

• OS getting in the way of DBMS

– … yet again …

– Synchronization and scheduling this time

• Overheads come from tensions between

– Spinning vs blocking

– Load vs contention management

• Decoupling load from contention

– Allows spinning and blocking to cooperate

– Matches best behavior of other schemes

– Gives up to 50% higher throughput under load

© 2009 Ryan Johnson 20

Thank you!

http://dias.epfl.ch

