
Cache-conscious Buffering for
Database Operators with State

John Cieslewicz, William Mee,
and Kenneth A. Ross
Columbia University



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Motivation and Contributions
 Cache-conscious research for in memory

OLAP operations has often focused on one
operation at a time

 This work examines the impact (2x!) of
temporal locality in the cache when multiple
operators are used

 We will demonstrate the benefits of operator
scheduling decisions based on minimizing
measured L2 cache miss events



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Operators with State
 Many database operators maintain state or

use persistent data structures.
 Hash tables
 Indexes

 Processing multiple tuples takes advantage of
temporal locality
 Block processing already known to have good

performance properties
 How should temporal cache information

impact inter-operator scheduling and time
slice (or block size)?



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

A Two Operator Example
 Two operators to be

run by DBMS
 Both use a private

data structure during
processing

 Cache resident data
structure = better
performance

Operator AInput Output

Operator BInput Output



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Scheduling and Cache
Thrashing - Case 1
 A and B each use a data structure that is the

size of the cache.
 A begins processing. Its data structure

becomes cache resident after n tuples.
 If B is scheduled, it will suffer cache misses

and evict A’s data.
 Scheduling blocks of fewer than n tuples

means cache misses are never amortized.



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Scheduling and Cache
Thrashing - Case 2
 A or B uses a data structure larger than the

cache or simply scans many rows
 A begins processing, but data structure never

becomes cache resident due to capacity
constraints

 If B is interleaved with A, it suffers cache
misses, but will not degrade A’s performance



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Scheduling and Cache
Thrashing - Case 3
 A and B both use a small data structure
 A begins processing, data structure quickly

become cache resident
 If B is interleaved with A, it also quickly

becomes cache resident with A.
 A may still be evicted due to B scanning input
 But, small data structure size means cache

miss cost to achieve cache residency is low



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Operator Cache Miss Pattern
C

ac
he

 M
is

se
s

Time (or Tuples Processed)

Total
Reading
Input

Hash Table

Other State



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Some observations
 If an operator takes longer to become cache

resident, a larger block size is needed to
amortize those cache misses
 How to differentiate between an operator that

takes a long time to become cache resident and
that never is?

 The cache miss behavior is dependent on the
operator and the data
 Block size must be tailored to each operator

instance using runtime performance monitoring



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Amortizing Cache Misses,
Enhancing Temporal Locality

 We assume a block-
oriented processing

 We insert buffers to
ensure blocks of a
certain size

 At runtime we determine
the buffer size that
amortizes cache misses
and ensures fair
execution



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Choosing the block size
 Use hardware performance

counter to measure cache
misses per tuple, c

 c depends on the buffer size
 We also determine r, the rate

at which tuples are produced
 r may change, for this paper

we assume it does not
 cr = cache misses/time



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Choosing the block size
 We will assume r is fixed for

all operators
 Given B1 and B2, the cache

miss cost is r(c1+c2+c3)
 Adding capacity to B1 may

reduce c1 and c2 (c1’ and c2')
 Adding memory to B2 may

reduce c2 and c3 (c2'’ and c3'’)
 Compare new costs:

 r(c1'+c2'+c3)
 r(c1+c2''+c3'')



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Choosing the block size
 Make buffer capacity allocations that reduce

cache misses, improving performance
 Operators should only be run if:

 Enough input tuples + output space to ensure a
sufficiently long time slice

 There is always an operator that can be run.
 See paper for a proof.

 Hard ceiling on buffer size prevents starvation
of other queries



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Experimental Setup
 Sun UltraSPARC T1000

 32 hardware threads over 8 cores
 3MB shared L2, 12-way associative with 64B cache lines

 We devote 31 threads to computation, one thread to
coordination

 Workload:
 Adaptive Aggregation [VLDB ‘07]
 Hash Join

 Data:
 224 tuples, uniform and self similar distributions
 For hash aggregation, different group by cardinalities



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Effect of Interleaving Queries
Uniform [Execution time]

2x Difference

Group by cardinality



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Effect of Interleaving Queries
Uniform [L2 Cache Misses]

Group by cardinality



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Effect of Interleaving Queries
Self similar [Execution Time]

Group by cardinality



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Effect of Interleaving Queries
Self similar [L2 Cache Misses]

Group by cardinality



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Effect of Interleaving Queries
[Hash Join]

Unique probe keys



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Runtime Performance
Monitoring
 Hardware counters for events such as cache and

TLB misses
 Negligible performance impact to access these counters (we

use them sparingly)
 Determining cache behavior of an operator instance:

 We sample the number of accumulated L2 misses before
and after an operator is run

 Without interleaving another operator, run the operator again
with a larger batch size

 Look for point at which rate of cache miss change stops
changing (second derivative)



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Sampling to determine the
cache miss pattern

C
ac

he
 M

is
se

s

Time (or Tuples Processed)

Total

samples

Hash table is cache resident,
second derivative of “total” is zero.



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

But, wait! I’m not ready…
 Some operators have phases of

operation when cache misses may not
be representative of the steady state.
 The adaptive aggregation operation has a

sampling phase of its own that can be
considerably different

 Sampling interface exposes a “Don’t
sample me now” flag.



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Cumulative Cache Misses per
Tuple (Aggregation)



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Cumulative Cache Misses Per
Tuple (Aggregation) -- Detail



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Variable Buffer Size
[Execution Time]

•Allocate memory
non-uniformly
among ten
aggregate
operators.

• 20 operators,
half with group by
cardinality = 1024,
half = 64

8.4%
improvement



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Variable Buffer Size
[L2 Cache Misses]



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Future Work
 Consider other modes of parallelism

 multiple operators at the same time means more
types of cache interference

 Improve the model. In these experiments we
considered r the rate tuples are produced to
be fixed.

 Group multiple operators with small state
needs together in one execution chain



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Conclusion
 Scheduling for temporal locality of database

operator state is important
 2x improvement in some cases

 Large buffers (MB) can be useful
 Allocating buffers most useful for operators

with state sized close to L2 capacity
 Smaller state doesn’t cost much to load
 Larger state will never be cache resident



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

L2 Misses [Hash join]


