
Cache-conscious Buffering for
Database Operators with State

John Cieslewicz, William Mee,
and Kenneth A. Ross
Columbia University



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Motivation and Contributions
 Cache-conscious research for in memory

OLAP operations has often focused on one
operation at a time

 This work examines the impact (2x!) of
temporal locality in the cache when multiple
operators are used

 We will demonstrate the benefits of operator
scheduling decisions based on minimizing
measured L2 cache miss events



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Operators with State
 Many database operators maintain state or

use persistent data structures.
 Hash tables
 Indexes

 Processing multiple tuples takes advantage of
temporal locality
 Block processing already known to have good

performance properties
 How should temporal cache information

impact inter-operator scheduling and time
slice (or block size)?



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

A Two Operator Example
 Two operators to be

run by DBMS
 Both use a private

data structure during
processing

 Cache resident data
structure = better
performance

Operator AInput Output

Operator BInput Output



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Scheduling and Cache
Thrashing - Case 1
 A and B each use a data structure that is the

size of the cache.
 A begins processing. Its data structure

becomes cache resident after n tuples.
 If B is scheduled, it will suffer cache misses

and evict A’s data.
 Scheduling blocks of fewer than n tuples

means cache misses are never amortized.



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Scheduling and Cache
Thrashing - Case 2
 A or B uses a data structure larger than the

cache or simply scans many rows
 A begins processing, but data structure never

becomes cache resident due to capacity
constraints

 If B is interleaved with A, it suffers cache
misses, but will not degrade A’s performance



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Scheduling and Cache
Thrashing - Case 3
 A and B both use a small data structure
 A begins processing, data structure quickly

become cache resident
 If B is interleaved with A, it also quickly

becomes cache resident with A.
 A may still be evicted due to B scanning input
 But, small data structure size means cache

miss cost to achieve cache residency is low



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Operator Cache Miss Pattern
C

ac
he

 M
is

se
s

Time (or Tuples Processed)

Total
Reading
Input

Hash Table

Other State



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Some observations
 If an operator takes longer to become cache

resident, a larger block size is needed to
amortize those cache misses
 How to differentiate between an operator that

takes a long time to become cache resident and
that never is?

 The cache miss behavior is dependent on the
operator and the data
 Block size must be tailored to each operator

instance using runtime performance monitoring



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Amortizing Cache Misses,
Enhancing Temporal Locality

 We assume a block-
oriented processing

 We insert buffers to
ensure blocks of a
certain size

 At runtime we determine
the buffer size that
amortizes cache misses
and ensures fair
execution



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Choosing the block size
 Use hardware performance

counter to measure cache
misses per tuple, c

 c depends on the buffer size
 We also determine r, the rate

at which tuples are produced
 r may change, for this paper

we assume it does not
 cr = cache misses/time



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Choosing the block size
 We will assume r is fixed for

all operators
 Given B1 and B2, the cache

miss cost is r(c1+c2+c3)
 Adding capacity to B1 may

reduce c1 and c2 (c1’ and c2')
 Adding memory to B2 may

reduce c2 and c3 (c2'’ and c3'’)
 Compare new costs:

 r(c1'+c2'+c3)
 r(c1+c2''+c3'')



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Choosing the block size
 Make buffer capacity allocations that reduce

cache misses, improving performance
 Operators should only be run if:

 Enough input tuples + output space to ensure a
sufficiently long time slice

 There is always an operator that can be run.
 See paper for a proof.

 Hard ceiling on buffer size prevents starvation
of other queries



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Experimental Setup
 Sun UltraSPARC T1000

 32 hardware threads over 8 cores
 3MB shared L2, 12-way associative with 64B cache lines

 We devote 31 threads to computation, one thread to
coordination

 Workload:
 Adaptive Aggregation [VLDB ‘07]
 Hash Join

 Data:
 224 tuples, uniform and self similar distributions
 For hash aggregation, different group by cardinalities



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Effect of Interleaving Queries
Uniform [Execution time]

2x Difference

Group by cardinality



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Effect of Interleaving Queries
Uniform [L2 Cache Misses]

Group by cardinality



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Effect of Interleaving Queries
Self similar [Execution Time]

Group by cardinality



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Effect of Interleaving Queries
Self similar [L2 Cache Misses]

Group by cardinality



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Effect of Interleaving Queries
[Hash Join]

Unique probe keys



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Runtime Performance
Monitoring
 Hardware counters for events such as cache and

TLB misses
 Negligible performance impact to access these counters (we

use them sparingly)
 Determining cache behavior of an operator instance:

 We sample the number of accumulated L2 misses before
and after an operator is run

 Without interleaving another operator, run the operator again
with a larger batch size

 Look for point at which rate of cache miss change stops
changing (second derivative)



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Sampling to determine the
cache miss pattern

C
ac

he
 M

is
se

s

Time (or Tuples Processed)

Total

samples

Hash table is cache resident,
second derivative of “total” is zero.



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

But, wait! I’m not ready…
 Some operators have phases of

operation when cache misses may not
be representative of the steady state.
 The adaptive aggregation operation has a

sampling phase of its own that can be
considerably different

 Sampling interface exposes a “Don’t
sample me now” flag.



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Cumulative Cache Misses per
Tuple (Aggregation)



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Cumulative Cache Misses Per
Tuple (Aggregation) -- Detail



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Variable Buffer Size
[Execution Time]

•Allocate memory
non-uniformly
among ten
aggregate
operators.

• 20 operators,
half with group by
cardinality = 1024,
half = 64

8.4%
improvement



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Variable Buffer Size
[L2 Cache Misses]



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Future Work
 Consider other modes of parallelism

 multiple operators at the same time means more
types of cache interference

 Improve the model. In these experiments we
considered r the rate tuples are produced to
be fixed.

 Group multiple operators with small state
needs together in one execution chain



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

Conclusion
 Scheduling for temporal locality of database

operator state is important
 2x improvement in some cases

 Large buffers (MB) can be useful
 Allocating buffers most useful for operators

with state sized close to L2 capacity
 Smaller state doesn’t cost much to load
 Larger state will never be cache resident



Cache-Conscious Buffering for Database Operators with StateDaMoN - June 28, 2009

L2 Misses [Hash join]


