
Frequent Itemset Mining on Graphics Processors

Wenbin Fang, Mian Lu, Xiangye Xiao, Bingsheng He
1
, Qiong Luo

Hong Kong University of Science and Technology Microsoft Research Asia
1

{wenbin, lumian, xiaoxy, luo}@cse.ust.hk savenhe@microsoft.com

ABSTRACT
We present two efficient Apriori implementations of Fre-
quent Itemset Mining (FIM) that utilize new-generation graph-
ics processing units (GPUs). Our implementations take ad-
vantage of the GPU’s massively multi-threaded SIMD (Sin-
gle Instruction, Multiple Data) architecture. Both imple-
mentations employ a bitmap data structure to exploit the
GPU’s SIMD parallelism and to accelerate the frequency
counting operation. One implementation runs entirely on
the GPU and eliminates intermediate data transfer between
the GPU memory and the CPU memory. The other im-
plementation employs both the GPU and the CPU for pro-
cessing. It represents itemsets in a trie, and uses the CPU
for trie traversing and incremental maintenance. Our pre-
liminary results show that both implementations achieve a
speedup of up to two orders of magnitude over optimized
CPU Apriori implementations on a PC with an NVIDIA
GTX 280 GPU and a quad-core CPU.

1. INTRODUCTION
Frequent itemset mining (FIM) aims at finding interest-

ing patterns from databases, or called transaction databases.
Each database transaction contains a set of items, such as
grocery items purchased in a basket. A FIM algorithm
scans the database, possibly multiple times, and finds item-
sets that occur in transactions more frequently than a given
threshold. The number of occurrences is called support, and
the threshold the minimum support.

Two representative FIM algorithms are Apriori [3] and
FP-growth [16]. Apriori iteratively generates candidate item-
sets of K+1 items, or (K+1)-itemsets, from K-itemsets, and
scans all transactions to check whether the candidate item-
sets are frequent. In comparison, FP-growth recursively
builds pattern trees to represent frequent itemsets, with-
out candidate generation. According to a report from the
first Workshop on Frequent Itemset Mining Implementations
(FIMI’03) [12], FP-growth implementations were generally
an order of magnitude faster than Apriori ; however, on sev-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Fifth International Workshop on Data Management on
New Hardware (DaMoN 2009) June 28, 2009, Providence, Rhode-Island
Copyright 2009 ACM 978-1-60558-701-1 ...$10.00.

eral datasets, an Apriori implementation, apriori borgelt,
was slightly faster when the support was high.

Utilizing parallel architectures has been a viable means for
improving data mining performance [4, 7, 9, 32]. In this pa-
per, we study whether we can adapt the existing CPU-based
FIM algorithms to new-generation graphics processing units
(GPUs). GPUs can be regarded as massively multi-threaded
many-core processors. Different from multi-core CPUs, the
cores on the GPU are virtualized, and GPU threads are ex-
ecuted in SIMD (Single Instruction, Multiple Data) and are
managed by the hardware. Such a design simplifies GPU
programming and improves program scalability and porta-
bility, since programs are oblivious about physical cores and
rely on hardware for thread management. Nevertheless, it
also makes the implementation of algorithms with complex
control flows a challenging task on the GPU, even though
the GPU has an order of magnitude higher computation
capability as well as memory bandwidth than a multi-core
CPU.

Taking advantage of the massive computation power and
the high memory bandwidth of the GPU, previous work has
accelerated database operations [13, 14, 19], approximate
stream mining of quantiles and frequencies [15], MapReduce
[17] and k-means clustering [8]. To the best of our knowl-
edge, there has been no prior work that focuses on study-
ing the GPU acceleration for FIM algorithms, even though
parallel FIM has been studied on simultaneous multithread-
ing (SMT) processors [11], shared-memory systems [28], and
most recently multi-core CPUs [25].

As a first step, we consider the GPU implementation of
Apriori, with intention to extend to FP-growth. The Apri-
ori algorithm is not only applied in frequent itemset mining
or association mining, but also in other data mining tasks,
such as clustering [27], and functional dependency [22]. Ex-
isting Apriori FIM algorithms are optimized for data lo-
cality; however, the data structures in use, e.g., tries, are
non-aligned and the access patterns are largely irregular,
e.g., pointer-chasing. These characteristics may hurt the ef-
ficiency on the GPU since SIMD operations favor aligned
and sequential data accesses [34].

Addressing the challenge in implementing Apriori on the
GPU, we adopt a bitmap data structure to represent trans-
actions in our two GPU-based FIM implementations. Specif-
ically, the bitmap stores the occurrences of items in transac-
tions, and is efficient to be partitioned to SIMD processors.
Furthermore, we utilize a lookup table to facilitate support
counting, which is usually the most time-consuming compo-
nent in the Apriori algorithm. One implementation of ours



uses another bitmap to represent itemsets, which enables
the entire algorithm to run on the GPU. We denote this im-
plementation as PBI (Pure Bitmap-based Implementation).
PBI features regular data access patterns, which are best
fit to the GPU; however, it may cause redundant computa-
tion and data access between frequent itemsets of different
sizes. To reduce the redundancy, the other implementation
of ours adopts a trie structure to represent itemsets, and
utilizes the CPU for trie traversal and incremental mainte-
nance. We denote this Trie-based Implementation as TBI.
We have evaluated our implementations using both synthetic
and real-world datasets. Both of our implementations are up
to two orders of magnitude faster than optimized CPU-based
Apriori implementations on three experimental datasets.

Organization: The remainder of the paper is organized as
follows. We give a brief overview of prior work on GPGPU
and frequent itemset mining in Section 2. We present the
details of our two implementations in Section 3. In Section
4, we present our experimental results. Finally, we conclude
in Section 5.

2. BACKGROUND AND RELATED WORK
In this section, we briefly review related work on GPGPU

(General-Purpose Computation on GPUs), and frequent item-
set mining algorithms.

2.1 General Purpose GPU Computing
The GPU is an integral component in commodity ma-

chines. It was previously designed to be a co-processor to
the CPU for games and other graphics applications. Re-
cently, the GPU has been used as a hardware accelerator for
various non-graphics applications, such as matrix multipli-
cation [23], databases [13, 14, 19], and distributed comput-
ing projects including Folding@home and Seti@home. For
additional information on the state-of-the-art GPGPU tech-
niques, we refer the reader to a recent survey by Owens et
al. [26].

Recently, GPGPU programming frameworks such as NVIDIA
CUDA allow the developer to write the code for the GPU
with familiar interfaces similar to C/C++. Such frameworks
model the GPU as a many-core architecture (as shown in
Figure 1) exposing hardware features for general-purpose
computation. In particular, CUDA exposes a hierarchi-
cal multi-threaded model for NVIDIA’s latest GPUs, with
hardware features including the fast on-chip local memory
(NVIDIA terms it as shared memory). CUDA groups lightweight
GPU threads into thread blocks. Threads within the same
thread block are divided into SIMD groups, called warps,
each of which contains 32 threads. The GPU has an on-
board device memory, which is of a high bandwidth and a
high access latency. A warp of threads can combine accesses
to consecutive data items in one device memory segment
into a single memory access transaction, or called coalesced
access.

While GPGPU programming frameworks greatly reduce
the complexity of GPGPU computing, developers must care-
fully design and implement their algorithms in order to fully
utilize the GPU architectural features. In particular, GPUs
are originally designed for graphics rendering, instead of gen-
eral purpose computing. Therefore, GPUs are specialized
for compute-intensive and highly parallel applications, es-
pecially in the SIMD style parallelism. Furthermore, as a

Figure 1: The many-core architecture model of the
GPU

co-processor, the GPU relies on the CPU for memory allo-
cation. As such, the common practice for efficiency is to
allocate the GPU memory statically before initiating the
GPU computation kernel and to avoid dynamic allocation
or reallocation during the GPU kernel execution. Addition-
ally, due to the limited bus bandwidth between the GPU
memory and the CPU memory, it is best to eliminate fre-
quent, small-sized data transfers between the CPU and the
GPU.

Recently, GPU-based primitives as the building blocks for
higher-level applications [18, 19, 30] have been proposed to
further reduce the complexity of GPU programming. The
parallel primitives [19] are a small set of common opera-
tions exploiting the architectural features of GPUs. We uti-
lize map, reduce, and prefix sum primitives in our two FIM
implementations. Following the previous studies [19], we
improve our implementation using memory optimizations,
including the local memory optimization for temporal local-
ity, the coalesced access optimization of device memory for
spatial locality, and the built-in vector data type to reduce
the number of memory accesses. Different from the previous
work, we study the GPU acceleration of Apriori for FIM,
which incurs much more complex control flows and memory
accesses than performing database joins [19] or maintaining
quantiles from data streams [15].

2.2 Frequent Itemset Mining
The Frequent Itemset Mining (FIM) problem was intro-

duced by Agrawal et al. [2], as the first step to mine asso-
ciation rules in market basket data. Let I = {I1, I2, ..., Im}
be a set of m items, and T = {T1, T2, ..., Tn} the transac-
tion database, where Ti is a transaction containing a set of
items from I. An k-itemset that consists of k items from I,
is frequent if it occurs in T not less than s times, where s
is a user-specified minimum support threshold, and s ≤ n.
We denote s/n as minsup. The FIM problem is to find all
itemsets in a given transaction database that occur more
frequently than minsup.

There are two representative algorithms for mining fre-
quent itemsets, namely, Apriori [3] and FP-growth [16].
Apriori iteratively mines frequent 1-itemsets, 2-itemsets, ...,
until K-itemsets, where K is the maximum number of items
of an frequent itemset. In each iteration, the algorithm
generates candidate itemsets, or candidates, and counts the
support for each candidate by scanning all transactions. In
comparison, FP-growth works through divide-and-conquer.
It recursively constructs a conditional database and a con-
ditional FP-tree, and mines the FP-tree in a pattern growth
method, by the concatenation of the suffix pattern to the



frequent patterns generated from the precedent conditional
FP-tree. The advantage of FP-growth is that it avoids gen-
erating a number of candidates as well as repeated scanning
of the transaction database.

FIM has been widely studied in distributed systems [4, 7,
10, 24]. Aouad et al. [4] designed a distributed Apriori in
heterogeneous computer cluster and grid environments us-
ing dynamic workload management to tackle memory con-
straints, achieve balanced workloads, and reduce communi-
cation costs. Buehrer [7] and El-Hajj [10] proposed variants
of FP-growth on computer clusters, lowering communication
costs and improving cache, memory, and I/O utilization.
Most recently, Li et al. [24] demonstrated a linear speedup
of FP-growth on thousands of distributed machines using
Google’s MapReduce infrastructure.

Researchers have also studied FIM problems on modern
CPUs. The key issue is how to fully exploit the instruction-
level parallelism (ILP) and thread-level parallelism (TLP)
on the multi-core CPU. Ghoting [11] et al. improved FP-
growth [16] through a cache-conscious prefix tree for spatial
locality and ILP, and a tiling strategy for temporal local-
ity. Liu et al. [25] proposed a cache-conscious FP-array
from compacting the FP-tree [16] and a lock-free, dataset-
tiling tree construction algorithm for TLP. Ye et al. [31]
explored the parallelization of Bodon’s trie-based Apriori al-
gorithm [6] with a database partitioning method. Recently,
two benchmarks for mining on multi-core processors, includ-
ing the PARSEC Benchmark Suite [5] and NU-MineBench
[29], have been proposed to facilitate architectural studies.

In comparison to previous parallel CPU-based FIM al-
gorithms, our algorithms are designed for the GPU with
massive SIMD parallelism, instead of distributed systems
and multi-core CPUs. In the literature, other parallel Apri-
ori algorithms focus on I/O performance, while our GPU-
based algorithms are in-memory, exploiting the SIMD archi-
tectural feature provided by GPUs.

3. IMPLEMENTATION
In this section, we present the design and implementation

of our two GPU-based Apriori algorithms: the Pure Bitmap-
based Implementation (PBI) and the Trie-based Implemen-
tation (TBI). Both implementations exploit the bitmap rep-
resentation of transactions, which facilitates fast set inter-
section to obtain transactions containing a particular item-
set. Furthermore, together with a lookup table, the bitmap
representation also accelerates support counting, which is
a time-consuming component in Apriori. PBI uses bitmap
data structure to represent itemsets, while the TBI uses a
trie. In particular, we put the trie on the CPU to perform
trie traversal and incremental maintenance for efficiency. We
implemented PBI and TBI on NVIDIA CUDA.

3.1 Overview
Both of our PBI and TBI implementations follow the

workflow of the original Apriori algorithm, as shown in Al-
gorithm 1. In the algorithm, we first generate all frequent
items, or 1-itemsets. Next, we iteratively invoke Candi-
date Generation to generate candidate K-itemsets, and
then perform support counting in Freq Itemset Generation
to generate frequent K-itemsets, where K > 1. K incre-
ments after each iteration. Both Candidate Generation
and Freq Itemset Generation can have different imple-
mentations.

Algorithm 1 Apriori

1: //CK : Candidate K-itemsets.
2: //LK : Frequent K-itemsets.
3: //T : Transaction database
4: Generate all frequent items L1

5: K = 2
6: while LK−1 6= ∅ do
7: //Generate candidate K-itemsets
8: CK = Candidate Generation(LK−1)
9: //Count supports and generate frequent K-itemsets

10: LK = Freq Itemset Generation(CK , T , minsup)
11: K = K + 1
12: end while

In the Apriori algorithm, there are two major data struc-
tures. One represents transactions, and the other represents
itemsets. Both of our GPU-based implementations adopt a
bitmap data structure to represent transactions, and both
invoke the Freq Itemset Generation procedure in Algo-
rithm 1 entirely on the GPU. The PBI implementation rep-
resents itemsets in another bitmap, and executes Candi-
date Generation on the GPU. In comparison, the TBI
implementation represents itemsets in a trie, and utilizes
the CPU to help traverse and build the trie.

3.2 Bitmap and Support Counting

Transaction ID    Item IDs

1                       ABCD

2                         ABD

3                         ACD

4                         BCD

Itemset ID    Transaction IDs

ABD                           1, 2

ACD                           1, 3

BCD                           1, 4

              T1   T2   T3   T4

ABD      1     1     0     0

ACD      1     0     1     0

BCD      1     0     0     1

Figure 2: Horizontal data layout (left), vertical data
layout (top right), and bitmap representation (bot-
tom right).

There are two choices to represent the transactions, namely,
horizontal and vertical data layouts [33]. In the horizontal
layout, each transaction has a transaction identifier, followed
by a list of items in a predefined order. In the vertical layout,
each itemset has an itemset identifier, followed by a list of
transactions containing that itemset. We denote the trans-
action list of a K-itemset as a K-tranlist. Figure 2 shows an
example of the horizontal and vertical data layouts, together
with the corresponding bitmap structure.

Traditionally, a CPU-based Apriori implementation adopts
horizontal data layout. However, such layout requires scan-
ning all transactions to perform support counting, which
limits the data parallelism of GPUs. Therefore, we adopt
the vertical data layout instead. We intersect two (K − 1)-
tranlists to obtain a K-tranlist TID LIST for a particular
K-itemset IK. Next, we count the number of transactions
in the TID LIST as the support of IK. Such intersection-
and-counting process for generating a K-itemset is indepen-
dent from one another, so that we can easily parallelize the
procedure for generating different frequent itemsets.

To further improve the intersection operation and sup-



port counting, we store the vertical data layout in a bitmap,
which is an array of bits. We refer it as a transaction-bitmap.
In an m × n transaction-bitmap, where m is the number of
items and n is the number of transactions, bit (i, j) is set to
1 if item i occurs in transaction j. We store a transaction-
bitmap in the built-in vector data type int4 (a structure
containing four 32-bit integers), which is of size 16 bytes,
because the GPU can read up to 16 bytes of data from the
device memory to registers in one instruction. This way, we
can reduce the number of device memory accesses by a fac-
tor of four, compared with reading data in the granularity of
32-bit integers. Each row of a transaction-bitmap is rounded
in 16 bytes, with the last 128 bits padded with 0, if it is less
than 128 bits. Thus, the row vector in a transaction-bitmap
is of size dn/128e × 16 bytes. We transform the support
counting into intersection of row vectors of the transaction-
bitmap, followed by counting of the number of 1’s in the
intersection result.

We construct a lookup table that stores the mapping of an
integer and the number of 1’s in its binary representation.
For example, the number of 1’s in 00000001 11000000 (448 in
the decimal form) is 3. This lookup table is read-only. Since
accessed frequently, we put it in the read-only, cacheable
constant memory on the GPU. The constant memory can
achieve as low as one cycle memory access latency. In com-
parison, accessing device memory incurs hundreds of cycles.
The size of constant memory, 64KB, constrains the size of
our lookup table to be (216 entries ×1 byte/entry) = 65536
bytes. For each lookup, we can obtain the number of 1’s of
a 16-bit integer.

Algorithm 2 shows Freq Itemset Generation, which runs
entirely on the GPU, and is invoked by both PBI and TBI.
Each GPU thread block processes one candidate K-itemset
in parallel. Threads within the same thread block intersect
two (K − 1)-tranlists, count the number of 1’s for every 16
bits in K-tranlist, and add up all counts using parallel re-
duce.

Figure 3 illustrates an example for support counting within
a particular thread block. In this example, there are two
threads in the thread block. For ease of representation, we
assume that the data type int is of size 8 bits, so the vector
int4 is of size 32 bits. At the beginning, each thread reads
two int4 vectors from two (K−1)-tranlists respectively, and
performs bitwise AND operation on these two int4 vectors.
Next, each thread queries the lookup table to obtain the
counts of 1’s for every 16 bits of the intersection result. Fi-
nally, we synchronize all threads in the same thread block,
and perform parallel reduce to add up the counts as the
support for the K-itemset.

Algorithm 2 Freq Itemset Generation

1: for each candidate K-itemset in parallel do
2: Intersect two (K − 1)-tranlists in parallel
3: Query the lookup table to count the number of 1’s for

every 16 bits in K-tranlist in parallel
4: Perform parallel reduce to add up the counts of ev-

ery 16 bits and obtain the support for K-itemset.
5: if support of K-itemset ≥ minimum support then
6: Output K-itemset
7: end if
8: end for

00100011

Lookup table

4 2

Parallel Reduce (sum)

10

(K-1)-

tranlist

Thread 1

AND

Thred Block Kbuilt-in vector 

type --int4

11001001 10110100 00001011 00100000 11100001 11100000 00000000

11100010 11100000 10001000 01100001 00001001 11001100 01100000 00000000

00100010 11000000 10000000 00000001 00000000 11000000 01100000 00000000

2 2

(K-1)-

tranlist

K-

tranlist

support of

K-itemset

AND AND AND AND AND AND AND

Thread 2

# of 1's for 

each 16-

bit

Figure 3: Support counting within a thread block.

3.3 Pure Bitmap Implementation

           T1   T2   T3   T4
AB      1     1     0      0
AC      1     1     1      0
AD      1     0     1      0
BC      1     1     0      1
BD      1     0     0      1
CD      1     0     1      1

            A     B     C     D
AB      1     1     0      0
AC      1     0     1      0
AD      1     0     0      1
BC      0     1     1      0
BD      0     1     0      1
CD      0     0     1      1

T1: ABCD | T2: ABC | T3: ACD | T4: BCD

           T1   T2   T3   T4
ABC     1     1     0      0
ABD     1     0     0      0
ACD     1     0     1      0
BCD     1     0     0      1

            A     B     C     D
ABC     1     1     1      0
ABD     1     1     0      1
ACD     1     0     1      1
BCD     0     1     1      1

Original transaction database
in horizontal data layout

Bitwise and
Bitwise or

2-itemsets

3-itemsets

2-tranlists

3-tranlists

Figure 4: Generating candidate 3-itemsets from fre-
quent 2-itemsets in PBI.

In the Pure Bitmap Implementation (PBI), we represent
itemsets in a bitmap. In an m × n bitmap representing K-
itemsets, where m is the number of K-itemsets and n is the
number of all items, bit (i, j) is set to 1 if itemset i contains
item j. Each row is also rounded in 16 bytes. We impose a
lexicographical order among all K-itemsets.

The Candidate Generation procedure consists of two
steps, namely, a join to generate a candidate K-itemset from
two (K − 1)-itemsets, and a pruning to select the candidate
K-itemset whose (K−1)-subsets are all frequent. Algorithm
3 shows the Candidate Generation procedure for PBI.
We denote the i-th (K − 1)-itemset as Li, and j-th (K − 1)-
itemset as Lj , where i < j. The k-th item in Li is denoted
as Li[k]. Each GPU thread handles an Li, and joins it with
Lj . The join predicate is (Li[0] = Lj [0]) ∧ (Li[1] = Lj [1]) ∧
... ∧ (Li[K − 2] = Lj [K − 2]) ∧ (Li[K − 1] < Lj [K − 1]).

In pruning, we check whether all (K − 1)-subsets of a
generated candidate K-itemset are frequent. We perform a
binary search on a (K−1)-itemsets to determine if a (K−1)-
subset of the candidate K-itemset is frequent. Figure 4 de-
picts an example for generating candidate 3-itemsets from
frequent 2-itemsets in PBI. For example, in order to gener-
ate the candidate itemset ABC, we join two 2-itemsets AB
and AC by performing a bitwise OR operation on the cor-



responding vectors in the bitmap of 2-itemsets. In the fol-
lowing Freq Itemset Generation procedure, we perform
a bitwise AND operation to obtain the transaction list for
candidate itemset ABC.

Candidate Generation uses a bitmap to represent item-
sets, which allows uniform and efficient bitwise operations to
perform joins on the GPU, and avoids the overhead of fre-
quent data transfer between GPU memory and CPU mem-
ory. However, when the number of items is large, it also in-
curs excessive non-coalesced device memory accesses. Given
m frequent (K−1)-itemsets, and n items. In order to check
whether one (K − 1)-itemset is frequent, we need to access
(log m×dn/128e×16) bytes of data, where log m is the cost
of performing a binary search, and dn/128e×16 is the size of
a row (in bytes) in the bitmap of (K−1)-itemsets. Typically,
if m = 10000 and n = 10000, we need to access about 16 KB
for checking only one (K − 1)-subset. This problem in our
pure bitmap-based solution triggers us to consider adopt-
ing another data structure in the Candidate Generation
procedure in the presence of a large number of items.

Algorithm 3 PBI Candidate Generation

1: //Lx represents the x-th (K − 1)-itemset, that is, the
x-th row vector in the bitmap for (K − 1)-itemsets.

2: for each Li in parallel do
3: for each Lj where j = i + 1 to m do
4: if Li and Lj are joinable then
5: //Join
6: Union on Li and Lj to obtain a candidate K-

itemeset by performing a bitwise OR operation
7: //Pruning
8: (K − 1)-subset test on the candidate K-itemset

by a binary search in the (K−1)-itemset bitmap.
9: else

10: break
11: end if
12: end for
13: end for

3.4 Trie-Based Implementation

T1: ABCD | T2: ABC | T3: ACD | T4: BCD
Original transaction database
in horizontal data layout

Root

A B

C DB C D

           T1   T2   T3   T4
AB      1     1     0      0
AC      1     1     1      0
AD      1     0     1      0
BC      1     1     0      1
BD      1     0     0      1
CD      1     0     1      1

C

D

Root

A B

C DB C D

C

D

           T1   T2   T3   T4
ABC     1     1     0      0
ABD     1     0     0      0
ACD     1     0     1      0
BCD     1     0     0      1

C D D D

bitwise and
Depth 2:

Depth 1:

Depth 0:

Depth 0:

Depth 1:

Depth 2:

Depth 3:

2-itemsets

3-itemsets

2-tranlists

3-tranlists

Figure 5: Generating candidate 3-itemsets from fre-
quent 2-itemsets in TBI.

Instead of using bitmap to represent itemsets, we adopt
the trie data structure, which is also used in the state-of-the-

art Apriori implementation [6]. A trie is a rooted, directed
prefix tree. The root is defined to be at depth 0. If a node is
at depth K, then its children are at depth K +1. Each node
stores an item id. A node at depth K concatenating all its
ancestors represents an K-itemset. The trie-based Apriori
implementation on the CPU [6] stores the support in each
node, and counts support by scanning the transactions in
the horizontal data layout. For each transaction, it finds
paths from the root to the leaves in the trie corresponding
to candidate itemsets contained in the transaction, and the
support values of these leaves are all increased by one. Dif-
ferent from the CPU trie-based implementation, we repre-
sent transactions in a bitmap, and perform support counting
on the GPU, as described in Section 3.2.

The candidate generation based on trie traversal is im-
plemented on the CPU. This decision is based on the fact
that, the trie is an irregular structure and difficult to share
among SIMD threads. Thus, we store the trie representing
itemsets in the CPU memory, and the bitmap representation
of transactions in the GPU device memory.

We incrementally construct the trie level by level, which
matches the iterative process of Apriori. By growing the
trie to depth K, we generate all the frequent K-itemsets.
Algorithm 4 shows the Candidate Generation procedure
in TBI. We perform join for every node at depth K − 1
with each of its right siblings. We keep all children of a
node sorted in lexicographical order on item id, so that we
can efficiently check whether a (K−1)-subset is frequent by
performing a series of binary searches to follow a path with
the same prefix as the (K − 1)-subset. In each iteration,
after generating all candidate K-itemsets on the CPU, we
transfer the bookkeeping data to the GPU memory for sup-
port counting. The bookkeeping data include a set of triples,
in the form of (Ii

K−1, I
j
K−1, IK), where Ii

K−1 and Ij
K−1 are

two (K − 1)-itemsets generating the candidate K-itemset
IK . After the support counting on the GPU, we need to
transfer the set of bookkeeping data to eliminate candidate
K-itemsets. If the K-itemset IK is a false candidate, then
the triple is set to (null, null, IK). At this moment, we ob-
tain all the frequent K-itemset in the trie, and start the next
iteration of generating (K + 1)-itemset, if any.

Figure 5 shows the same example as Figure 4, generating
candidate 3-itemsets from 2-itemsets. In order to generate
the candidate ABC, we need to join AB and AC, which
are represented by the leftmost node B and the second left-
most node C at depth 2 respectively. Next, we test all 2-
subsets other than AB and AC for ABC, which include only
BC. We follow the path with prefix BC, and find this 2-
itemset. Finally, we keep the candidate ABC for further
support counting in the Freq Itemset Generation proce-
dure. Note that, each leaf node in the trie is associated with
a row vector in the bitmap representing transactions, so that
we can easily perform a bitwise AND operation on two 2-
tranlists to obtain a 3-tranlist, and then count the support.

4. EVALUATION
In this section, we present experimental results on evalu-

ating our two GPU-based Apriori implementations.

4.1 Experimental Setup
Our experiments were performed on a PC with an NVIDIA

GTX 280 GPU and an Intel Core2 quad-core CPU, running



Algorithm 4 TBI Candidate Generation

1: //u represents a node at depth K − 1 in the trie.
2: for each u at depth K − 1 do
3: for each w that is a right sibling of u do
4: //Join
5: Union on the two (K − 1)-itemsets represented by

u and w to obtain a candidate K-itemeset
6: //Pruning
7: (K − 1)-subset test on the candidate K-itemset by

following the path of the trie with the same prefix
8: end for
9: end for

on Microsoft Windows XP SP3. The GPU consists of 30
SIMD multi-processors, each of which has eight processors
running at 1.29 GHz. The GPU memory is of size 1GB with
the peak bandwidth of 141.7 GB/sec. The CPU has four
cores running at 2.4 GHz. The main memory is 2 GB with
the peak bandwidth of 5.6 GB/sec. The GPU uses a PCI-E
bus to transfer data between the GPU memory and the main
memory with a theoretical bandwidth of 4 GB/sec. The PC
has a 160 GB SATA magnetic hard disk.

All source code was written and compiled using Visual
Studio 2005 with the optimization level /O2. The version of
CUDA is 2.0.

Comparison. We compared our GPU-based algorithms
with three CPU-based Apriori and one CPU-based FP-growth,
since there is no any GPU-based Apriori or FP-growth im-
plementation in the public domain. A single-threaded CPU-
based implementation is from the repository of Workshop on
Frequent Itemset Mining Implementations (FIMI’03) [20],
which is the best Apriori implementation, denoted as BORGELT.
There is not any multi-threaded Apriori implementation
publicly available, so we decided to parallelize one by our-
selves. BORGELT uses a trie to represent transactions,
and performs support counting recursively. Thus, it is quite
tricky to parallelize BORGELT. Instead, we parallelized an-
other famous single-threaded CPU-based Apriori implemen-
tation from Bart Goethals [21], which stores transactions in
horizontal data layout. For this implementation, we paral-
lelized the support counting step using OpenMP, and the
parallelized version running on a quad-core CPU is more
than three times faster than the serial version. We denote
the parallelized implementation from Goethals as GOETHALS.
Furthermore, we ported our TBI implementation to the CPU,
and parallelized the for-loop in the support counting part
(Algorithm 2) using OpenMP, and we denote it as TBI-
CPU. Our two GPU-based Apriori implementations are de-
noted as PBI-GPU and TBI-GPU respectively. Table 1
summarizes the characteristics of the two GPU-based, and
the three CPU-based Apriori implementations. The CPU-
based FP-growth implementation is from PARSEC bench-
mark [5], which is implemented in OpenMP, denoted as FP-
GROWTH. All multi-threaded CPU-based algorithms ran
on four CPU threads.

Datasets. We used three representative datasets from
FIMI’03 repository [20] to evaluate the five Apriori im-
plementations, including T40I10D100K, Chess, and Retail.
These three datasets have distinct characteristics from one
another, which are summarized in Table 2. T40I10D100K
is a synthetic dataset simulating market basket data. Chess
and Retail are real-world datasets. The density of a dataset

is defined to be the average length of transactions divided
by the number of items. Chess is the representative of dense
data, whose density is 49%, the highest among all datasets
in FIMI’03 repository. Retail represents sparse data, whose
density is lower than 1%. The implementations PBI-GPU,
TBI-GPU, and TBI-CPU require transaction data to be in
bitmap data structure. For sparse data, the bitmap repre-
sentation of transactions in vertical layout is larger than the
original one in horizontal data layout (180 MB vs 4 MB for
Retail). However, for dense data, the bitmap representation
compresses transaction data (30 KB vs 335 KB for Chess).
We refer the reader to the FIMI’03 report [12] for the com-
plete experimental results of various FIM implementations
on all datasets.

Metric. We measured the total elapsed time for eval-
uating the efficiency of all the implementations. Since we
are focusing on in-memory performance, we excluded the
initial file input and final result output from the total time
measurement. In addition, we exclude the time for convert-
ing the transaction database from horizontal data layout
into bitmap representation, since the conversion can be per-
formed offline or we can collect the source data and store
them in bitmap initially. We ran each experiment for three
times, and calculated the mean value. The variance among
different runs of the same experiment was smaller than 10%.

4.2 Results

4.2.1 Comparison to CPU-based Apriori

Figure 6(a) depicts the running time for the five Apri-
ori implementations on the synthetic dataset T40I10D100K,
Figure 7(a) on the dense dataset Chess, and Figure 8(a) on
the sparse dataset Retail. On these three datasets, our GPU-
based implementations outperform the parallelized GOETHALS
by a factor of 2.7 to 130, and the best Apriori implementa-
tion BORGELT by a factor of 1.2 to 24, when minsup varies.
The GPU-based implementations have larger speedup over
the CPU-based ones on the dense dataset than on the sparse
dataset.

The time for data transfer between the GPU memory
and the CPU memory (TRANSFER), candidate generation
(CANDIDATE), and support counting (COUNTING) dom-
inates the total running time. Thus, we break the total run-
ning time into three parts - TRANSFER, CANDIDATE,
and COUNTING, and present the time breakdown result in
Figure 6(b) on the synthetic dataset T40I10D100K, Figure
7(b) on the dense dataset Chess, and Figure 8(b) on the
sparse dataset Retail.

Let us analyze the performance divergence of the five
Apriori implementations, according to the running time and
time breakdown results on the three datasets in Figure 6,
Figure 7, and Figure 8.

TBI-CPU vs GOETHALS. This comparison shows the
impact of bitmap representation for the transaction database.
Both implementations adopt a trie to represent itemsets,
thus they have roughly the same performance on candidate
generation step. However, the vertical layout for the trans-
action database allows TBI-CPU to perform independent
support counting on different candidate itemsets, which ex-
tracts the multi-threaded parallelism to maximum. On the
other hand, GOETHALS uses horizontal layout to store
transactions, so that it should repeatedly scan the whole
transaction database to do support counting. From the



Implementation Platform Candidate Generation Support Counting Itemsets Transactions
PBI-GPU GPU Multi-threaded on the GPU Multi-threaded on the GPU Bitmap Bitmap
TBI-GPU GPU+CPU Single-threaded on the CPU Multi-threaded on the GPU Trie Bitmap
TBI-CPU CPU Single-threaded on the CPU Multi-threaded on the CPU Trie Bitmap

GOETHALS CPU Single-threaded on the CPU Multi-threaded on the CPU Trie Horizontal layout
BORGELT CPU Single-threaded on the CPU Single-threaded on the CPU Trie Trie

Table 1: Five Apriori Implementations

Dataset #Item Avg. Length #Transactions Density Characteristics Data size Bitmap size
T40I10D100K 1,000 40 100,000 4% Synthetic ∼ 15 MB ∼ 12 MB

Retail 16,469 10.3 88,162 0.6% Sparse/Real ∼ 4 MB ∼ 180 MB
Chess 75 37 3,196 49% Dense/Real ∼ 335 KB ∼ 30 KB

Table 2: Three experimental datasets

time breakdown result, we can see that, GOETHALS al-
ways has a larger ratio of support counting time. However,
on the sparse dataset Retail, TBI-CPU only outperforms
GOETHALS by a factor of 1.28, due to the large size of
bitmap representation of the sparse transaction database.
Even though TBI-CPU does not need to scan the whole
bitmap for support counting, accessing a part of large bitmap
(150 MB for Retail) may be as costly as scanning the whole
transaction database with small size (4 MB for Retail).

TBI-GPU vs TBI-CPU. This comparison investigates
the impact of the GPU acceleration for support counting.
TBI-GPU differs from TBI-CPU only in the support count-
ing step. Although TBI-GPU suffers from intermediate
data transfer between the GPU memory and the CPU mem-
ory, it gains significant performance from the massive SIMD
parallelism provided by the GPU. Especially for the sparse
dataset Retail, TBI-GPU has 7.8x speedup over TBI-CPU.
Huge bitmap representation for the sparse dataset requires
more memory accesses than that of dense dataset. In this
case, TBI-GPU is able to hide large memory latency by well
utilizing massive SIMD parallelism on the GPU. Since our
study focuses on the GPU-based implementation, we haven’t
exploited data locality in CPU cache for TBI-CPU.

PBI-GPU vs TBI-GPU. This comparison shows the ef-
fect of different itemset representations - bitmap-based and
trie-based. PBI-GPU and TBI-GPU invokes exactly the
same support counting procedure on the GPU. The perfor-
mance difference only comes from the candidate generation.
The dense dataset Chess has very few items (75 in total),
hence the bitmap representation of itemsets for PBI-GPU is
of small size. On the other hand, the sparse dataset Retail
has many items (16469 in total), so PBI-GPU should pro-
cess large bitmap of itemsets. Thus, the number of items
determines the performance of PBI-GPU’s candidate gener-
ation. Therefore, PBI-GPU outperforms TBI-GPU on the
dense dataset, due to smaller size of bitmap representation
for itemsets, while TBI-GPU is better on the sparse dataset.

PBI-GPU/TBI-GPU vs BORGELT. On all datasets
with different minsup, both GPU-based implementations win
over the best CPU-based Apriori implementation of FIMI’03,
except that PBI-GPU is 20% slower than BOGELT on the
sparse dataset Retail with minsup 0.01%. The bitmap struc-
ture for representing transactions helps the GPU SIMD par-
allelism, and boosts the performance of both GPU-based
implementations.

To sum up, our both GPU-based implementations out-

perform CPU-based implementations in up to an order of
magnitude on the sparse dataset, and up to two orders of
magnitude on the dense dataset. The two GPU-based im-
plementations gain performance from the bitmap represen-
tation of transactions. PBI-GPU outperforms TBI-GPU on
the dense dataset, while TBI-GPU is better on the sparse
dataset.

4.2.2 Comparison to CPU-based FP-growth

 0

 1

 2

 3

 4

 5

T40I10D100K Chess Retail

R
un

ni
ng

 T
im

e 
(s

ec
)

Implementations

0.02

PBI-GPU
TBI-GPU

FP-GROWTH

Figure 9: Execution time of PBI-GPU, TBI-
GPU, and CPU-based FP-growth on T40I10D100K,
Chess, and Retail with minsup 1%, 60%, and 0.01%.

Figure 9 illustrates the running time of FP-GROWTH,
PBI-GPU, and TBI-GPU on T40I10D100K, Chess, and Re-
tail with minsup 1%, 60%, and 0.01% respectively. We can
see that CPU-based FP-growth is faster than our both GPU-
based implementations by a factor of 4 to 16. This leaves
us enough room to explore more efficient GPU-based FIM
algorithms.

5. CONCLUSION AND FUTURE WORK
We have presented two GPU-based implementations of

Apriori algorithm for frequent itemset mining. Both im-
plementations employ a bitmap data structure to encode
the transaction database on the GPU and utilize the GPU’s
SIMD parallelism for support counting. One implementa-
tion stores the itemsets in a bitmap, and runs entirely on
the GPU. The other one utilizes a trie to store the item-
sets, and adopts a GPU-CPU co-processing scheme. The
preliminary evaluation results show that both of our GPU-



 0

 1

 2

 3

 4

 5

 6

 7

 8

2.0% 1.5% 1.0%

R
un

ni
ng

 T
im

e 
(s

ec
)

minsup

8.4 12 22.2

PBI-GPU
TBI-GPU
TBI-CPU
GOETHALS
BORGELT

(a) Running time with various minsup

 0

 20

 40

 60

 80

 100

PBI-GPU TBI-GPU TBI-CPU GOETHALS BORGELT

%
 o

f t
ot

al

Implementations

TRANSFER
CANDIDATE
COUNTING

(b) Time breakdown with minsup 1%

Figure 6: Experiments on the synthetic dataset T40I10D100K

 0

 0.5

 1

 1.5

 2

70% 65% 60%

R
un

ni
ng

 T
im

e 
(s

ec
)

minsup

5 15.3 42.2

8.01

PBI-GPU
TBI-GPU
TBI-CPU
GOETHALS
BORGELT

(a) Running time with various minsup

 0

 20

 40

 60

 80

 100

PBI-GPU TBI-GPU TBI-CPU GOETHALS BORGELT

%
 o

f t
ot

al

Implementations

TRANSFER
CANDIDATE
COUNTING

(b) Time breakdown with minsup 60%

Figure 7: Experiments on the dense dataset Chess

implementations are up to two orders of magnitude faster
than optimized CPU-based implementations.

We are considering improvements of our current imple-
mentations. For example, our bitmap representation of trans-
actions is space inefficient for sparse datasets. We are inves-
tigating data compression techniques [1]. Moreover, we are
developing a buffering mechanism between the GPU mem-
ory and the CPU memory for memory ping-pong.

We also plan to explore other mining algorithms with
GPU acceleration, for instance, FP-growth and classifica-
tion. In particular, FP-growth and its CPU-based variants
have shown a superior performance; nevertheless, their irreg-
ular data structures and complex algorithmic control pose
great challenges for GPU acceleration.

Finally, it could be desirable to enhance the interaction
features of the mining process, for example, adjusting sup-
port thresholds during the progress. Such interaction can
greatly improve the mining quality.

Acknowledgments
The authors thank the anonymous reviewers for their in-
sightful suggestions. This work was supported by grant
617208 from the Hong Kong Research Grants Council.

6. REFERENCES
[1] Daniel Abadi, Samuel Madden, and Miguel Ferreira.

Integrating compression and execution in

column-oriented database systems. SIGMOD, 2006.

[2] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami.
Mining association rules between sets of items in large
databases. SIGMOD, 1993.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Fast
algorithms for mining association rules. VLDB, 1994.

[4] Lamine M. Aouad, Nhien-An Le-Khac, and Tahar M.
Kechadi. Distributed frequent itemsets mining in
heterogeneous platforms. Journal of Engineering,
Computing and Architecture, 2007.

[5] Christian Bienia, Sanjeev Kumar, Jaswinder Pal
Singh, and Kai Li. The parsec benchmark suite:
Characterization and architectural implications.
PACT, 2008.

[6] Ferenc Bodon. A fast apriori implementation. FIMI,
2003.

[7] Gregory Buehrer, Srinivasan Parthasarathy, Shirish
Tatikonda, Tahsin Kurc, and Joel Saltz. Toward
terabyte pattern mining: an architecture-conscious
solution. PPoPP, 2007.

[8] Shuai Che, Michael Boyer, Jiayuan Meng, David
Tarjan, Jeremy W. Sheaffer, and Kevin Skadron. A
performance study of general-purpose applications on
graphics processors using cuda. Journal of parallel and
Distributed Computing, 2008.

[9] Shengnan Cong, Jiawei Han, Jay Hoeflinger, and
David Padua. A sampling-based framework for



 0

 1

 2

 3

 4

 5

 6

1.0% 0.1% 0.01%

R
un

ni
ng

 T
im

e 
(s

ec
)

minsup

20.32
26.2

PBI-GPU
TBI-GPU
TBI-CPU
GOETHALS
BORGELT

(a) Running time with various minsup

 0

 20

 40

 60

 80

 100

PBI-GPU TBI-GPU TBI-CPU GOETHALS BORGELT

%
 o

f t
ot

al

Implementations

TRANSFER
CANDIDATE
COUNTING

(b) Time breakdown with minsup 0.01%

Figure 8: Experiments on the sparse dataset Retail

parallel data mining. PPoPP, 2005.

[10] Mohammad El-Hajj and Osmar R. Zaiane. Parallel
leap: Large-scale maximal pattern mining in a
distributed environment. ICPADS, 2006.

[11] Amol Ghoting, Gregory Buehrer, Srinivasan
Parthasarathy, Daehyun Kim, Anthony Nguyen,
Yen-Kuang Chen, and Pradeep Dubey.
Cache-conscious frequent pattern mining on a modern
processor. VLDB, 2005.

[12] Bart Goethals and Mohammed Javeed Zaki. Advances
in frequent itemset mining implementations:
Introduction to fimi’03. FIMI, 2003.

[13] Naga Govindaraju, Jim Gray, Ritesh Kumar, and
Dinesh Manocha. Gputerasort: high performance
graphics co-processor sorting for large database
management. SIGMOD, 2006.

[14] Naga K. Govindaraju, Brandon Lloyd, Wei Wang,
Ming Lin, and Dinesh Manocha. Fast computation of
database operations using graphics processors.
SIGMOD, 2004.

[15] Naga K. Govindaraju, Nikunj Raghuvanshi, and
Dinesh Manocha. Fast and approximate stream
mining of quantiles and frequencies using graphics
processors. SIGMOD, 2005.

[16] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao.
Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data
Mining and Knowledge Discovery, 2004.

[17] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K.
Govindaraju, and Tuyong Wang. Mars: a mapreduce
framework on graphics processors. PACT, 2008.

[18] Bingsheng He, Naga K. Govindaraju, Qiong Luo, and
Burton Smith. Efficient gather and scatter operations
on graphics processors. Supercomputing, 2007.

[19] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga K.
Govindaraju, Qiong Luo, and Pedro V. Sander.
Relational joins on graphics processors. SIGMOD,
2008.

[20] http://fimi.cs.helsinki.fi/. FIMI repository.

[21] http://www.adrem.ua.ac.be/
goethals/software/files/apriori.tgz. Apriori
implementation from Bart Goethals.

[22] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and
Hannu Toivonen. Tane: An efficient algorithm for
discovering functional and approximate dependencies.

The Computer Journal, 1999.

[23] E. Scott Larsen and David McAllister. Fast matrix
multiplies using graphics hardware. Supercomputing,
2001.

[24] Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, and
Edward Y. Chang. Pfp: Parallel fp-growth for query
recommendation. ACM Recommender Systems, 2008.

[25] Li Liu, Eric Li, Yimin Zhang, and Zhizhong Tang.
Optimization of frequent itemset mining on
multiple-core processor. VLDB, 2007.

[26] John D. Owens, David Luebke, Naga Govindaraju,

Mark Harris, Jens Kŕlźger, Aaron E. Lefohn, and
Timothy J. Purcell. A survey of general-purpose
computation on graphics hardware. In Computer
Graphics Forum, 2007.

[27] Lance Parsons, Ehtesham Haque, and Huan Liu.
Evaluating subspace clustering algorithms. SDM, 2004.

[28] S. Parthasarathy, M. J. Zaki, M. Ogihara, and W. Li.
Parallel data mining for association rules on shared
memory systems. In Knowledge and Information
Systems, 2001.

[29] Jayaprakash Pisharath, Ying Liu, Wei keng Liao, Alok
Choudhary, Gokhan Memik, and Janaki Parhi.
Nu-minebench 2.0. Technical report, Northwestern
University, 2005.

[30] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and
John D. Owens. Scan primitives for gpu computing. In
Graphics Hardware, 2007.

[31] Yanbin Ye and Chia-Chu Chiang. A parallel apriori
algorithm for frequent itemsets mining. SERA, 2006.

[32] Mohammed J. Zaki. Parallel and distributed
association mining: A survey. IEEE Concurrency,
1999.

[33] Mohammed J Zaki, Srinivasan Parthasarathy,
Mitsunori Ogihara, and Wei Li. New algorithms for
fast discovery of association rules. KDD, 1997.

[34] Jingren Zhou and Kenneth A. Ross. Implementing
database operations using simd instructions.
SIGMOD, 2002.


