
CFDC—A Flash-aware Replacement Policy
for Database Buffer Management

Yi Ou
University of Kaiserslautern

Germany
ou@cs.uni-kl.de

Theo Härder
University of Kaiserslautern

Germany
haerder@cs.uni-kl.de

Peiquan Jin
University of Science and

Technology of China
P.R. China

jpq@ustc.edu.cn

ABSTRACT
Flash disks are becoming an important alternative to con-
ventional magnetic disks. Although accessed through the
same interface by applications, flash disks have some dis-
tinguished characteristics that make it necessary to recon-
sider the design of the software to leverage their performance
potential. This paper addresses this problem at the buffer
management layer of database systems and proposes a flash-
aware replacement policy that significantly improves and
outperforms one of the previous proposals in this area.

1. INTRODUCTION
Flash disks (flash-memory-based solid-state drives) will

play an increasingly important role for server-side comput-
ing, because they have—compared to magnetic disks—no
mechanical parts and, therefore, hardly any perceptible la-
tency. Furthermore, they have a much lower power con-
sumption. Typically, flash disks are managed by the operat-
ing system as block devices through the same interface types
as those to a magnetic disk. However, the distinguished IO
characteristics of flash disks make it necessary to reconsider
the design of IO-intensive and performance-critical software,
such as a DBMS, to achieve maximized performance.

Traditionally, the goal of buffer replacement policy is the
minimization of the buffer fault ratio for a given buffer size.
To guarantee data consistency, a dirty buffer page, when se-
lected by the replacement policy as victim, has to be written
back to disk before the memory area can be reused. This
implies synchronous writes because the process or thread
requesting for an empty buffer frame must wait until write
completion—potentially a performance bottleneck.

Early in the 80’s, Effelsberg and Härder [1] have called
attention to the fact that “whether a page is read only or
modified” is an important criterion to be considered in the
replacement decision. This criterion is now much more im-
portant than ever, when flash disks are becoming an impor-
tant alternative to conventional magnetic disks. The reason
for that is the flash’s read-write asymmetry—the cost of a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Fifth International Workshop on Data Management on
New Hardware (DaMoN 2009) June 28, 2009, Providence, Rhode-Island
Copyright 2009 ACM 978-1-60558-701-1 ...$10.00.

page write is an order of magnitude higher than that of a
page read. Other criteria important in the context of flash
disks are spatial locality and sequentiality of access patterns.

Our contributions are: 1. We propose a novel replacement
algorithm for database buffer management taking all the
above mentioned criteria into consideration; 2. We propose
a generalized two-region scheme which can be applied when
designing further flash-aware replacement policies; 3. We
implemented and evaluated our method and cross-compared
it to competitor algorithms in a real DBMS environment.

The remainder of this paper is organized as follows. Sec-
tion 2 gives background information on flash disks and intro-
duces the related work. Section 3 introduces our algorithm,
while its experimental results are presented in Section 4. We
conclude and give an outlook on our future work in Section 5.

2. BACKGROUND
For comprehension, we briefly repeat the most important

properties of flash disks and the goal of the flash translation
layer (FTL) which is device-related and supplied by the disk
manufacturer.

2.1 Flash Memory
The most common types of flash disks are based on NAND

flash memory, to which three basic operations can be ap-
plied: read, write, and erase. Read and write operations are
performed in units of a page. The size of a page is typically 2
KB. Erase operations can only be performed in much larger
units called blocks which contain multiple pages. The size
of a block is typically 128 KB. Reading a page from flash
memory has very low latency, while writing a page to flash
memory is an order of magnitude slower. Another problem
with write operations is, once a page is written, the only way
of overwrite it is to erase the entire block where the page re-
sides. Furthermore, erase operations can only be performed
in units of entire blocks, which cause a slow-down of an-
other order of magnitude compared to single page writes.
This implies that, when updating only a single byte in a
page, an expensive erase operation and the restoration of a
large amount of data are required. Write endurance is mea-
sured in erase cycles tolerated by a flash block and is at least
100,0001 per block [2]. To avoid the premature worn out of
blocks caused by highly localized writes, the data should be
arranged and managed in a way that erasures are evenly
distributed across the entire flash memory. This mechanism
is called wear leveling.

1Recent references report up to 5,000,000 erase cycles for it.

2.2 Flash Translation Layer
To overcome the limitations of flash memory, flash disks

employ an intermediate software layer called Flash Transla-
tion Layer (FTL), which is typically stored in a ROM chip.
One of the key roles of FTL is to redirect a page write re-
quest to an empty area that has been erased in advance.
As a consequence, FTL has to maintain a mapping of the
logical page address (the address used by the file system for
the write request) to enable a new physical page location on
flash memory. For fast look-up, this mapping is maintained
in volatile memory. To reconstruct the mapping table at
startup or in case of a failure, these logical addresses are
stored in a spare area of the flash page.

The mapping can be maintained at the page level or block
level. Page-level mapping can effectively deal with the limit
of erase-before-write, because a write request can be redi-
rected to any empty page in the flash memory. The map-
ping table keeps track of the valid physical (most up-to-date)
page locations. If a block contains N pages, one erasure can
serve N write requests. However, the mapping table for such
an approach becomes prohibitively large. Using block-level
mapping, the mapping table only maps a logical block ad-
dress to its physical location, which implies that the offset
of a page in the physical block must be identical to its offset
in the logical block. For this reason, the address informa-
tion for block-level mapping is much smaller. However, to
update a page, the new content of the page, due to the offset
constraint, must be written to the same offset in a newly-
allocated empty flash block and the remaining pages of the
block have to be copied to the new block, resulting in one
block erasure and N pages writes.

2.3 Log-Block-Based FTL
The problems of page-level and block-level mappings are

addressed by hybrid mapping schemes. Some representatives
of them are the so-called log-block-based approaches [3, 4].
In such an approach, a dynamic set of flash blocks, called
log blocks, is maintained to serve the write requests which
are always directed to the log blocks. The page addresses
in a log block are mapped at the page level, thus frequent
block erasures can be avoided. The remaining flash blocks,
called data blocks, are managed at the block level; these
data blocks generally use a much larger flash area than the
log blocks.

In the approach of [3], a log block is allowed to serve page
writes to only a single data block. If it becomes full, i.e.,
each page in it has been written once, it is merged with the
associated data block. If there is no free log block available
that can serve the write request to a data block, one of
the (not completely filled) log blocks must be freed, i.e.,
its content must be propagated to a data block. For each
page, its valid version—either in the data block or in the log
block—is copied to a third, empty block. Then, the third
block becomes the new data block. The log block and the
old data block are freed and are erased for later use as log
block or data block. Thus, a merge operation involves two
erasures. An ideal situation happens if a log block contains
all valid pages of a data block and their offsets are identical
to those of their corresponding pages in the data block, then
the log block can be simply marked as the new data block
and there is only one erasure necessary to free the old data
block. This is called a switch merge. But, in general, this
approach may suffer from low space utilization in log blocks.

Especially for random write patterns with low locality, it is
likely that a victim log block being merged is poorly filled
with newly modified pages. In the worst case, each page
write invokes a merge operation.

In the approach of [4], a log block can serve page writes
targeting at multiple data blocks, thus achieving higher space
utilization in the log blocks and it is less likely that a page
write invokes a merge operation. However, if a log block is
associated with multiple, say n, data blocks, a merge op-
eration involves all the associated data blocks. For each of
them, the valid pages are copied to an empty block. In this
case, n + 1 erase operations (n erasures for data blocks and
one for the log block) are necessary.

Log-block-based approaches greatly improve write perfor-
mance of flash disks, which, however, is highly sensitive to
spatial locality of write patterns. For the same number of
write requests, the higher the locality and the lesser data
blocks affected, the better is the flash write performance.

2.4 Related Work
The DULO (Dual Locality) replacement policy proposed

by Jiang [5] exploits both temporal and spatial locality of
access patterns. Although DULO is designed for magnetic
disks, its emphasis on spatial locality is very important in
the context of flash disks. Spatial locality is also exploited by
some operating systems at the block-level IO, for example,
by IO schedulers of Linux [6].

FAB (Flash-Aware Buffer) [7] is a buffer management pol-
icy designed for personal media players. FAB manages a
block-level LRU list. The victim block in the FAB method
is the block which contains the largest number of pages.
BPLRU [8] also maintains an LRU list at the block level. As
a buffer management scheme designed for the write buffer
inside flash disks, it employs a page-padding technique which
forces switch merges. To compensate the inefficiency of
LRU for sequential writes, BPLRU evicts sequentially writ-
ten blocks prior to randomly written blocks.

REF (Recently-Evicted First) [9] is a log-block-aware re-
placement policy which maintains a page-level LRU list, but
selects victims only from the so-called victim blocks, which
are blocks with the largest number of pages in the buffer.

CFLRU (Clean-First LRU) [10] is a flash-aware replace-
ment algorithm for operating systems based on the LRU
algorithm. CFLRU addresses the asymmetry of flash IO by
allowing dirty pages to stay in the buffer longer than clean
pages. Recently, a similar approach was proposed in [11]
for special configurations, where magnetic disks and flash
disks coexist as external storage. Fig. 1 illustrates region
assignment and victim selection. The LRU list is divided
into two regions: the working region at the MRU end of the
list, where most of the buffer hits occur, and the clean-first
region at the LRU end, where clean pages are always se-
lected as victims over dirty pages. Only when clean pages
are not present in the clean-first region, the dirty page at the
tail is selected as victim. The size of the clean-first region is
determined by a parameter w called the window size.

The idea of CFLRU is very important because, by evict-
ing clean pages first, the buffer area for dirty pages is ef-
fectively increased—thus, the number of flash writes can be
reduced. However, there are several problems with this sim-
ple approach. First, because clean pages are not always at
the LRU tail, the algorithm has to search backwards for a
clean page. Furthermore, a clean page tends to stay in the

Figure 1: CFLRU replacement policy

Figure 2: Generalized two-region scheme

clean-first region close to the working region (see Fig. 1),
because clean pages are always selected over dirty pages.
That means the algorithm often has to walk a potentially
very long list in case of a buffer fault. Second, under the
LRU assumption, the dirty pages in the clean-first region
have a much lower probability of being re-accessed, thus
this valuable main memory resource should be better uti-
lized for minimizing the cost of writing back dirty pages.
Third, CFLRU has the same problem of LRU: it becomes
inefficient when the workload is mixed with long and sequen-
tial access patterns, because the hot pages cached so far are
pushed away by sequentially accessed pages.

3. THE CFDC ALGORITHM
Our algorithm called Clean-First Dirty-Clustered (CFDC)

tries to improve CFLRU by tackling these problems.

3.1 The Two-Region Scheme
We address the first problem of CFLRU by introducing

two queues for the clean-first region: one for the clean pages
and one for the dirty pages. A page evicted from the working
region goes to the clean queue if it is clean, otherwise to the
dirty queue. Upon a buffer fault, if the clean queue is not
empty, the tail of the clean queue is returned as the victim,
otherwise the tail of the dirty queue. The improved CFLRU
behaves the same as the original algorithm in terms of hit
ratio and flash write count, but search costs for clean pages
are entirely eliminated.

The improved CFLRU can be further generalized as fol-
lows: the policy manages two regions: the working region
for keeping hot pages that are frequently revisited, and the
priority region responsible for optimizing replacement costs
by assigning varying priorities to pages. A parameter, pri-
ority window, determines the size ratio of the priority region
to the total buffer. Both regions in our generalized scheme
do not have to be bound to a specific replacement policy.
For example, different proven replacement policies can be
used to maintain high hit ratios in the working region and,
therefore, prevent hot pages from entering the priority re-
gion.

Fig. 2 shows our generalized two-region scheme of the im-
proved CFLRU method. Here, the working region uses LRU,
while the priority region assigns higher priorities to dirty

pages. Upon a buffer fault, a victim is selected in the prior-
ity region to make room for a page currently in the working
region. After this page displacement, the requested page can
enter the working region.

3.2 Page Clustering
We address the second and third problem of CFLRU by

supporting page clustering in the dirty queue: instead of
keeping a queue of dirty pages, CFDC maintains a prior-
ity queue of page clusters. A cluster is a list of pages lo-
cated in proximity, i.e., whose page numbers are close to
each other. Hence, it is similar to a block when block-level
LRU in BPLRU and FAB is used. But a cluster has variable
size determined by the set of pages currently kept. The page
order in a cluster does not correspond to page numbers or
offsets, but to the point of time they entered the cluster.

To administrate these clusters, CFDC maintains a hash
table with cluster numbers as keys. When a dirty page enters
the priority region, we derive its cluster number by dividing
its page number by a constant MAX CLUSTER SIZE and
perform a hash lookup using this cluster number. If the
cluster exists, the page is added to the cluster tail and the
cluster position in the priority queue is adjusted. Otherwise,
a new cluster containing this page is created and inserted to
the priority queue. Moreover, the new cluster is registered in
the hash table. In case of a page hit in the clusters, the page
is simply moved to the working region. Upon a buffer fault,
if the clean queue is empty, we select the first page in the
lowest-priority cluster as victim. After refilling the priority
region with a victim of the working region, the requested
page can be loaded.

3.3 Priority Function
For a cluster c with n pages, its priority P (c) is computed

according to Formula 1:

P (c) =

n−1X
i=1

|pi − pi−1|

n2 × (globaltime− timestamp(c))
(1)

where p0, ..., pn−1 are the page numbers ordered by their
time of entering the cluster. The algorithm tends to assign
large clusters a lower priority for two reasons: 1. Flash
disks are efficient in writing such clustered pages due to their
spatial locality; 2. The pages in a large cluster have a higher
probability to suffer from sequential accesses.

The sum in the dividend in Formula 1 is used to distin-
guish between randomly accessed clusters and sequentially
accessed clusters (clusters with only one page are set to
1). We prefer to keep a randomly accessed cluster in the
buffer for a longer time than a sequentially accessed cluster.
For example, a cluster with pages {0, 1, 2, 3} has a dividend
of 3, while a cluster with pages {7, 5, 4, 6} has a dividend
of 5. The purpose of the time component in Formula 1
is to prevent randomly, but rarely accessed small clusters
from staying in the buffer forever. The cluster timestamp
timestamp(c) is the value of globaltime at the time of its
creation. Each time a dirty page is evicted from the working
region, globaltime is incremented by 1.

Fig. 3 depicts a priority queue with four clusters, where
globaltime is 10, timestamp(c) is kept at the top right corner
of each cluster, and the clustered pages are marked with
their page numbers. From left to right, the cluster priorities
are obtained using Formula 1: 2/9, 1/8, 1/14, 1/18.

Figure 3: Prioritized clusters

Once a page victim is selected, the cluster priority is set
to 0. Hence, subsequent page faults cause this cluster to be
emptied, such that it is eventually removed from the priority
queue. Because of the cluster property, the removed dirty
pages, in turn, are logically close to each other and, because
of the space allocation in most DBMSs and file systems,
also have a high probability of being physically neighbored.
Thus, the write requests received by the flash disk are target-
ing at a limited number of flash blocks which can be served
efficiently as discussed in Section 2.

The time complexity of our algorithm is higher than that
of LRU due to the maintenance of the priority queue. How-
ever, the queue is maintained in units of clusters and the
maintenance is only triggered by a buffer fault and, in case,
the page evicted from the working region is a dirty page. As
our experiments will show, this overhead pays off.

4. EXPERIMENTS
We have chosen XTC [12] as the database engine used for

our experiments, because we could modify its source code
and it provides a clean design based on the classical five-
layer reference architecture [13]. To better explain our re-
sults, we have only used its three bottom-most layers in our
experiments, i.e., the file manager supporting block-oriented
access to the data files, the buffer manager serving page re-
quests, and the index manager providing B-tree and B∗-tree
implementations. Although designed for XML data manage-
ment, the processing behavior of these three XTC layers is
very close to that of a relational database system.

4.1 Test Environment
We implemented quite a number of replacement polices

and integrated them into the buffer manager. Three of them
are relevant to this section: LRU, CFLRU, and CFDC. The
database engine including all polices and the component for
generating the workloads discussed below are completely im-
plemented in Java. The Java platform used in our experi-
ments has version 1.6.0 06.

The test machine has an AMD Athlon Dual Core Proces-
sor, 512 MB of main memory, is running Ubuntu Linux with
kernel version 2.6.24-19, and is equipped with a magnetic
disk and a flash disk, both connected to the SATA interface
used by the file system EXT2. Both OS and database en-
gine are installed on the magnetic disk. The test data (as a
database file) resides on the flash disk which is a MTRON
MSP-SATA7525 based on SLC NAND flash memory and
has a capacity of 32 GB.

Compared to simulation-only studies, more accurate and
more realistic results may be anticipated by experiments on
a real machine. But, it is more difficult to get such results
due to several reasons: 1. Flash disks are black boxes from
the viewpoint of the user. As some publications have re-
vealed, the IO costs to a flash disk are not constant in time
due to the unknown internal state of the flash disk and pro-

prietary algorithms used in the FTL[14]; 2. The operating
system and the file system may apply (hidden) data caching
which also influences the IO costs of applications.

In our experiments, we deactivated the file-system prefetch-
ing and the IO scheduling for the flash disk and emptied the
Linux page caches. To ensure a stable initial state, we have
sequentially read and written a 512MB file (of irrelevant
data) from and onto the flash disk before each experiment.

4.2 Test Data and Workload
The test data was generated by inserting one million equal-

length records into a B∗-tree with a page size of 4 KB (which
is used for all experiments), where half of the space in the
leaf pages was unused. Each record is a key-value pair with
an integer key of four bytes and a value of 256 bytes. The
resulted database file had a size of 641 MB in the file system.

Our baseline workload consists of four sets of transactions:
100,000 point queries, 100,000 point updates, 200 range que-
ries, and 200 range updates, all evaluated via a B∗-tree. A
point query reads the corresponding value of a single key,
whereas a point update changes the corresponding value.
A range query sequentially scans 256 records, starting from
a given key. Similarly, a range update sequentially reads
and updates the value of 256 records. The keys used for
the point queries and updates are generated randomly with
an 80–20 self-similar distribution, i.e., 80% of the generated
keys go to 20% of the key space [0, 106]. The starting keys
for range queries and updates are uniformly distributed in
the key space. In a test run, the four sets of transactions
are mixed and executed in random order. We believe this
setup represents the typical workload for a database system
with mixed random and sequential accesses. Therefore, all
our experiments use this setup or its variants.

4.3 Buffer Size
To explore how efficiently the buffer is managed by our al-

gorithm, we configured our system with varying buffer sizes,
ranging from 1,024 to 8,192 4K pages, i.e., from 4 MB to
32 MB. For each buffer size and each of the three replace-
ment policies LRU, CFLRU, and CFDC, we ran the base-
line workload and measured the elapsed time, which was
then converted to TPS (transactions per second). The pri-
ority region used 50% of the buffer size and the constant
MAX CLUSTER SIZE was set to 64.

The results are shown in Fig. 4. CFDC clearly outper-
forms both competing policies, with a performance gain be-
tween 14% (at 1,024 pages) and 41% (at 8,192 pages) over
CFLRU, which, in turn, is only slightly better than LRU
with a maximum performance gain of 6% at 8,192 pages.

We also instrumented the database engine to count the
number of page flushes and measured the average time for
flushing a single page onto the flash disk. These measure-
ments are shown in Fig. 5 and Fig. 6. Compared to LRU,
CFLRU has to perform fewer (about 3–5%) page flushes,
which explains its slight performance improvement over LRU.
Although CFDC gives higher priority to dirty pages, too, it
has to achieve more page flushes than CFLRU (see Fig. 5).
This is expected because the recency of dirty pages in the
priority window is not the only criterion in CFDC. The de-
cisive advantage of CFDC is explained by Fig. 6: it writes
much more efficiently compared to the other two policies
due to the page clustering and prioritization. For most of
the buffer sizes, the cost of flushing a single page is only a

Figure 4: Influence of buffer size

Figure 5: Number of page flushes

half of the cost of LRU or CFLRU.
For all experiments explained in the following, we used a

fixed buffer size of 4,096 pages and, if not otherwise stated,
the priority window was always 50% of the buffer size.

4.4 Update Intensity
CFDC tries to reduce IO cost by clustering updated pages.

Therefore, it is very interesting to know how it performs
under workloads with high update intensity (percentage of
update transactions in the workload). In our baseline work-
load, 50% are update transactions, i.e., it has an update
intensity of 50%. In the following experiment, we varied
this parameter from 0% to 100%, while keeping the total
number of transactions unchanged. Hence, we obtained for
a 20% update intensity 160,000 point queries, 40,000 point
updates, 320 range queries, and 80 range updates.

Fig. 7 compares the throughput of CFDC to LRU and
CFLRU under these workloads. With 0% update inten-
sity, i.e., no updates at all, CFDC and CFLRU degener-

Figure 6: Cost of page flushes

Figure 7: Influence of increasing update ratios

Figure 8: Influence of increasing scan fractions

ate to LRU and all three algorithms reached a very high
throughput level of around 9,500 TPS—in conventional set-
tings, only reachable with arrays of magnetic disks. With
increasing update intensity, the performance dropped lin-
early (note the Y-axis has logarithmic scale of base 2), while
CFDC performs best among the three competitors. Under
100% update intensity, the throughput achieved by CFDC
(702 TPS) is 1.73 times of that achieved by CFLRU (407
TPS) and LRU (406 TPS). This experiment also confirms
that, under heavy-update workloads, CFLRU only yields a
marginal performance gain over LRU and it degenerates to
LRU, if all buffer pages are dirty.

4.5 Sequentiality
The baseline workload consists of 200 range queries and

200 range updates. Each of these transactions accesses a
sequence of 256 records, each of length 260 bytes (4B keys
and 256B values). Because of the 50% filling, about 32 leaf
pages were present.

Because CFDC gives higher priority to clusters of ran-
domly updated pages, its performance gain over LRU and
CFLRU should be less noticeable, if the workload consists
of a larger part of sequential accesses. If the workload was
purely sequential, then no remarkable difference can be ob-
served among the three algorithms. This consideration co-
incides with the experimental results shown in Fig. 8. In
this test, we compared the performance of the three algo-
rithms under workloads with increasing numbers of scans.
The other workload parameters were identical to those of
the baseline workload. The numbers on the X-axis of Fig. 8
are the sums of 50% range queries and 50% range updates.
Obviously, the performance declines with an increasing se-
quentiality of the workload, because a scan lasts much longer
than a single random access.

Figure 9: Impact of priority window size

4.6 Priority Window
Another interesting aspect concerns the performance im-

pact of the priority window, provided for both CFLRU and
CFDC. We configured both algorithms with an increasing
window size ranging from 0.125% to 0.875% of the buffer
size (which is 4,096 pages) and ran the baseline workload.
As the result in Fig. 9 reveals for a workload with 50% up-
date intensity, both policies benefit from a larger priority
window, but CFDC utilizes this resource more efficiently.
In our experiments, window sizes were statically configured.
However, if severe workload changes are present, it would be
necessary to provide dynamic window size adjustment. We
leave this as an interesting topic for future research.

5. CONCLUSIONS AND OUTLOOK
Our experiments have shown that the proposed algorithm

CFDC significantly outperforms CFLRU. The key for this
improvement can be stated as follows: for a flash disk, the
number of writes should be minimized but, more important,
locality of access patterns, especially spatial locality, should
be exploited to the extent possible by the buffer manage-
ment. Note, this approach implies NoForce/Steal provisions
for the logging & recovery component which, however, is the
standard solution in most DBMSs [15].

A question related to the write optimization of CFDC is
whether pages belonging to the same cluster should be all
evicted at the same time. We believe this technique has some
potential, because, as our raw IO tests on flash disks (not
included in this paper) show, writing at larger transfer units
to the flash disk generally improves the write performance.
However, such an approach requires the pages being flushed
to be first sorted by page numbers and then copied together
to a larger memory area. A related optimization technique
called page padding [8] might be useful in this case.

Since we primarily aimed at improving CFLRU, our ex-
periments focused on three algorithms: LRU, CFLRU, and
CFDC. We plan to include other flash-aware replacement
policies in our experiments, too. Among the flash-aware
replacement policies introduced in Section 2.4, BPLRU is
designed for the write cache inside flash devices and, there-
fore, not directly comparable to our algorithm. We ex-
pect that CFDC will outperform the remaining two algo-
rithms FAB and REF. The former, FAB, is designed and
optimized for personal media players, its anticipated access
patterns (e.g., sequentially reading and writing large au-
dio/video files) largely differ from those of database systems.
Although the latter, REF, considers the log-block mecha-
nism inside flash devices to optimize write performance on

flash disks, it doesn’t give different priorities to clean and
dirty pages like CFDC does. Therefore, we expect that
CFDC will generate less writes than REF under the same
kinds of workloads. But these speculations are subject to
examination using empirical experiments in the near future.
Moreover, we plan to cross-compare those algorithms under
workloads of real database applications.

6. ACKNOWLEDGEMENT
This work is partly supported by the Carl Zeiss Founda-

tion.

7. REFERENCES
[1] W. Effelsberg and T. Härder. Principles of database

buffer management. ACM Trans. on Database Sys.,
9(4):560–595, December 1984.

[2] D. Woodhouse. JFFS: the journalling flash file system.
In Proc. of the Ottawa Linux Symposium, 2001.

[3] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho.
A space-efficient flash translation layer for
CompactFlash systems. Trans. on Consumer
Electronics, 48(2):366–375, 2002.

[4] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee,
S. Park, and H.-J. Song. A log buffer-based flash
translation layer using fully-associative sector
translation. ACM Trans. on Embedded Computing
Systems, 6(3), July 2007.

[5] S. Jiang. DULO: an effective buffer cache management
scheme to exploit both temporal and spatial localities.
In USENIX Conf. on File and Storage Technologies,
pages 101–114, 2005.

[6] J. Axboe. Linux block IO—present and future. In
Proc. of the Ottawa Linux Symposium, 2004.

[7] H. Jo, J. Kang, S. Park, J. Kim, and J. Lee. FAB:
flash-aware buffer management policy for portable
media players. Trans. on Consumer Electronics,
52(2):485–493, 2006.

[8] H. Kim and S. Ahn. BPLRU: A buffer management
scheme for improving random writes in flash storage.
In USENIX Conf. on File and Storage Technologies,
pages 239–252, 2008.

[9] D. Seo and D. Shin. Recently-evicted-first buffer
replacement policy for flash storage devices. Trans. on
Consumer Electronics, 54(3):1228–1235, 2008.

[10] S. Park, D. Jung, J. Kang, J. Kim, and J. Lee.
CFLRU: a replacement algorithm for flash memory.
Proc. of Int. Conf. on compilers, architecture, and
synthesis for embedded systems, pages 234–241, 2006.

[11] I. Koltsidas and S. D. Viglas. Flashing up the storage
layer. Proc. VLDB Endow. Arch., 1(1):514–525, 2008.

[12] M. P. Haustein and T. Härder. An efficient
infrastructure for native transactional XML
processing. Data Knowl. Eng, 61(3):500–523, 2007.

[13] T. Härder. DBMS architecture - the layer model and
its evolution. Datenbank-Spektrum, 13:45–57, 2005.

[14] L. Bouganim, B. T. Jónsson, and P. Bonnet. uFLIP:
Understanding flash IO patterns. In CIDR.
www.crdrdb.org, 2009.

[15] T. Härder and A. Reuter. Principles of
transaction-oriented database recovery. ACM
Computing Surveys, 15(4):287–317, December 1983.

