Recursive Program Schemes with Effects

Daniel Schwencke, 28th March 2010
Outlines

1. Introduction
2. Preliminaries and Definitions
3. A Solution Theorem
4. Future Work
Idea: define new operations using given operations and recursion

Definition (RPS without effects, classical)

- disjoint finite sets F – given operation symbols
 - Φ – new operation symbols
 - X – variables
- $\phi(x_1, \ldots, x_n) \approx t^\phi(x_1, \ldots, x_n)$ for all $\phi \in \Phi_n$, t^ϕ term in $F \cup \Phi$
Idea: define new operations using given operations and recursion

Definition (RPS without effects, classical)

- disjoint finite sets F – given operation symbols
 - Φ – new operation symbols
 - X – variables

- $\phi(x_1, \ldots, x_n) \approx t^{\phi}(x_1, \ldots, x_n)$ for all $\phi \in \Phi_n$, t^{ϕ} term in $F \cup \Phi$

Example ([Milius Moss 06])

\[
\phi(x) \approx f(x, \phi(gx))
\]
\[
\psi(x) \approx f(\phi(gx), ggx)
\]
Idea: define new operations using given operations and recursion

Definition (RPS without effects, classical)

- disjoint finite sets F – given operation symbols
 - Φ – new operation symbols
 - X – variables
- $\phi(x_1, \ldots, x_n) \approx t^\phi(x_1, \ldots, x_n)$ for all $\phi \in \Phi_n$, t^ϕ term in $F \cup \Phi$

Example ([Milius Moss 06])

$\phi(x) \approx f(x, \phi(gx))$
$\psi(x) \approx f(\phi(gx), ggx)$

Generalising category-theoretic approach in [Ghani Lüth de Marchi 03, Milius Moss 06]
ND-RPSs

Idea: add non-deterministic choice on rhs of formal equations

- special binary operation symbol $or \not\in F \cup \Phi$
- terms t^ϕ in $F \cup \Phi \cup \{or\}$
- see [Arnold Nivat 77]
ND-RPSs

Idea: add non-deterministic choice on rhs of formal equations

- special binary operation symbol \(or \notin F \cup \Phi \)
- terms \(t^\phi \) in \(F \cup \Phi \cup \{or\} \)
- see [Arnold Nivat 77]

Example

\[
pow(x) \approx x \ or \ (x \cdot pow(x))
\]
ND-RPSs

Idea: add non-deterministic choice on rhs of formal equations

- special binary operation symbol $\text{or} \notin F \cup \Phi$
- terms t^ϕ in $F \cup \Phi \cup \{\text{or}\}$
- see [Arnold Nivat 77]

Example

$$\text{pow}(x) \approx x \text{ or } (x \cdot \text{pow}(x))$$

More generally: RPSs with effects

- partiality
- non-determinism
- probabilism
Assumptions

- (M, η^M, μ^M) monad on Set
- H, V finitary Set-functors
- distributive laws $\lambda : HM \to MH$ and $\nu : VM \to MV$

\Rightarrow induced distributive law $\rho : (H + V)M \to M(H + V)$
A Starting Point

Assumptions

- \((M, \eta^M, \mu^M)\) monad on \textbf{Set}
- \(H, V\) finitary \textbf{Set}-functors
- distributive laws \(\lambda : HM \to MH\) and \(\nu : VM \to MV\)

\[\Rightarrow\text{induced distributive law } \rho : (H + V)M \to M(H + V)\]

Meaning:

- \(M\) – effect, e.g. \(+ 1\), \(P\), \(D\)
- \(H, V\) – “signatures” of given/new operations
- \(\lambda, \nu, \rho\) – extension of operations to parameters with effects
A First Lemma

Notation:
- \((F^G, \eta^G, \mu^G)\) free monad on \(G\)
- universal natural transformation \(\kappa^G : G \to F^G\)
- \(T\) monad, \(\sigma : G \to T\). Then
 \(\sigma^\# : F^G \to T\) unique monad morphism such that \(\sigma^\# \cdot \kappa^G = \sigma\)
A First Lemma

Notation:

- \((F^G, \eta^G, \mu^G)\) free monad on \(G\)
- universal natural transformation \(\kappa^G : G \to F^G\)
- \(T\) monad, \(\sigma : G \to T\). Then
 \(\sigma^# : F^G \to T\) unique monad morphism such that \(\sigma^# \cdot \kappa^G = \sigma\)

Lemma

If \(G\) has free algebras, every distributive law \(\delta : GM \to MG\) induces a distributive law \(\delta' : F^G M \to MF^G\).

\(\Rightarrow\) composite monad \((MF^G, \eta^M F^G \cdot \eta^G, (\mu^M * \mu^G) \cdot M\delta' F^G)\)
RPSs with Effects

Definition

- **M-RPS** \(e : V \rightarrow MF^{H+V} \)
- **guarded** if \(e \equiv V \xrightarrow{e_0} M(HF^{H+V} + \text{Id}) \xrightarrow{\cdots} MF^{H+V} \)
- (uninterpreted) solution of \(e \) \(e^\dagger : V \rightarrow MF^H \) such that \(e^\dagger = \mu^M F^H \cdot M[\eta^M F^H \cdot \eta^H, e^\dagger]^\# \cdot e \)
RPSs with Effects

Definition

- **M-RPS** $e : V \rightarrow MF^{H+V}$
- guarded if $e \equiv V \xrightarrow{e_0} M(HF^{H+V} + \text{Id}) \xrightarrow{\ddots} MF^{H+V}$
- (uninterpreted) solution of e $e^\dagger : V \rightarrow MF^H$ such that $e^\dagger = \mu M F^H \cdot M[\eta^M F^H \cdot \eta^H, e^\dagger][\#] \cdot e$

Example

For $\text{pow}(x) \approx x$ or $(x \cdot \text{pow}(x))$ take $M = \mathcal{P}$, $V = \text{Id}$, $H = \text{Id}^2$

- $e_X(x) = \{x, x \cdot \text{pow}(x)\}$
- guarded since $x \in \text{Id}(X)$ and $x \cdot \text{pow}(x) \in HF^{H+V}X$
- $e^\dagger_X(x) = \{x, x \cdot x, x \cdot (x \cdot x), x \cdot (x \cdot (x \cdot x)), \ldots \}$ is a solution
What We Would Like to Prove...

Question

Does every guarded M-RPS have a (unique) solution?
What We Would Like to Prove...

Question

Does every guarded M-RPS have a (unique) solution?

From H, M, λ and ρ' we obtain

- a functor $\mathcal{H} = H \cdot - + \text{Id}$ on $[\text{Set}, \text{Set}]$;
What We Would Like to Prove...

Question

Does every guarded M-RPS have a (unique) solution?

From H, M, λ and ρ' we obtain

- a functor $\mathcal{H} = H \cdot - + \text{Id}$ on $[\text{Set}, \text{Set}]$;
- a monad $\mathcal{M} = (M \cdot -, \eta^M, \mu^M)$ on $[\text{Set}, \text{Set}]$;
Question

Does every guarded M-RPS have a (unique) solution?

From H, M, λ and ρ' we obtain

- a functor $H = H \cdot _+ + \text{Id}$ on $\mathbf{Set}, \mathbf{Set}$;
- a monad $M = (M \cdot _-, \eta^M, \mu^M)$ on $\mathbf{Set}, \mathbf{Set}$;
- a distributive law $\Lambda = [\text{Minl}, \text{Minr}] \cdot (\lambda_+ + \eta^M) : HM \to MH$;
What We Would Like to Prove...

Question

Does every guarded M-RPS have a (unique) solution?

From H, M, λ and ρ' we obtain

- a functor $\mathcal{H} = H \cdot - + \text{Id}$ on $[\text{Set}, \text{Set}]$;
- a monad $\mathcal{M} = (M \cdot - , \eta^M, \mu^M)$ on $[\text{Set}, \text{Set}]$;
- a distributive law $\Lambda = \text{[Minl, Minr]} \cdot (\lambda - + \eta^M) : \mathcal{H}M \rightarrow \mathcal{M}\mathcal{H}$;
- equivalently, a lifting \bar{H} of \mathcal{H} to $[\text{Set}, \text{Set}]_M$.
What We Would Like to Prove. . .

Question

Does every guarded M-RPS have a (unique) solution?

From H, M, λ and ρ' we obtain

- a functor $\mathcal{H} = H \cdot _ + \text{Id}$ on $[\text{Set}, \text{Set}]$;
- a monad $\mathcal{M} = (M \cdot _, \eta^M _ , \mu^M _)$ on $[\text{Set}, \text{Set}]$;
- a distributive law $\Lambda = [\text{Minl}, \text{Minr}] \cdot (\lambda + \eta^M) : \mathcal{H}\mathcal{M} \to \mathcal{M}\mathcal{H}$;
- equivalently, a lifting $\tilde{\mathcal{H}}$ of \mathcal{H} to $[\text{Set}, \text{Set}]_\mathcal{M}$;
- the canonical functor $J : [\text{Set}, \text{Set}] \to [\text{Set}, \text{Set}]_\mathcal{M}$.
What We Would Like to Prove...

Question

Does every guarded M-RPS have a (unique) solution?

From H, M, λ and ρ' we obtain

- a functor $\mathcal{H} = H \cdot - + \text{Id}$ on $[\text{Set}, \text{Set}]$;
- a monad $\mathcal{M} = (M \cdot -, \eta^M, \mu^M)$ on $[\text{Set}, \text{Set}]$;
- a distributive law $\Lambda = [\text{Minl}, \text{Minr}] \cdot (\lambda - + \eta^M) : \mathcal{HM} \to \mathcal{MH}$;
- equivalently, a lifting $\tilde{\mathcal{H}}$ of \mathcal{H} to $[\text{Set}, \text{Set}]_{\mathcal{M}}$;
- the canonical functor $J : [\text{Set}, \text{Set}] \to [\text{Set}, \text{Set}]_{\mathcal{M}}$;
- a monad \mathcal{HF}^{H+V} with distributive law over M.

D. Schwencke: Recursive Program Schemes with Effects
Second Order Substitution with Effects

Definition

For a guarded M-RPS e let \bar{e} be the unique monad morphism such that the diagram commutes:

\[
H + V \xrightarrow{[\text{Jinl} \cdot H\eta^{H+V}, e_0]} M(HF^{H+V} + \text{Id})
\]

\[
\begin{array}{c}
\kappa^{H+V} \\
F^{H+V}
\end{array}
\]

Remarks

\bar{e} performs second order substitution with effect handling \bar{e} is an \bar{H}-coalgebra

D. Schwencke: Recursive Program Schemes with Effects
Definition

For a guarded M-RPS e let \bar{e} be the unique monad morphism such that the diagram commutes:

\[
\begin{array}{cc}
H + V & \xrightarrow{[\text{Jinl} \cdot H\eta^{H+V}, e_0]} M(HF^{H+V} + \text{Id}) \\
\downarrow^{\kappa^{H+V}} & \\
F^{H+V} & \xrightarrow{\bar{e}} \\
\end{array}
\]

Remarks

- \bar{e} performs second order substitution with effect handling
- \bar{e} is an H-coalgebra
Sufficient Conditions for a Solution

Notation:

\[\phi^H = \mu^H \cdot \kappa^H F^H : HF^H \to F^H \]
Sufficient Conditions for a Solution

Notation:

\[\phi^H = \mu^H \cdot \kappa^H F^H : HF^H \to F^H \]

Two facts:

- \([\phi^H, \eta^H] : \mathcal{H}F^H \to F^H\) is initial \(\mathcal{H}\)-algebra.
Sufficient Conditions for a Solution

Notation:

\[\phi^H = \mu^H \cdot \kappa^H : HF^H \rightarrow F^H \]

Two facts:

1. \([\phi^H, \eta^H] : \mathcal{H}F^H \rightarrow F^H\) is initial \(\mathcal{H}\)-algebra.
2. If \(J[\phi^H, \eta^H]^{-1} : F^H \rightarrow \tilde{\mathcal{H}}F^H\) is final \(\tilde{\mathcal{H}}\)-coalgebra and the unique \(\tilde{\mathcal{H}}\)-coalgebra homomorphism \(h : F^{H+V} \rightarrow M\mathcal{F}^H\) between \(\tilde{e}\) and \(J[\phi^H, \eta^H]^{-1}\) is a monad morphism then \(h \cdot \kappa^{H+V} \cdot \text{inr} : V \rightarrow M\mathcal{F}^H\) is a solution of \(e\).
A Result for CPO-enriched \mathbf{Set}_M

Assumptions

- \mathbf{Set}_M CPO-enriched with strict composition
- λ strict
- \tilde{H} locally continuous

Theorem

Under the above assumptions, every guarded M-RPS has a solution.
A Result for CPO-enriched Set_M

Assumptions

- Set_M CPO-enriched with strict composition
- λ strict
- \bar{H} locally continuous

Theorem

Under the above assumptions, every guarded M-RPS has a solution.
A Result for CPO-enriched Set_M (ctd.)

Theorem

Under the above assumptions, every guarded M-RPS has a solution.

Proof.

1. $J[\phi^H, \eta^H]^{-1}$ final \bar{H}-coalgebra: use techniques of [Hasuo Jacobs Sokolova 07]
Theorem

Under the above assumptions, every guarded M-RPS has a solution.

Proof.

1. $J[\phi^H, \eta^H]^{-1}$ final \bar{H}-coalgebra: use techniques of [Hasuo Jacobs Sokolova 07]
2. h monad morphism: unit easy, multiplication very technical
A Result for CPO-enriched \textbf{Set}^M (ctd.)

Theorem

Under the above assumptions, every guarded M-RPS has a solution.

Proof.

1. $J[\phi^H, \eta^H]^{-1}$ final $\tilde{\mathcal{H}}$-coalgebra: use techniques of [Hasuo Jacobs Sokolova 07]
2. h monad morphism: unit easy, multiplication very technical

Examples ([Milius Palm S 09])

Monads $_ + 1$, \mathcal{P} or \mathcal{D} with analytic H and canonical λ
Future Work

1. uniqueness of solutions
Future Work

1. uniqueness of solutions

2. generalise M-RPS-definition to allow CIMs
 - [Arnold Nivat 77]-setting category-theoretic
 - environment monad $(\neg)^E$
Future Work

1. uniqueness of solutions

2. generalise M-RPS-definition to allow CIMs
 - [Arnold Nivat 77]-setting category-theoretic
 - environment monad $(-)^E$

3. interpreted solutions using [Milius Palm S 09]
Literature

▶ A. Arnold and M. Nivat.
Non Deterministic Recursive Program Schemes.

▶ N. Ghani, C. Lüth and F. de Marchi.
Solving Algebraic Equations using Coalgebra.

▶ I. Hasuo, B. Jacobs and A. Sokolova.
Generic Trace Semantics via Coinduction.

▶ S. Milius and L. S. Moss.
The Category Theoretic Solution of Recursive Program Schemes.

▶ S. Milius, T. Palm and D. Schwencke.
Complete Iterativity for Algebras with Effects.
Thank you... for your attention!

schwencke@iti.cs.tu-bs.de