Generic Infinite Traces
and
Path-Based Coalgebraic Temporal Logics

Corina Cîrstea

School of Electronics and Computer Science
University of Southampton
Overview

• several known path-based temporal specification logics:
 • CTL* on transition systems
 • PCTL on probabilistic transition systems
• similarities not sufficiently understood/exploited

Goals:
• find a unifying pattern (need infinite computation paths)
 • existing general theory of finite traces [Hasuo et. al.]
 • existing definition of infinite traces for $T = \mathcal{P}$ [Jacobs ’04]
• automatically derive new path-based temporal logics
Restricted Transition Systems

- restricted transition systems are \mathcal{P}^+-coalgebras

\((\mathcal{P}^+ (S) = \text{set of non-empty subsets of } S)\)

Example

Some computation paths from s_0:

- $s_0 \rightarrow s_1 \rightarrow s_1 \ldots$
- $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_0 \rightarrow s_1 \rightarrow s_2 \ldots$
- $s_0 \rightarrow s_1 \rightarrow s_3 \rightarrow s_3 \ldots$

- to each state, one associates a set of computation paths
The Logic CTL*

- **path formulas:** \(\varphi ::= \phi \mid \neg \varphi \mid \varphi \land \varphi \mid X\varphi \mid F\varphi \mid G\varphi \mid \varphi U \varphi \)

- **state formulas:** \(\phi ::= \tt \mid \mathit{p} \mid \neg \phi \mid \phi \land \phi \mid E\varphi \mid A\varphi \)

- **E** and **A** similar to \(\Diamond \) and \(\Box \) modalities . . .

Example

\[
A \ F (\mathit{try} U \mathit{succ})
\]
Probabilistic Transition Systems

- probabilistic transition systems are D-coalgebras
 \[D(S) = \text{set of probability distributions over } S \]

Example

Some computation paths from s_0:

- $s_0 \rightarrow s_1 \rightarrow s_1 \ldots$
- $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_0 \rightarrow s_1 \rightarrow s_2 \ldots$
- $s_0 \rightarrow s_1 \rightarrow s_3 \rightarrow s_3 \ldots$

- to each state, one associates a probability measure on the computation paths from that state
The Logic PCTL

- **path formulas:** $\varphi ::= X\phi \mid \phi U^{\leq t} \phi \quad t \in \{0, 1, \ldots\} \cup \{\infty\}$

- **state formulas:** $\phi ::= tt \mid p \mid \neg \phi \mid \phi \land \phi \mid [\varphi]_{\geq q} \mid [\varphi]_{>q}$

Example

![Diagram](image)

- $[tt U^{\leq 3} fail] < 0.1$
- $[(try U succ)] \geq 1$
More Examples

• (restricted) labelled transition systems (LTSs) are \(\mathcal{P}^+(A \times \text{Id}) \)-coalgebras

• generative probabilistic transition systems (GPTSs) are \(\mathcal{D}(A \times \text{Id}) \)-coalgebras

For both LTSs and GPTSs, computation paths have the form

\[
s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \ldots
\]

whereas infinite computation traces have the form

\[
a_0 a_1 a_2 \ldots
\]

What LTSs and GPTSs have in common is the inner part of the signature functor: \(A \times \text{Id} \).
The General Setting

Similarly to [Hasuo et. al.], we focus on $T \circ F$-coalgebras, where:

- **strong monad** $T : C \to C$ describes the computation type

 e.g. \mathcal{P}^+, \mathcal{D}

- functor $F : C \to C$ describes the transition type

 - require final sequence of F to stabilise at ω

 e.g. Id, $A \times \text{Id}$, $1 + A \times \text{Id}$

- distributive law $\lambda : F \circ T \Rightarrow T \circ F$ (compatible with monad structure) is fixed
Towards Infinite Traces

- the possible infinite traces for both LTSs and GPTSs are elements of A^ω (the final $A \times -$coalgebra):

$$\begin{align*}
1 & \xleftarrow{} A & A \xleftarrow{} A \times \bar{A} & \xleftarrow{} \cdots
\end{align*}$$

- for an LTS/GPTS (S, γ), the actual infinite traces should be structured according to the computation type:

$$tr_{\gamma} : S \rightarrow P^+(A^\omega) \quad \text{or} \quad tr_{\gamma} : S \rightarrow D(A^\omega)$$
Defining the Infinite Trace Map (for LTSs)

Fix an LTS $\gamma : S \rightarrow P^+(A \times S)$.

Define $tr_\gamma : S \rightarrow P^+(A^\omega)$ from its finite approximants γ_i.

For existence of tr_γ, we need:

- γ_i’s define cone
- $P^+(A^\omega)$ weakly limiting
Defining the Approximants (for LTSs)

\[\gamma : S \rightarrow \mathcal{P}^+(S) \]

\[\gamma(s_0) = \{(a, s_1)\} \]
\[\gamma(s_1) = \{(a, s_2), (b, s_3), (c, s_1)\} \]
\[\gamma(s_2) = \{(b, s_0)\} \]
\[\gamma(s_3) = \{(c, s_3)\} \]

- one application of \(\gamma \) gives

\[\gamma_1(s_1) = \{a, b, c\} \]

- two applications of \(\gamma \) followed by some “flattenning” (use of distributive law) give

\[\gamma_2(s_1) = \{ab, bc, ca, cb, cc\} \]

- ...
A Problem . . . and its Solution

\[S \xrightarrow{\gamma} \cdots \xrightarrow{\gamma_0, \gamma_1, \gamma_2} \cdots \xrightarrow{\text{tr}_{\gamma}} \mathcal{P}^+(A^\omega) \]

\[\mathcal{P}^+(1) \leftarrow \mathcal{P}^+(A) \leftarrow \mathcal{P}^+(A \times A) \leftarrow \cdots \]

- in general, there are several choices for the infinite trace map . . .
- . . . but there is a canonical (maximal) one, assuming:
 - dcpo \(\sqsubseteq \) on \(S \rightarrow \mathcal{P}^+(Z) \)
 - mediating maps form directed set
- the trace map can be defined for a general coalgebraic type \(T \circ F \)
 (subject to reasonable constraints)
From Infinite Traces to Infinite Executions

- view $\mathcal{P}^+(A \times _)$-coalgebra: as $\mathcal{P}^+(S \times A \times _)$:

- obtain an infinite execution map $\text{exec}_\gamma : S \to (S \times A)^\omega$ as the infinite trace map of the new coalgebra!!
“Infinite” Executions: Examples

Take $T = \mathcal{P}^+$.

- $F = _-$ (restricted TSs):

 $s_0 \ s_1 \ s_2 \ldots$

- $F = A \times _-$ (restricted LTSs):

 $s_0 \ a_1 \ s_1 \ a_2 \ s_2 \ldots$

- $F = 1 + A \times _-$ (LTSs):

 $s_0 \ a_1 \ s_1 \ a_2 \ s_2 \ldots$ or $s_0 \ a_1 \ s_1 \ldots \ s_n$
The Case of Probabilistic Systems

Example

- working with $T = D$ over sets does not work:
 - probability measures needed to deal with \textit{uncountably many} traces
 \Rightarrow need to work with $T = \mathcal{G}$ (the \textit{Giry monad}) over measurable spaces

- resulting infinite trace map takes states to probability measures over infinite traces
Coalgebra Structure on Infinite Executions

Fix a $\mathcal{P}^+(A \times _)$-coalgebra (S, γ).

The possible infinite executions have $S \times (A \times _)$-coalgebra structure.

Hence, one can extract from each infinite execution

- the first state,
- an $A \times _$-observation.
Towards Coalgebraic Path-Based Temporal Logics

- coalgebraic types come equipped with modal languages
- e.g. for $T = \mathcal{P}^+$, the language has modal operators \Box and \Diamond:
 - $s \models \Box \phi$ iff $s' \models \phi$ for all s' s.t. $s \rightarrow s'$
 - $s \models \Diamond \phi$ iff $s' \models \phi$ for some s' s.t. $s \rightarrow s'$
- e.g. for $F = A \times -$, the language has modal operators a and X:
 - $s \models a$ iff $s \rightarrow (a, s')$
 - $s \models X\phi$ iff $s \rightarrow (a, s')$ and $s' \models \phi$
- our coalgebras have type $T \circ F$, so we make use of the above . . .
 - . . . but with a non-standard interpretation of \Box and \Diamond!
Path-Based Fixpoint Logics (for TSs)

\[T = \mathcal{P}^+ \text{ with monotone } \Box, \Diamond \]

\[F = \text{Id with monotone } X \]

\[\varphi ::= \texttt{tt} | \texttt{ff} | p^F | \phi | \varphi \land \varphi | \varphi \lor \varphi | X\varphi | \mu p^F.\varphi | \nu p^F.\varphi \]

\[\phi ::= \texttt{tt} | \texttt{ff} | p | \phi \land \phi | \phi \lor \phi | \Box \varphi | \Diamond \varphi \]

Given \(T \circ F\)-coalgebra \((S, \gamma)\) and suitable valuations (for \(p^F \) and \(p \)), interpret

- **path formulas** \(\varphi \) as sets of paths
 - use \(S \times F\)-coalgebra structure on \(S^\omega \) to interpret \(\phi \) and \(X\varphi \)

- **state formulas** \(\phi \) as sets of states
 - use infinite execution map \(\text{exec}_\gamma : S \to \mathcal{P}^+(S^\omega) \) to interpret \(\Box \varphi \), \(\Diamond \varphi \)
General Path-Based Fixpoint Logics

Fix

- base category C with $U : C \to \text{Set}$
- functor $P : C \to \text{Set}^{\text{op}}$ specifying admissible predicates
 - assume $PC \subseteq \mathcal{P}UC$ is a complete lattice
- functors T and F with monotone modal operators Λ and Λ_F, resp.

Definition (Path-Based Fixpoint Language Syntax)

$$
\varphi ::= \text{tt} | \text{ff} | p^F | \phi | \varphi \land \varphi | \varphi \lor \varphi | [\lambda_F]\varphi | \mu p^F.\varphi | \nu p^F.\varphi
$$

$$
\phi ::= \text{tt} | \text{ff} | p | \phi \land \phi | \phi \lor \phi | [\lambda]\varphi
$$

- semantics as expected …
Recovering (negation-free) CTL*

Define:

- $X\varphi ::= X\varphi$
- $F\varphi ::= \mu X.(\varphi \lor XX)$
- $G\varphi ::= \nu X.(\varphi \land XX)$
- $\varphi U \psi ::= \mu X.(\psi \lor (\varphi \land XX))$

 ...

- $A\varphi ::= \square \varphi$
- $E\varphi ::= \lozenge \varphi$
How About LTSs?

\(T = P^+ \) with modal operators \(\square, \Diamond \)

\(F = A \times \text{Id} \) with modal operators \(a \ (a \in A), \mathbf{X} \)

\[
\Rightarrow \quad \varphi ::= \text{tt} \mid \text{ff} \mid p^F \mid \phi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid a \mid \mathbf{X} \varphi \mid \mu p^F . \varphi \mid \nu p^F . \varphi
\]

\[
\phi ::= \text{tt} \mid \text{ff} \mid p \mid \phi \land \phi \mid \phi \lor \phi \mid \square \varphi \mid \Diamond \varphi
\]

- CTL* operators defined as before!
- can refer to the next label along a path:
 - natural encoding of “\(a \) occurs along every path” as
 \[
 \square F a ::= \square \mu X.(a \lor XX)
 \]
 - compare above to
 \[
 \mu X.(\langle _ \rangle \text{tt} \land \lnot a \mathbf{X})
 \]
Logics with (Existential) Until Operators

- assume $PC \subseteq PUC$ is a σ-algebra
- replace fixpoint operators with Until operators \mathbf{U}_L
 - $L \subseteq \Lambda_F$ finite set of (disjunction-preserving) predicate liftings
- semantics defined by

\[
\mathcal{L} \phi \mathbf{U}_L \psi \mathcal{M} = \bigcup_{i \in \omega} \mathcal{L} \phi \mathbf{U}_L^{\leq i} \psi
\]

where

\[
\mathcal{L} \phi \mathbf{U}_L^{\leq 0} \psi \mathcal{M} := \psi
\]

\[
\mathcal{L} \phi \mathbf{U}_L^{\leq i+1} \psi \mathcal{M} := \psi \lor (\phi \land \bigvee_{\lambda F \in L} [\lambda F](\phi \mathbf{U}_L^{\leq i} \psi))
\]
Recovering PCTL as a Fragment

\[T = D, \quad F = \text{Id} \]

\[\Lambda = \{L_q\}, \quad \Lambda_f = \{X\} \]

\[\varphi ::= \text{tt} \mid \text{ff} \mid \phi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid X\varphi \mid \varphi U_X \varphi \]

\[\phi ::= \text{tt} \mid p \mid \neg \phi \mid \phi \land \phi \mid L_q \varphi \]

Define:

- \(X\varphi ::= X\varphi \)
- \(\varphi U \psi ::= \varphi U_X \psi \)
- \([\varphi]_{\geq q} ::= L_q \varphi \)
Future Work

- other computational monads
 - e.g. the finite multiset monad and graded temporal logics?
- investigate linear fragments of path-based temporal logics
 - automata-based model-checking techniques (parameterised by computation type)