C ‘10

Proceedings (preliminary version)

10th International Workshop on

COALGEBRAIC METHODS IN COMPUTER SCIENCE

Paphos, Cyprus

March 26-28, 2010

Editors:

B.P.F. JAcOBS M. Niqur
J.J.M.M RUTTEN A. SiLva

Editors:

Bart Jacobs
Radboud University Nijmegen
bart@cs.ru.nl

Milad Niqui
Centrum Wiskunde & Informatica
M.Niqui@cwi.nl

Jan Rutten
Centrum Wiskunde & Informatica and Radboud University Nijmegen
Jan.Rutten@cwi.nl

Alexandra Silva
Centrum Wiskunde & Informatica
A.M.Silva@cwi.nl

Typeset with BTEX 2¢

Printed in Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
Cover design: Jos van der Werf

Cover photograph: ‘Sunset at Aphrodite’s Rocks’ (© Copyright 2007 Dan Bar-
bus

Note: This is the preliminary version of the proceedings. For citation purposes
please use the final version that will be published by Elsevier.

Contents

Preface iv

JIRi ADAMEK, STEFAN MILIUS, JIRf VELEBIL
Recursive Program Schemes and Context-Free Monads 1

KAZUYUKI ASADA, ICHIRO HASUO
Categorifying Computations into Components via Arrows as Profunc-
0 = PN 23

ADRIANA BALAN, ALEXANDER KURZ
On Coalgebras over Algebras ...t 46

VINCENZO CIANCIA, ALEXANDER KURZ, UGO MONTANARI
Families of Symmetries as Efficient Models of Resource Binding 63

CoRINA CIRSTEA
Generic Infinite Traces and Path-Based Coalgebraic Temporal Logics . 85

MICHAEL HAUHS, BALTASAR TRANCON Y WIDEMANN
Applications of Algebra and Coalgebra in Scientific Modelling. Illus-

trated with the Logistic Map i i 108
BART JACOBS

From Coalgebraic to Monoidal Tracescoooiiiiin.. 129
JiHo Kim

Higher-order Algebras and Coalgebras from Parameterized Endofunc-

L1705 146

BARTEK KLIN
Structural Operational Semantics and Modal Logic, Revisited 161

JAN KOMENDA
Coinduction in Concurrent Timed Systems 184

il

Preface

This volume contains the proceedings of the Tenth Workshop on Coalgebraic
Methods in Computer Science (CMCS’10). The workshop was held in Paphos,
Cyprus from March 26 until March 28, 2010, as a satellite event to the European
Joint Conference on Theory and Practice of Software (ETAPS’10). The aim of
the CMCS workshop series is to bring together researchers with a common
interest in the theory of coalgebras and its applications.

Coalgebras have been found extremely useful for capturing state-based dy-
namical systems, such as transition systems, automata, process calculi, and
class-based systems. The theory of coalgebras has developed into a field of its
own interest, presenting a deep mathematical foundation and a growing domain
of applications and interactions with various other fields, such as reactive and
interactive systems theory, object oriented and concurrent programming, formal
system specification, modal logic, dynamical systems, control systems, category
theory, algebra, and analysis.

Previous workshops have been organised in Lisbon (1998), Amsterdam
(1999), Berlin (2000), Genoa (2001), Grenoble (2002) Warsaw (2003), Barcelona
(2004), Vienna (2006) and Budapest (2008). Starting from 2004 CMCS has be-
come biennial, alternating with CALCO (Conference on Algebra and Coalgebra
in Computer Science), which, for odd-numbered years, has been formed by the
union of CMCS with WADT (Workshop on Algebraic Development Techniques).

In 2010, the 10th edition of CMCS is celebrated. For this special occasion
all members of previous CMCS program committees have been invited to be a
member in 2010. Additionally, four specialists in the field have been invited to
present overviews of both obtained results and future challenges in important
subareas:

e Venanzio Capretta: Coalgebra in functional programming and type theory
e Bartek Klin: Operational semantics coalgebraically
e Dirk Pattinson: Logic and coalgebra

e Ana Sokolova: Probabilistic systems coalgebraically

The Programme Committee of CMCS’10 consisted of: Jif{ Addmek (Braun-
schweig), Alexandru Baltag (Oxford), Luis Barbosa (Braga), Marcello Bon-
sangue (Leiden), Corina Cirstea (Southampton), Robin Cockett (Calgary), An-
drea Corradini (Pisa), Neil Ghani (Glasgow), Peter Gumm (Marburg), Furio
Honsell (Udine), Bart Jacobs (Nijmegen, co-chair), Bartek Klin (Cambridge),
Clemens Kupke (London), Alexander Kurz (Leicester), Marina Lenisa (Udine),
Stefan Milius (Braunschweig), Ugo Montanari (Pisa), Larry Moss (Blooming-
ton), Milad Niqui (Amsterdam), Dirk Pattinson (London), Dusko Pavlovic (Ox-
ford), John Power (Edinburgh), Horst Reichel (Dresden), Grigore Rosu (Ur-
bana), Jan Rutten (Amsterdam, co-chair), Davide Sangiorgi (Bologna), Lutz
Schroeder (Bremen), Alexandra Silva (Amsterdam), Hendrik Tews (Nijmegen),

iv

Tarmo Uustalu (Tallinn), Yde Venema (Amsterdam), Hiroshi Watanabe (Os-
aka), James Worrell (Oxford).

The papers were refereed by the program committee and by several outside
referees, whose help is gratefully acknowledged.

The Organising Committee: Bart Jacobs (PC chair), Milad Niqui (co-chair),
Jan Rutten (PC chair), Alexandra Silva (co-chair).

CMCS 2010

Recursive Program Schemes and Context-Free
Monads

Jifrf Adamek® Stefan Milius* Jifi Velebil!
& Institut fur Theoretische Informatik, Technische Universitat Braunschweig, Germany

> Faculty of Electrical Engineering, Czech Technical University of Prague, Czech Republic

Abstract

Solutions of recursive program schemes over a given signature ¥ were characterized by Bruno
Courcelle as precisely the context-free (or algebraic) X-trees. These are the finite and infinite
Y-trees yielding, via labelling of paths, context-free languages. Our aim is to generalize this to
finitary endofunctors H of general categories: we construct a monad C7 “generated” by solutions
of recursive program schemes of type H, and prove that this monad is ideal. In case of polynomial
endofunctors of Set our construction precisely yields the monad of context-free ¥-trees of Courcelle.
Our result builds on a result by N. Ghani et al on solutions of algebraic systems.

Keywords: algebraic trees, recursive program schemes, ideal theory, monads

1 Introduction

The aim of the current paper is to introduce, for a finitary endofunctor H
of a “reasonable” category, the context-free monad CH of H characterizing
solutions of recursive program schemes of type H. This is analogous to our
previous construction of the rational monad R characterizing solutions of
first-order recursive equations of type H, see [4]. In case of a polynomial
functor H = Hy, on Set the monad R is given by all rational Y-trees, i.e.,
Y-tree having (up to isomorphism) only a finite set of subtrees, see [16]. In
contrast, O is given by the algebraic trees investigated in the pioneering
paper of Bruno Courcelle [9]. We call these trees ¢ contezt-free since in [9] they

L Supported by the grant MSM 6840770014 of the Ministry of Education of the Czech
Republic.
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

ADAMEK, MILIUS AND VELEBIL

are characterized by the property that a certain natural language associated to
the paths of ¢ is context-free (whereas t is rational iff that language is regular).
Recall that a recursive program scheme (or rps for short) defines new oper-

ations 1, ..., @ of given arities nq, ..., ng recursively, using given operations
represented by symbols from a signature X. Here is an example:
p(x) = f(z,¢(g2)) (1)

is a recursive program scheme defining a unary operation f from the givens in
¥ ={/f g} with f binary and g unary. The semantics of recursive program
schemes is a topic at the heart of theoretical computer science, see [9,17].
Here we are interested in the so-called uninterpreted semantics, which treats
a recursive program scheme as a purely syntactic construct, and so its solution
is given by Y-trees over the given variables. For example, the uninterpreted
solution for ¢ above is the Y-tree

f\
/ "\ %
il

ggr

(here we simply put the terms x, gx, ggx, etc. for the corresponding subtrees).
Observe that if ® = {1,...,¢r} denotes the signature of the newly
defined operations and

HoX = X™ 4o 4 X7

is the corresponding polynomial endofunctor of Set, then algebras for Hg are
just the classical general algebras for the signature ®. We denote by FH
the free monad on H, thus F* is the monad of finite ®-trees. A recursive
program scheme can be formalized as a natural transformation

e: Hp — FH=tHa

In fact, Ff=THe is the monad of all finite (X + ®)-trees. Since X™ is a functor
representable by n;, a natural transformation from X™ into F=*He is by
Yoneda Lemma, precisely an element of FH=+e(n,) i.e., a finite (3 + ®)-tree
on n; variables. Thus, to give a natural transformation e as above means
precisely to give k equations, one for each operation symbol ¢; from ®,

@1($0,,$n,1>:tl (221,,]€) (3)
2

ADAMEK, MILIUS AND VELEBIL

where ¢; is a (X + ®)-term on {zg,...,z,_1}. This is the definition of a
recursive program scheme used in [9].

An uninterpreted solution of e : Hy — FH=THe is a k-tuple of Y-trees
th, ..., tl such that the above formal equations (3) become identities under
the simultaneous second-order substitution? of ¢; for f;, fori =1,...,k. For
example, the tree t'(z) from (2) satisfies the corresponding equality of trees

t'(x) = g(w, 11 (f2)).

This concept of solutions was formalized in [21] by means of the free completely
iterative monad T on a functor H; in case H = Hy, this is the monad of all
Y-trees. We recall this in Section 2. The uninterpreted solution is a natural
transformation ef : Hy — T® and this leads us to the following reformulation
(and renaming) of the concept of an algebraic tree of Courcelle [9]:

Definition 1.1 A Y-tree is called context-free if there exists a recursive pro-
gram scheme (3) such that ¢ = ¢!

Example 1.2 Every rational tree is context-free, and (2) shows a context-free
tree that is not rational.

Courcelle proved that the monad C= of all context-free Y-trees as a sub-
monad of TH= is iterative in the sense of Calvin Elgot [10]. Furthermore,
context-free trees are closed under second-order substitution. The aim of the
present paper is a construction of the context-free monad CF for all finitary
endofunctors H of locally finitely presentable categories. We prove that this
monad is always ideal, i. e., it can be seen as a coproduct of variables and non-
variables—this is a desired property that simplifies working with a monad,
see e.g. [21,6,15]. However, at this moment we leave as open problems the
proofs that C'*! is closed under second-order substitution and it is iterative, in
general.

Related work. Our work is based on the pioneering paper by Bruno Cour-
celle [9]. As we mentioned already, Guessarian [17] presents the classical alge-
braic semantics of recursive program schemes, for example, their uninterpreted
solution as infinite X-trees and their interpreted semantics in ordered algebras.
The realization that basic properties of Y-trees stem from the fact that they
form the final Hy-coalgebra goes back to Larry Moss [22] and also appears
independently and almost at the same time in the work of Neil Ghani et al [13]
(see also [14]) and Peter Aczel et al [2] (see also [1]). Ghani et al [11] were the
first to present a semantics of uninterpreted recursive program schemes in the
coalgebraic setting. Their paper contains a solution theorem for uninterpreted

2 Recall that in general, a simultaneous second-order substitution replaces in a tree over a
signature I" all operation symbols by trees over another signature, 3, say. See [9] or [21] for
a category-theoretic description.

ADAMEK, MILIUS AND VELEBIL

(generalized) recursive program schemes. Here we derive from that the result
that all “guarded” recursive program schemes have a unique solution that is
a fixed point w.r.t. second-order substitution. The ideas of [11] were taken
further in [21]; this fundamental study contains a comprehensive category-
theoretic version of algebraic semantics in the coalgebraic setting: the paper
provides an uninterpreted as well as interpreted semantics of recursive pro-
gram schemes and the relation of the two semantics (this is a fundamental
theorem in algebraic semantics).

The present paper builds on ideas in [11,21]. Our construction of the
context free monad is new. It is inpired by the construction of the rational
monad in [4], see also [12] for a more general construction.

Acknowledgements. We are grateful to the anonymous referees for their
comments which helped improving the presentation of our results.

2 Construction of the context-free monad

Throughout the paper we assume that a finitary (i. e., filtered colimit preserv-
ing) endofunctor H of a category < is given, and that H preserves monomor-
phisms. We assume that .o is locally finitely presentable, coproduct injections

inl : X - X+Y and infr:Y - X4+Y

are always monic, and a coproduct of two monomorphisms is also monic.
Recall that local finite presentability means that <7 is cocomplete and has a
set %, of finitely presentable objects (meaning those whose hom-functor is
finitary) such that < is the closure of <%, under filtered colimits.

Example 2.1

(i) Sets, posets and graphs form locally finitely presentable categories, and
our assumptions about monomorphisms hold in these categories. Finite
presentability of objects means precisely that they are finite.

(ii) If o is locally finitely presentable, then so is Fun;(7), the category of

all finitary endofunctors and natural transformations. In case &/ = Set,
the polynomial endofunctor

Hy X = H X" n=arity of o (4)

ceY

is a finitely presentable object of Fung(Set) iff ¥ is a finite set. This is
easily seen using Yoneda Lemma. In fact, the finitely presentable objects
of Funy(Set) are precisely quotients Hy/~ of the polynomial functors
with ¥ finite, where ~ is a congruence of Hy, see [5].

4

ADAMEK, MILIUS AND VELEBIL

Notice that our assumptions concerning monomorphisms carry over to
Fung(e7) since coproducts are formed objectwise and natural transfor-
mations are monic iff their components are monic.

Remark 2.2 We shall need to work with categories that are locally finitely
presentable but where the assumptions on monomorphisms above need not

hold:

(i) The category
Mon ¢ (.a)
of all finitary monads on &/ and monad morphisms. This is a locally
finitely presentable category. Indeed, as observed by Steve Lack [18], the
forgetful functor
Mon¢(.e7) — Funy (/)

is finitary and monadic, thus, the local finite presentability of Fun;(<?)
implies that of Mons(e7), see [7], 2.78. It follows that filtered colimits of
finitary monads are formed object-wise on the level of 7.

(ii) We will also make use of the fact that for every locally finitely presentable

category Z and object B the coslice category B/% of all morphisms with
domain B is a locally finitely presentable category, see [7], 2.44.

Free monad. Recall from [3] that since H is a finitary endofunctor, free
H-algebras px : H(F?X) — FYX exist for all objects X of «. Denote
by Ny : X — FYX the universal arrow. As proved by M. Barr [8] the
corresponding monad on &7

pH
of free H-algebras is a free monad on H. It follows that F is a finitary

monad, and its unit
n:ld— F"
together with the natural transformation

o:HFY — pH

given by the above algebra structures ¢y yield the universal arrow

R=(HXLgpH 2 ,pH).

The universal property states that for every monad S and every natural trans-
formation f : H — S there exists a unique monad morphism f : F¥¥ — §
such that the triangle below commutes:

H—E gl

\Jf (5)

S
5

ADAMEK, MILIUS AND VELEBIL

Moreover, from [3] we have

FH = HF" + Id with injections ¢ and 7). (6)

Remark 2.3 The category Mon (<), being locally finitely presentable, has
coproducts. We use the notation & for this coproduct.

Given finitary endofunctor H and K, since the free monad on H + K is
the coproduct of the corresponding free monads, we have

FHTE — pH g pK (7)

We shall use the same notation ¢, 77 and & for different endofunctors than
H,oeg k:H+ K — FETE,

Free Completely Iterative Monad. For every object X the functor H(—)+
X, being finitary, has a terminal coalgebra

THX = H(TX) + X, (8)

By Lambek’s lemma [19], this morphism is invertible, and we denote the
components of the inverse by

x:H(T"'X) - T"X and nx:X = T"X.

respectively.

Notation 2.4 Since THX is only used for the given functor H throughout
the paper, we omit the upper index H, and write from now on simply

TX.

As proved in [1], T is the underlying functor of a monad with the unit 7 :
Id — T above and the multiplication p : TT" — T'. This monad is, moreover,
the free completely iterative monad on H, see [1,20]. The above natural
transformation 7 : HT' — T yields the universal arrow

k= (H-"5HT—T) (9)
Moreover, in analogy to (6) above, we have
T=HT+ Id with injections 7 and 7. (10)

Also recall from loc. cit. that the monad multiplication p is a homomorphism
of H-algebras (here we drop objects in the square below as all arrow are

6

ADAMEK, MILIUS AND VELEBIL

natural transformations):
HTT-"=TT

H,u,l lﬂ (11)
HT ———T
Notation 2.5 (i) We denote by
H/Mon (o)

the category of H-pointed monads, i. e., pairs (S,) where S is a finitary
monad on & and ¢ : H — S is a natural transformation. This is a
finitely presentable category by Remark 2.2 because it is isomorphic to
the coslice category of F':

H/Mon; (<) = F" /Mon; ().

For example, FI and T are H-pointed monads (via the universal arrows).
(ii) For every H-pointed monad (.S,) we write
b=1[u’ 08,1 : HS 4+ Id — S.

Lemma 2.6 (Ghani et al [12]) For every H-pointed monad (S, o) the end-
ofunctor HS + Id carries a canonical monad structure whose unit is the co-
product injection inr : Id — HS + Id and whose multiplication is given by

(HS + Id)(HS + Id)

HS(HS + Id) + HS + Id

HSb+HS+1d (12)
HSS+ HS+ 1d

l[HuS,HS]—&-Id
HS + 1d
Remark 2.7 For HS + Id we also have an obvious H-pointing

inl - Hn® : H — HS + Id. (13)
This defines an endofunctor H : H/Mon (/) — H/Mon(</) on objects by
H(S,0) = (HS + Id,inl - Hn®),

see [12] or [21], Lemma 5.2 for details.
7

ADAMEK, MILIUS AND VELEBIL

Example 2.8 For every finitary endofunctor V' we consider F7+V as an H-
pointed monad via
H-"H 4 V—E pH+V
And H(FHYY) = HFHE+Y 4+ Id is then an H-pointed monad via (13) which
has the form -
= (H-L ppa+v i, [pHEY 4 1), (14)

The proof of the following theorem is similar to the proof of Lemma 2.6
n [12]. The precise statement using the category H/Mony (/) can be found
in [21], Theorem 5.4.

Theorem 2.9 The terminal coalgebra for H is given by the H-pointed monad
T, H-pointed as in (9), and the coalgebra structure T = HT from (8).

Definition 2.10 A recursive program scheme (or rps for short) of type H is
a natural transformation

e:V — pitV

from an endofunctor V' which is a finitely presentable object of Fun;(<7) to
the free monad on H + V. It is called guarded provided that it factorizes
through the summand HF”*Y + Id of the coproduct (6):

FH+V — <H+ V)FH-H/ + Id = HFH-H/ + VFH—H/ + Id,
that is, we have a commutative triangle

V———— pH+V
ol Jema (15)
N
HFIV 4 14

Observe that ey is unique since the vertical arrow, being a coproduct in-
jection, is monic. This implies that ey and e are in bijective correspondence,
which is the reason for our assumptions that ./ has monic coproduct injec-
tions.

Example 2.11 In case of a polynomial endofunctor H = Hy, : Set — Set
every recursive program scheme (3) yields a natural transformation e : Hy —
FHetHs a5 explained in the introduction. This is a special case of Defini-
tion 2.10: in lieu of a general finitely presentable endofunctor V' which is a
quotient of Hy (cf. Example 2.1(iv)) we just take V' = Hy.

The system (3) is guarded iff every right-hand side term is either just
a variable or it has an operation symbol from > at the head of the term.
Such a recursive program scheme is said to be in Greibach normal form. All
reasonable rps, e. g. (1), are guarded. The unguarded ones such as f(x) = f(x)
are to be avoided if we want to work with unique solutions.

8

ADAMEK, MILIUS AND VELEBIL

Definition 2.12 By a solution of a recursive program scheme e : V — FH+V
in an H-pointed monad (S, 0) is meant a natural transformation ef : V' — S
such that the unique monad morphism extending [o,ef] : H +V — S makes
the triangle below commutative:

V—< S

J / (16)

oef
FHAY el

Remark 2.13 (1) Every guarded recursive program scheme (15) turns FH#+V
into a coalgebra for H. Indeed, ey : V' — H(F7TV) together with the pointing
¥, see (14), yield a natural transformation [1, eo] : H+V — H(F7TV) which,
by the universal property of the free monad F**V | provides a unique monad
morphism

[, 0] : FHY — F((FHHY) (17)
It preserves the pointing: we have

[¢h, €] - (K -inl) = [¥, eq] - inl = ¢
Thus, FZ*V is a coalgebra.

(2) Conversely, every coalgebra for H carried by FZ+V where V is a finitely
presentable endofunctor, stems from a guarded recursive program scheme:
the coalgebra structure r : FITTV — H(FTTV) is uniquely determined by
r-f:H+V — H(FEY), and the left-hand component of r - & being the
pointing 1), we see that r is determined by ey = r - & - inr : V — H(FHTV)
defining a (unique) recursive program scheme.

(3) For the terminal coalgebra T" for H, see Theorem 2.9, we thus obtain the
unique coalgebra homomorphism

et FHYY T (18)

Remark 2.14 Our concept of a recursive program scheme is a special case
of the algebraic systems studied by Neil Ghani et al [11]. Let us recall from
that paper that

(i) an H-pointed monad is called coalgebraic if it is isomorphic to the monad
HS + Id of Lemma 2.6 via b: HS + Id — S in Notation 2.5(ii),

(ii) examples of coalgebraic monads are F see (6), and T, see (10),

(iii) 7" is the final coalgebraic monad; we denote by ug : S — T the unique
morphism for a coalgebraic monad (5, o),

(iv) an algebraic system is given by a finitary monad E, a coalgebraic monad

9

ADAMEK, MILIUS AND VELEBIL
(S,0) and a monad morphism
e:E— H(Sa®FE)+ 1d,

(v) a solution of e is a monad morphism s : £ — T such that the square
below commutes:

E . T

{ J[T,n] -t

H(S®FE) + 1 gy HT + 1d

Theorem 2.15 (Ghani et al [11]) Ewvery algebraic system has a unique so-
lution.

This gives a solution theorem for recursive program schemes as follows:
due to (7) we have the morhism eq : V — H(F® & FY) + Id in (15) yielding
an algebraic system via (5):

e@:FY - HF"oFY)+ Id. (19)

Indeed, take £ = FV and S = FY. Thus, a unique solution s : IV — T
exists.

Theorem 2.16 Fvery guarded recursive program scheme of type H has a
unique solution et in T. It can be computed from the unique coalgebra ho-
momorphism e* : FItY — T by

ef = (VS H 4+ V- E L pHAV €7, (20)

Indeed, for the unique solution s : FV' — T of the algebraic system &g
in (19) above we obtain a solution e' in the sense of Definitinon (2.10) by
composing with & : V — FV:

el =(V—EoFpV—=T).

The proof that (16) commutes is performed using some diagram chasing. A
somewhat subtle point is that for ug : S — T' (see Remark 2.14(iii)) we have
the equality

lug, s] = [R,ef] : FEYV & T

Here the square brackets on the left refer to @ in H/Mony (/) and those on
the right to + in Fun;(«7). The verification uses the universal property of the
free monad on H + V and is not difficult. The fact that (20) holds follows
from the same diagram.

10

ADAMEK, MILIUS AND VELEBIL

The uniqueness is also a consequence of the fact that for any solution el
in the sense of Definition 2.10 its extension ef : FV' - T is a solution of the
corresponding algebraic system eég.

Remark 2.17 It is our goal to define a finitary submonad C' of T" formed by
all solutions of recursive program schemes of type H. We do this in two steps.

(i) A finitary monad C together with a monad morphism ¢ : C — T is
constructed by forming a colimit of coalgebras for the endofunctor H
obtained from all recursion program schemes.

(ii) The (strong epi, mono)-factorization (cf. Lemma 2.19 below) of ¢ is
formed to obtain the desired submonad:

This factorization is going to be performed in the category
Mon, (<)

of all monads on &7 that are countably accessible, that is, the underlying
functors preserve countably filtered colimits. (Recall that a countably
filtered category is such that every subcategory with countably many
objects and morphisms has a cocone in it.) The monad C' lies in Mon,.(.<7)
because it is finitary by construction, and we use the following

Lemma 2.18 For every finitary endofunctor H the monad T (see Notation 2.4)
18 countably accessible.

Proof. It is proved in Proposition 5.16 of [4] that T'Z can be constructed
as the colimit of the diagram of all coalgebras for H(—) + Z carried by all
countably presentable objects. Thus, T" coincides with the countably accessible
monad R* of loc. cit. for the first uncountable ordinal \. O

Lemma 2.19 In the categories Mony (%) and Mon.(<7) every morphism has
a (strong epi, mono)-factorization, and monomorphisms are precisely the monad
morphisms whose components are monic in <f .

Proof. The first statement follows from the fact that both Mon;(</) and
Mon.(«7) are locally presentable categories. See [18] for Mony(.e7), the ar-
gument for Mon.(/) is analogous. Every locally presentable category has
(strong epi, mono)-factorizations by [7], 1.61.

The second statement follows, in case of Mon (7, from the fact that in the
category Funy(ef) = [47,, /| monomorphisms are precisely the morphisms
with components monic in 7, and the forgetful functor Mon(.27) — Fun(</)

11

ADAMEK, MILIUS AND VELEBIL

has the left adjoint H ~ F*". Analogously for the category Fun.(<) of
countably accessible endofunctors: this is equivalent to [, &/] where .27, is
a full subcategory representing all countably presentable objects in <7 (i.e.,
such that the hom-functor is countably accessible). And once again, every
countably accessible functor H generates a countably accessible free monad F,
see [3], yielding a left adjoint of the forgetful functor Mon.(«7) — Fun.(«7).0

Corollary 2.20 The category H/Mon(</) has (strong epi, mono)-factorizations,
and the functor H preserves monomorphisms.

Indeed, the forgetful functor H/Mons(e/) — Mons(gf) clearly creates
(strong epi, mono)-factorizations. Given a monomorphism m : (S,0) —
(8",0') in H/Mon¢(/), then m is componentwise monic, thus, so is Hm
(since H preserves monomorphisms), and so is also Hm = Hm + id (since
coproducts of monomorphisms are monic in 7).

Construction 2.21 The H-pointed monad C. For every guarded recursive
program scheme (15) consider F#*V as a coalgebra for the functor H, see (17).
We denote by
EQy C Coalg H

the full subcategory of all these coalgebras. It is essentially small since
Funs(27) has only a set of finitely presentable objects up to isomorphism.
We denote the colimit of this small diagram by

CH = colim EQ (in Coalg H).

Thus, we have a finitary monad C with an H -pointing and a coalgebra struc-
ture denoted by

p:H—CH and r:C" — H(CT)
respectively, together with a colimit cocone
et FEHY o 0 forallrpse: V — FHHY,

formed by coalgebra homomorphisms for H preserving the pointing (14),
i.e. with

p=c - (R-inl) for every e.
We see in the next lemma that EQq is a connected category. Since the forgetful
functors

Coalg H — H/Mon(a/) — Mon ()

clearly preserve connected colimits, the above cocone ef : FA+Y — T is also
a colimit cocone in Mon (7).

Lemma 2.22 EQq s closed under finite coproducts in Coalg H .
12

ADAMEK, MILIUS AND VELEBIL

Proof. Consider two objects of EQy determined by
e:V—HF'" 1+ 1d and ¢V — HF"™ +1d

The coproduct injections i : H +V — H+V + V' andi' : H+ V' —
H +V 4 V' yield corresponding monad morphisms i : F7**V — 7 VAV and
it s FEYY" o PHAV Denote by

(Hi+1d,Hi'+1d)

k= ((HFAY + I1d) + (HFPHV' + 1d) HFHHVHY 1 [d)

the canonical morphism. We prove that the object f: V + V' — FHHVHV of
EQq determined by

fo=Fk-(eo+ep):V+V — HFIV 14

is the coproduct of the two given objects.
We know from Remark 2.13 that morphisms from the above object into
an H-coalgebra X = ((5,s),p) are given by natural transformations

r:V+V =S

such that the extension [s,r] : FATV+V" — G of the transformation [s,7] :
H+V +V'— S to amonad morphism fulfils

p-r=(H[s,r|+ Id)- f.

We claim that this holds for r : V + V' — S iff

(i) the left-hand component g : V' — S of r gives rise to a morphism of Coalg H
from the object determined by ey into X

(ii) and the right-hand component ¢’ : V' — S yields a morphism from the
object determined by e into X.

For that observe first that the diagram

FHYV — L s pHv4V U pHyV!

S

commutes: indeed, all these morphisms are monad morphisms. The left-hand

triangle commutes since i - A7V = REVHY' i therefore,
([S,T] ;) K= [8,7“} 1= [57Q] = [87Q] K

13

ADAMEK, MILIUS AND VELEBIL

and analogously for the right-hand triangle. Thus, the square

V4V ! HFHIV+Y' 4 14
~ HitId =~ 7
inl” ~ _ _--"
T V- - & —>HFH+V—0—[\d Hls,r]+1d
- q H[s,q]:—ﬁi T~y
S* 5 HS + Id

commutes iff [s, ¢] and [s, ¢’] are morphisms of Coalg H into X: in the diagram

we indicated the left-hand component (commuting iff p-q = (H[s, ¢|+ Id) - ey,
that is, g is a homomorphism), analogously for the right-hand one. O

Corollary 2.23 C s a filtered colimit of the closure EQ of EQqy under co-
equalizers in Coalg H .

Indeed, since EQq is closed under finite coproducts, EQ is closed under
finite colimits, thus, it is filtered. And colim EQ = colim EQy.

Definition 2.24 The context-free monad C. Denote by
c:C" T

the unique coalgebra homomorphism and define the context-free monad of
H as the submonad C¥ of T obtained by the following (strong epi, mono)-
factorization of ¢ in Mon, (&7):

OH
AT
CH———T
Remark 2.25 (i) Recall from Theorem 2.9 that ¢ is uniquely defined. Since
CH is finitary and 7' countably accessible, see Lemma 2.18, we have the
desired factorization by Lemma 2.19.
(ii) The context-free monad is pointed: The pointing p : H — CH of CH
yields the pointing
p=k-p:H—C"
of C'* which ¢ preserves (because ¢ is a morphism of H/Mon(</)). Anal-

ogously to T" we shall write C' and C' without the upper index H from
Nnow on.

Observation 2.26 The functor H preserves monomorphisms by Corollary
2.20, thus, C' carries a canonical structure r of an H-coalgebra derived from

14

ADAMEK, MILIUS AND VELEBIL

the structure 7 for C:

HC T (21)

sa J:

HC 5 HT

Indeed, recall that ¢ - k = ¢ is an H-coalgebra homomorphism; so the outside
of the above square commutes, and we can use the unique diagonalization
property of the factorization system to obtain r.

Theorem 2.27 Every guarded recursive program scheme e : V — FH+V has
a unique solution in the context-free monad of H.

Proof. We use ef for solutions in C' and ef for solutions in T throughout
this proof. We are to prove that there exists a unique natural transformation
et 1V — Cwith et = [p, ef]-e. Recall that the colimit injection e* : FHTV — C
in Construction 2.21 is a coalgebra homomorphism for 3, hence, so is ¢ - e,
which proves
ef=7¢-é,

see Theorem 2.16 (because T is a terminal coalgebra by Theorem 2.9). There-
fore, by (20) we have

ef=¢.¢-R-inr=c-k-e'-R-inr.
Thus for ef = k- e - & - inr we obtain
el =c- et

We conclude that ef is the desired solution in C: in the following diagram

the outside commutes, see (16) with 0 = k, and the right-hand part does since
Kk = c- p (see Definition 2.24). Consequently, the left-hand triangle commutes:
recall from Definition 2.24 that ¢ is a monomorphism.

The uniqueness follows from the same diagram: if the left-hand triangle
commutes, so does the outside, and since e’ is uniquely determined (see The-
orem 2.16), we conclude ef = ¢ - e*. Finally, use again that ¢ is monic. O

15

ADAMEK, MILIUS AND VELEBIL

3 The context-free monad is ideal

Under the assumptions of Section 2 we prove that C' is an ideal monad in the
sense of C. Elgot [10] for every finitary endofunctor H. Elgot’s concept was
defined for monads (S, 7, i) in Set: the monad is ideal if the complement of
n:Id — S is a subfunctor o : 8" — S of S (thus, S = 5"+ Id) and p restricts
to a natural transformation ' : S’S — S’. For general categories “ideal” is
not a property but a structure:

Definition 3.1 ([1]) An ideal monad is a sixtuple (S,n,pu, S’ o,p') where
(S,m, i) is a monad,

0g:58 =8 (“the ideal”)
is a subfunctor such that S = S’ + Id with injection ¢ and 7, and
p o S'S — 5
is a natural transformation restricting p in the sense that

p-oS=o-u

Example 3.2

(i) The free monad F'¥ is ideal: its ideal is HF see (6).
(ii) The free completely iterative monad 7" is ideal: its ideal is HT, see (10).

Remark 3.3 It is our goal to prove that the context-free monad (C, 7%, u®)
is ideal. The H-coalgebra structure r : C' — HC + Id, see Observation 2.26,
is (analogously to the two examples F'f and T above) invertible, as we prove
below: its inverse is the morphism

b= HC + [d—° 00 4 a2 o (22)
From that we will derive that C' is an ideal monad with the ideal
b-inl : HC'— C
Theorem 3.4 The context-free monad C' is an ideal monad for every H.

Proof. We first prove r = b1
(1) The proof of b-r = id follows, since ¢ is a monomorphism, from
the commutativity of the following diagram (here ¢ * ¢ denotes the parallel

16

ADAMEK, MILIUS AND VELEBIL

composition of natural transformations):

4 Y

C— " S HCYId pC+1d CC + 14— 5

{ chﬁ’Id lc*chId JC
[t

P 1 m— 1T

[m.1]

Indeed, the right-hand square commutes since ¢ : C' — T is a monad mor-
phism, the left-hand one does because ¢ is a coalgebra homomorphism for H
(see (21)), and the middle square follows from fact that by Remark 2.25 ¢
preserves the pointing, i.e., ¢-p = 7 - Hn. Finally, the lower part follows

from (11):
w1l -Hnl'=7-Hp- HnT = 7.

So the outside of the diagram commutes:
c-b-r=c,

and since ¢ is a monomorphism, we see that b-r = id.

(2) To prove that r - b = id we show that the diagram below commutes:

HC————=HC
inl inl

| [

Id=———=1d

For the commutativity of the lower square we have since r is a monad
morphism and the unit of the monad in the codomain is, by Lemma 2.6, inr
that

r-b-inr =r-n=inr.

Since b-inl = - pC = u® - (kC - pC), the commutativity of the upper square
17

ADAMEK, MILIUS AND VELEBIL

boils down to showing that the outside of the following diagram commutes:

oC
He % ole kG e i C
HnCC (i) ch (i) rC
1°0| geo—"——(HC + 1) (HE + 1d)C
HkC) — (iif) T
HCC) (HC+Id)r
HCr
HC(HC + Id) _ (HC + 1d)(HC + 1d)—— HC + Id
HCb (vi) inl
HCC HC

HpC

Here 11 denotes the monad multiplication (12) of Lemma 2.6, where S = C
and 0 = p. Indeed, all inner parts commute: the two left-hand parts commute
since k-n% =n® and b-r = id, for part (i) recall that the coalgebra structure
p is a morphism in H/Mon¢(%7), part (ii) commutes since k is a coalgebra
homomorphism for H, for (iii) use that r is a monad morphism, (iv) and
(v) are trivial, and part (vi) commutes by (12). The remaining upper part
commutes since k preserves the H-pointing. Finally, using the monad law
uC -n°C =id, we get r - u© - pC =inl : HC' — HC + Id, and this completes
the proof. O

4 Context-free trees

We now return to the original concept of a context-free (or algebraic) ¥-tree
on a given signature Y, as studied by Bruno Courcelle, see the introduction.
We prove that the context-free monad C'= of the polynomial endofunctor Hy,
of Set is indeed precisely the submonad C*#s < TH> of the Y-tree monad
consisting of all context-free Y-trees of Definition 1.1.

Observation 4.1 Polynomial endofunctors are projective in Funy(Set). That
is, for every epimorphism (which means a componentwise surjective natural
transformation) p : ' — G and every natural transformation g : Hy — G
there exists a natural transformation f : Hy — F with g =p- f:

F—2%q

i 4

Hy,
18

ADAMEK, MILIUS AND VELEBIL

In case ¥ consists of a single n-ary symbol, this follows from Yoneda Lemma,
since Hy, = Set(n, —): the natural transformation g corresponds to an element
of Gn, and we find its inverse image (under p,,) in F'n, giving us f : Hy — F.
If 3 has more symbols, apply Yoneda Lemma to each of them separately.

Theorem 4.2 For every signature Y. we have:
CH= = the monad of context-free X-trees

Proof. Throughout the proof we write H in lieu of Hy;, and C in lieu of C*=.

(1) We prove that every element of C'X lies in the image of e* for some guarded
recursive program scheme

e: Hp — FHHe

where et is the unique solution in C, see Theorem 2.27.

Indeed, since C is the filtered colimit of EQ, see Corollary 2.23, and filtered
colimits in Mon (/) (and thus also in H/Mon (7)) are computed on the level
of the underlying functors (in other words: filtered colimits are formed object-
wise in &), we have for every set X a colimit cocone

T&ZSX—)CV'X

where s : (S,0) — H(S, o) ranges over all coalgebras in EQ and s* : § — C is
the colimit cocone.

Since EQ is a closure of EQq under coequalizers, every object of EQ is a
quotient of one in EQq. Thus, we have a guarded recursive program scheme

e:V — FHYY (23)
and an epimorphic coalgebra homomorphism for H:

(FIHV & -inl) ———— H(FIT*V & -inl)

i [

(S,0) 5 H(S, o)

Since V' is a finitely presentable functor, there exists by Example 2.1(ii) a
finite signature ® and an epimorphic natural transformation

p:He — V.

The free-monad functor takes H+p : H+ He — H +V to a monad morphism
p : FHAtHe — PHTV which is also an epimorphism (since the free-monad

19

ADAMEK, MILIUS AND VELEBIL

functor is a left adjoint). Due to the projectivity of Hg we obtain a natural
transformation f, making the diagram

He—L s pgpH+Hs | [g

pl
Vv Hp+1d

FH+VW[_[FH+V + Id

commutative (see Observation 4.1.) Here fy is the guard of a “classical”
guarded recursive program scheme

[Hep — FHHe
and for the corresponding H-coalgebra on F#H2 see Remark 2.13, the above
monad morphism p is a coalgebra homomorphism.

We conclude that the triangles for fT (see Theorem 2.16) and f* (see
Theorem 2.27)

Hy—""—— H + Hp—F—— pH+Hs

commute: recall from (20) that the coalgebra homomorphism f* fulfils
ff=f*-%-inr,

and so we only need to notice that the vertical arrow, being a coalgebra
homomorphism, is equal to f*. Since c is a monomorphism, the upper triangle
also commutes. Thus, every element in the image of s& lies in the image of
f)i(for the above recursive program scheme f.

20

ADAMEK, MILIUS AND VELEBIL

2) We will verify that cx : CX < T'X consists precisely of the context-free
Y-trees on X. Indeed, every context-free ¥-tree has the form

for some guarded recursive program scheme e : Hgp — FH+He and since
el = cx - ek, the tree ¢ lies in CX.

Conversely every element of C'X has, by item (1) above, the form e’ (z)
for some guarded rps e : Hy — FHHe, O

5 Conclusions and Open Problems

The aim of our paper was to construct for a finitary endofunctor H a monad
expressing solutions of recursive program schemes of type H. We hoped origi-
nally to achieve what we managed to do for the first-order recursive equations
of type H in previous work [4]: there we defined the rational monad R based
on solutions of recursive equations, we proved that R is iterative (and, in
particular, ideal) in the sense of Calvin Elgot, and we characterized R as
the free iterative monad on H. From this we derived, in case of endofunc-
tors of Set, that R is closed under second-order substitution. Moreover, the
construction worked for all locally finitely presentable base categories.

In the present paper we also exhibited a general construction: for every
finitary endofunctor H we provided a context-free monad C* based on solu-
tions of recursive program schemes of type H. The existence and uniqueness
of these solutions were derived from the corresponding more general solution
theorem of Ghani et al [11]. In case H is actually a polynomial endofunc-
tor of Set associated to a signature 3, our monad coincides with the monad
of context-free (= algebraic) trees of Bruno Courcelle [9]. However, whereas
Courcelle proved that the context-free-tree monad is iterative, we were only
able to prove that the general context-free monad is ideal.

In fact, as soon as C would be proved to be iterative, the intuition says
that this is not enough: the next open problem is, then, whether C* is closed
under second-order substitution in the sense of [21]. Again, this was, for
context-free Y-trees, proved by Bruno Courcelle.

Finally, the rational monad R and the monad TH are both character-
ized by universal properties; R is the free iterative monad and 77 the free
completely iterative one. It remains to be seen whether O can be character-
ized by some universal property, too. Unfortunately, context-free trees cannot
serve as a guiding example in this respect as no universal property of them is
known.

21

ADAMEK, MILIUS AND VELEBIL

References

[1] P. Aczel, J. Addmek, S. Milius, and J. Velebil. Infinite trees and completely iterative theories:
A coalgebraic view. Theoret. Comput. Sci., 300:1-45, 2003.

[2] P. Aczel, J. Addmek, and J. Velebil. A coalgebraic view of infinite trees and iteration. In
Proc. Coalgebraic Methods in Computer Science (CMCS’01), volume 44 of Electron. Notes
Theor. Comput. Sci., pages 1-26, 2001.

[3] J. Addmek. Free algebras and automata realizations in the language of categories.
Comment. Math. Univ. Carolin., 15:589-602, 1974.

[4] J. Addmek, S. Milius, and J. Velebil. Iterative algebras at work. Math. Structures Comput. Sci.,
16(6):1085-1131, 2006.

[5] J. Addmek, S. Milius, and J. Velebil. Semantics of higher-order recursion schemes. In A. Kurz,
M. Lenisa, and A. Tarlecki, editors, Proc. Coalgebraic and Algebraic Methods in Computer
Science (CALCO’09), volume 5728 of Lecture Notes Comput. Sci., pages 49-63. Springer,
2009.

[6] J. Addmek, S. Milius, and J. Velebil. Iterative reflections of monads. to appear
in Math. Structures in Comput. Sci., published online by Cambridge University Press,
doi:10.1017/50960129509990326, February 2010.

[7] J. Addmek and J. Rosicky. Locally presentable and accessible categories. Cambridge University
Press, 1994.

[8] M. Barr. Coequalizers and free triples. Math. Z., 116:307-322, 1970.
[9] B. Courcelle. Fundamental properties of infinite trees. Theoret. Comput. Sci., 25:95-169, 1983.

[10] C. C. Elgot. Monadic computation and iterative algebraic theories. In H. E. Rose and J. C.
Sheperdson, editors, Logic Colloquium 73, Amsterdam, 1975. North-Holland Publishers.

[11] N. Ghani, C. Liith, and F. D. Marchi. Solving algebraic equations using coalgebra.
Theor. Inform. Appl., 37:301-314, 2003.

[12] N. Ghani, C. Liith, and F. D. Marchi. Monads of coalgebras: rational terms and term graphs.
Math. Structures Comput. Sci., 15(3):433-451, 2005.

[13] N. Ghani, C. Liith, F. D. Marchi, and A. J. Power. Algebras, coalgebras, monads and
comonads. In Proc. Coalgebraic Methods in Computer Science (CMCS’01), volume 44 of
Electron. Notes Theor. Comput. Sci., pages 128145, 2001.

[14] N. Ghani, C. Liith, F. D. Marchi, and A. J. Power. Dualizing initial algebras. Math. Structures
Comput. Sci., 13(2):349-370, 2003.

[15] N. Ghani and T. Uustalu. Coproducts of ideal monads. Theor. Inform. Appl., 38(4):321-342,
2004.

[16] S. Ginali. Regular trees and the free iterative theory. J. Comput. System Sci., 18:228-242,
1979.

[17] I. Guessarian. Algebraic Semantics, volume 99 of Lecture Notes in Comput. Sci. Springer,
1981.

[18] S. Lack. On the monadicity of finitary monads. J. Pure Appl. Algebra, 140:65-73, 1999.
[19] J. Lambek. A fixpoint theorem for complete categories. Math. Z., 103:151-161, 1968.

[20] S. Milius. Completely iterative algebras and completely iterative monads. Inform. and
Comput., 196:1-41, 2005.

[21] S. Milius and L. S. Moss. The category theoretic solution of recursive program schemes.
Theoret. Comput. Sci., 366:3-59, 2006.

[22] L. S. Moss. Parametric corecursion. Theoret. Comput. Sci., 260(1-2):139-163, 2001.

22

CMCS 2010

Categorifying Computations into Components
via Arrows as Profunctors

Kazuyuki Asada Ichiro Hasuo

Research Institute for Mathematical Sciences, Kyoto University, Japan
PRESTO Research Promotion Program, Japan Science and Technology Agency
http://www.kurims.kyoto-u.ac. jp/{asada, ichiro}

Abstract

The notion of arrow by Hughes is an axiomatization of the algebraic structure possessed by struc-
tured computations in general. We claim that an arrow also serves as a basic component calculus for
composing state-based systems as components—in fact, it is a categorified version of arrow that does
so. In this paper, following the second author’s previous work with Heunen, Jacobs and Sokolova,
we prove that a certain coalgebraic modeling of components—which generalizes Barbosa’s—indeed
carries such arrow structure. Our coalgebraic modeling of components is parametrized by an arrow
A that specifies computational structure exhibited by components; it turns out that it is this arrow
structure of A that is lifted and realizes the (categorified) arrow structure on components. The
lifting is described using the first author’s recent characterization of an arrow as an internal strong
monad in Prof, the bicategory of small categories and profunctors.

Keywords: algebra, arrow, coalgebra, component, computation, profunctor

1 Introduction

1.1 Arrow for Computation

In functional programming, the word computation often refers to a proce-
dure which is not necessarily purely functional, typically involving some side-
effect such as 1/0O, global state, non-termination and non-determinism. The
most common way to organize such computations is by means of a (strong)
monad [21], as is standard in Haskell. However side-effect—that is “struc-
tured output”—is not the only cause for the failure of pure functionality. A
comonad can be used to encapsulate “structured input” [26]; the combina-
tion of a monad and a comonad via a distributive law can be used for input
and output that are both structured. There are much more additional struc-

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

AsADA, HASUO

ture that a functional programmer would like to think of as “computations”;
Hughes’ notion of arrow [13] is a general axiomatization of such. !

Let C be a Cartesian category of types and pure functions, in a functional
programming sense. The notion of arrow over C is an algebraic one: it axiom-
atizes those operators which the set of computations should be equipped with,
and those equations which those operators should satisfy. More specifically,
an arrow A is

o carried by a family of sets A(J, K) for each J, K € C;
e equipped with the following three families of operators arr, >>> and first:

arrf € A(J, K) for each morphism f:.J — K in C,
A(LK) x A(K,L) %" A(J,L) foreach JK,LeC,
ALK) "R A LK x L) for each J, K, L € C;

* that are subject to several equational axioms: among them is

(CL =KL b) =>g5LM C = a > KM (b > LM C)

for each a € A(J,K),b € A(K,L),c € A(L, M). (>>>-Ass00)

The other axioms are presented later in Def. 3.1.

The intuitions are clear: presenting an A-computation from J to K by a box

L4 15 | the three operators ensure that we can combine computations in the
following ways.

* (Embedding of pure functions)
¢ (Sequential composition) <$@5> ; %) LKL

first %[J :HK
e (Sideline) -Lgl& 25" [}
(U T

The (>s>-AssocC) axiom above, for example, ensures that the following com-
positions of three consecutive A-computations are identical.

SR LM J{ K[LM
= 1
Sda s = o S
A strong monad 7" on C induces an arrow Ar by: Ap(J, K) = C(J,TK) =
Ki(T)(J,K). Here KI(T) denotes the Kleisli category (see e.g. Moggi [21]).

Prior to arrows, the notion of Freyd category is devised as another axiomati-
zation of algebraic properties that are expected from “computations” [19,23].

) 9

L The word “arrow” is reserved for Hughes’ notion throughout the paper. An “arrow” in a

category will be called a morphism or a 1-cell.

24

AsADA, HASUO

The latter notion of Freyd category come with a stronger categorical flavor;
in Jacobs et al. [16] it is shown to be equivalent to the notion of arrow.

Remark 1.1 The previous arguments are true as long as we think of an arrow
as carried by sets, with A(J, K) being a set. This is our setting. However this
is not an entirely satisfactory view in functional programming where one sees
A as a type constructor—A(J, K) should rather be an object of C. In this case
one can think of several variants of arrow and Freyd category. See Atkey [2].
The discussion later in the beginning of §5 is also relevant.

1.2 Arrow as Component Calculus

The current paper’s goal is to settle components as categorification of compu-
tations, via (the algebraic theory of) arrows. Let us elaborate on this slogan.

A component here is in the sense of component calculi. Components are
systems which, combined with one another by some component calculus, yield
a bigger, more complicated system. This “divide-and-conquer” strategy brings
order to design processes of large-scale systems that are otherwise messed up
due to the very scale and complexity of the systems to be designed.

We follow the coalgebraic modeling of components in Barbosa [5]—which is
also used in Hasuo et al. [11]—extending it later to an arrow-based modeling.
In [5] a component is modeled as a coalgebra of the following type:

¢c: X — (T(X xK))” in Set. (2)

Here J is the set of possible input to the component; K is that of J K
possible output; X is the set of (internal) states of the component €
which is a state-based machine; and 7' is a monad on Set that models the
computational effect exhibited by the system. Overall, a coalgebraic compo-
nent is a state-based system with specified input and output ports; it can be
drawn as above on the right.

A crucial observation here is as follows. The notion of arrow in §1.1 is
to axiomatize algebraic operators on computations as boxes—such as sequen-
tial composition . Then, by regarding such boxes as components
rather than as computations, we can employ the axiomatization of arrow as
algebraic structure on components—a component calculus—with which one
can compose components. The calculus is a basic one that allows embedding
of pure functions, sequential composition and sideline. In fact in the second
author’s previous work [11] with Heunen, Jacobs and Sokolova, such algebraic
operators on coalgebraic components (2) are defined and shown to satisfy the
equational axioms.

25

AsADA, HASUO

1.8 Categorifying Computations into Components

Despite this similarity between computations and components, there is one
level gap between them: from sets to categories. Let A(J, K) denote the
collection of coalgebraic components like in (2), with input-type J, output-
type K and fixed effect T', but with varying state spaces X. Then it is just
natural to include morphisms between coalgebras in the overall picture, as
behavior-preserving maps (see e.g. Rutten [24]) between components. Hence

A(J, K) is now a category, specifically that of (T(_ x K))J—coalgebras. In
contrast, with respect to computations there is no general notion of morphism
between them, so the collection A(J, K') of A-computations is a set.

This step of categorification [3] is not just for fun but in fact indispensable
when we consider equational axioms. Later on we will concretely define the
sequential composition of coalgebraic components with matching
I/0O types; at this point we note that the state space of the composite is the
product X x Y of the state space X of c and Y of d. Now let us turn to the
axiom

(c>>d)>>e = c>3> (d>>e) . (>>>-Ass00)

Denoting e’s state space by U, the state space of the LHS is (X xY') x U while
that of the RHS is X x (Y x U). These are, as sets, not identical! Therefore
the axiom can be at best satisfied up-to an isomorphism between components
as coalgebras (and it is the case, see [11]). We note this phenomenon that the
notion of satisfaction of equational axioms gets relaxed—from up-to equality
to up-to an isomorphism—is typical with categorification [3].

This additional structure obtained through categorification, namely mor-
phisms between components, has been further exploited in [11]. There it is
shown that final coalgebras—the notion that only makes sense in presence of
morphisms between coalgebras—form an arrow that is internal to the “arrow”
of components, realizing an instance of the microcosm principle [4,12]. An
application of such nested algebraic structure (namely of arrows) is a com-
positionality result: the behavior of composed components can be computed
from the behavior of each component.

We shall refer to the categorified notion of arrow—carried by components—
as categorical arrow.

1.4 Lifting of Arrow Structure via Profunctors

To summarize: computations carry algebraic structure of an arrow; compo-
nents carry a categorified version of it. The contribution of the current paper is
to make the relationship between computations and components more direct.
This is by developing the following scenario:

* given an arrow A,

26

AsADA, HASUO

» we define the notion of (arrow-based) A-component which generalizes Bar-
bosa’s modeling (2),

e and we show that these A-components carry categorical arrow structure
that is in fact a lifting of the original arrow structure of A.

Therefore: we categorify A-computations to A-components.

A weaker version of this scenario has been already presented in [11]. How-
ever the last lifting part was obscured in details of direct calculations. What
is novel in this paper is to work in Prof, the bicategory of profunctors. In
fact, it is one theme of this paper to demonstrate use of calculations in Prof.

The starting point for this profunctor approach is [16]. There the arr, >>>-
fragment of arrow (without first) is identified with a monoid in the category
[C°PxC, Set] of bifunctors, where the latter is equipped with suitable monoidal
structure. This means—in terms of profunctors that will be described in §2—
that an arrow A (without first) is a monad in Prof, in an internal sense like
in Street [25].

What really made our profunctor approach feasible was a further obser-
vation by the first author [1]. There the remaining first operator—whose
mathematical nature was buried away in its dinaturality—is identified with a
certain 2-cell in Prof. In fact, this 2-cell is a strength in an internal sense.
Therefore an arrow (with its full set of operators, arr, >>> and first) is a strong
monad in Prof. This observation pleasantly parallels the informal view of
arrows as generalization of strong monads.

1.5 Organization of the Paper

In §2 we will introduce the necessary notions of dinatural transformation,
(co)end and profunctor, in a rather leisurely pace. The two forms of the
Yoneda lemma—the end- and coend-forms—are basic there. The materials
there are essentially extracted from Kelly [17], which is a useful reference also
in the current non-enriched (i.e. Set-enriched) setting. In §3 we follow [1, 16]
and identify an arrow with an internal strong monad in Prof, setting Prof
as our universe of discourse. In §4 we generalize Barbosa’s coalgebraic com-
ponents into arrow-based components. The main result—arrow-based com-
ponents form a categorical arrow—is stated there. Its actual proof is in the
subsequent §5 which is devoted to manipulation of 2-cells in Prof.

2 Categorical Preliminaries

2.1 End and Coend

In the sequel we shall often encounter a functor of the type F': C? x C — D,
where a category C occurs twice with different variance. Given two such

27

AsADA, HASUO

F,.G :C% xC — D, a dinatural transformation ¢ : F = G consists of a
family of morphisms in D

ox F(X,X)— G(X,X) foreach X € C

which is dinatural: for each morphism f : X — X’ the following diagram
commutes.

F(rX), F (X, X) 2= G (X, X) 6x.p (3)
FXLX)" T ax, X

FOORF (X', X') 5 G (X!, X GUFX)

Note the difference from a natural transformation ¢ : F' = G. The latter
consists of a greater number of morphisms in D: ¢xy : F(X,Y) = G(X,Y)
for each X,Y € C.

Two successive dinatural transformations ¢, : Fy = Fy and ¢y : Fy = Fj
do not necessarily compose: dinaturality of each does not guarantee dinatural-
ity of the obvious candidate of the composition (¢ 0 p1)x = (¥2)x © (¢1)x-
This makes it a tricky business to organize dinatural transformations in a cat-
egorical manner. Nevertheless, working with arrows, examples of dinaturality
abound.

Dinaturality subsumes naturality: a natural transformation ¥ : F' = G :
C — D can be thought of as a dinatural transformation, by presenting it as
V:Fomg=Gom:CP xC — D. Here my : C? x C — C is a projection.

(Co)end is the notion that is obtained by replacing naturality (for (co)cones)
by dinaturality, in the definition of (co)limit. Precisely:

Definition 2.1 (End and coend) Let C, D be categories and F' : C? xC — D
be a functor.

e An end of F consists of an object er(C F (X, X) in D together with projec-
tions

mx (Jyee F (X, X)) — F(X,X) foreach X € C

such that, for each morphism f : X — X’ in C, the following diagram

commutes.

%F(X’,X’)F £,X!

[F (X, X) ;)F(X, X')

X R(X, X)X

In other words: the family {7x }xec forms a dinatural transformation from
the constant functor A(f, F(X, X)) to the functor F. An end is defined
to be a universal one among such data: given an object ¥ € D and a
dinatural transformation ¢ : AY = F there is a unique morphism f :
Y = [F (X, X) such that mx o f = px for each X € C.

28

AsADA, HASUO

e A coend of F'is a dual notion of an end. It consists of an object fXEC F(X,X)
in D together with injections tx : F (X, X) — fX F (X, X) for each X € C.
Its universality, together with that of an end, can be written as follows.

Y — [F(X,X) [P F(X,X)—Y
ox Y = F(X,X), dinatural in X ¢y : F(X,X) — Y, dinatural in X

(Co)ends need not exist; they do exist for example when C is small and D is
(co)complete. See below.

The reader is referred to Mac Lane [20, Chap. IX] for more on (co)ends.
Described there is the way to transform a functor F' : C® x C — D into
F%: C® — D, in such a way that the (co)end of F' coincides with the (co)limit
of 8. Therefore existence of (co)ends depends on the (co)completeness prop-
erty of D. In fact (co)end subsumes (co)limit, just as dinaturality subsumes
naturality. Therefore a useful notational convention is to denote (co)limits
also as (co)ends: for example Colimy F X as [YFX.

Recalling the construction of any limit by a product and an equalizer [20,
§V.2], an intuition about an end [, F(X,X) is as follows: it is the product
[F(X, X) which is “cut down” so as to satisfy dinaturality. Dually, a coend

/ XF (X, X) is the coproduct [[F(X, X) quotiented modulo dinaturality.

2.2 Two Forms of the Yoneda Lemma

A typical example of an end arises as a set of (di)natural transformations.
Given a small category C and functors F,G : C°? x C — Set, we obtain a
bifunctor

[F(+,—-),G(—,+)] : CPxC—Set , (X,Y)— [F(Y,X),GX,Y)] .
(4)
Here [S,T] denotes the set of functions from S to T, i.e. an exponential in
Set. Note the variance: since [—, +] is contravariant in its first argument, the
variance of arguments of F' is opposed in (4). Taking this functor (4) as F
in Def. 2.1, we define an end [, [F (X, X),G(X, X)]. Such an end does exist
when C is a small category, because Set has small limits (hence small ends).

Proposition 2.2 Let us denote the set of dinatural transformations from F
to G by Dinat(F,G). We have a canonical isomorphism in Set:

o)

Dinat(F, G) —» [,[F(X,X),G(X,X)] .
29

AsADA, HASUO

Proof It is due to the following correspondences.
1 [[F (X, X),G(X,X)]

1 - [F(X,X),G(X,X)] dinatural in X
F(X,X)— G(X,X) dinatural in X

(1)
(1)

Here (t) is by Def. 2.1; dinaturality is preserved along (i) because of the
naturality of Currying. O

The composite Dinat(F, G) = [LF(X,X),G(X,X)] =5 [F(X,X),G(X, X)]
carries a dinatural transformation ¢ to its X-component px.

Since dinaturality subsumes naturality (§2.1), we have an immediate corol-
lary:

Corollary 2.3 Let C be a small category and F,G : C — Set. By Nat(F,G)
we denote the set of natural transformations F = G. We have

Nat(F,G) — [[FX,GX] . O
The celebrated Yoneda lemma reduces the set Nat(C(X,_), F') of natural
transformations into F'X (see e.g. [6,20]). Interpreted via Cor. 2.3, it yields:

Lemma 2.4 (The Yoneda lemma, end-form) Given a small category C and
a functor F': C — Set, we have a canonical isomorphism

fX’eC[(C(XaX/)aFX/]iFX . O

The lemma becomes useful in the calculations below: it means an end on
the LHS “cancels” with a hom-functor occurring in it.

From the end-form, we obtain the following coend-form. Its proof is
straightforward but illuminating. It allows us to “cancel” a coend with a
hom-functor inside it.

Lemma 2.5 (The Yoneda lemma, coend-form) Given a small category C and
a functor F : C — Set, we have a canonical isomorphism

[YCFX x C(X,X) = FX |
Proof We have the following canonical isomorphisms, for each S € Set.

[[YFX' xC(X',X), S] 3 [[FX' xC(X',X),S] (1)
%fX,[(C(X',X), [FX’,SH Currying
= [FX,S] the Yoneda lemma, end-form.

30

AsADA, HASUO

Here (f) is because the hom-functor [_,S] turns a colimit into a limit |20,
§V.4], hence a coend into an end. Obviously the composite isomorphism is
natural in S; therefore we have shown that

y(/¥ C(X', X) x FX') = y(FX) : C — Set , (5)

where y : C? — [C, Set] is the (contravariant) Yoneda embedding. By the
Yoneda lemma the functor y is full and faithful; therefore it reflects isomor-
phisms. Hence (5) proves the claim. O

2.8 Profunctor

Definition 2.6 Let C and D be small categories. A pro- C——D
functor P from C to D is a functor P : D°? x C — Set. It D°? x C — Set
is denoted by P : C + D (see on the right).

The notion of profunctor is also called distributor, bimodule or module. For
more detailed treatment of profunctors see e.g. Benabou [7] and Borceux [9].

There are principally two ways to understand profunctors. One is as “gen-
eralized relations”: profunctors are to functors what relations are to functions.
The differences between a profunctor P : C—+ D and a relation R : S- T are
as follows.

A relation is two-valued: for each element s € S and t € T, R(s,t) is either
empty (i.e. (s,t) € R) or filled (i.e. (s,t) € R). In contrast, a profunctor is
valued with arbitrary sets, that is, P(Y, X) € Set.

e The functoriality of a profunctor P induces action of morphisms in C and
D. For illustration let us depict an element p € P(Y, X) by a box .
Given two morphisms ¢ : Y/ — Y in D and f : X — X’ in C, functoriality
of P yields an element P(g, f)(p) € P(Y’, X’) (note the variance); the latter
element is best depicted as follows.

Y’. Y . X .g’ (6)

The latter point motivates a different way of looking at profunctors: as gener-
alized modules as in the theory of rings. These generalized modules are carried
by a family of sets { P(Y, X)}xec yep, with left-action of C-arrows and right-
action of D-arrows. Also notice the similarity between (6) and the diagrams
in §1 for computations/components. It is indeed this similarity that allows us
to formalize arrows as certain profunctors (§3).

Definition 2.7 (Composition of profunctors) Given two successive profunc-
tors P: C+ D and Q : D + E, their composition () o P : C + E is defined
by the following coend. For U € E and X € C,

Qo P)(U,X)= ["QU,Y) x P(Y,X) .
31

AsADA, HASUO

For profunctors as generalized relations, this composition operation corre-
sponds to a relational composition: (S o R) (x, z) if and only if EIy.(R (x,y) A
S (y,z)). For profunctors as modules, it corresponds to tensor product of
modules. In any case, recall from §2.1 that the coend in Def. 2.7 is a coprod-
uct [[y Q(U,Y) x P(Y, X)—a bunch of pairs (% :), with varying
Y —quotiented modulo a certain equivalence ~. This equivalence ~ (dictated
by dinaturality) intuitively says: the choice of intermediate Y € D does not
matter. Specifically, the equivalence ~ is generated by the following relation;
here f:Y — Y’ is a morphism in D.

(P, VPP) = (YaPs, KM RRS) .

An appropriate notion of morphism between parallel pro-
functors P, () : C + D is provided by a natural transforma- C” 1D
tion ¢ : P = (@), where P and @) are thought of as functors ~
P.Q : D® x C — Set. All these data can be organized in Q
a “2-categorical” manner as on the right. A problem now is that (horizon-
tal) composition of 1-cells (i.e. profunctors) is not strictly associative: due
to Def. 2.7 of composition by coends and products, associativity can be only
ensured up-to coherent isomorphisms. The same goes for unitality; therefore
profunctors form a bicategory (see [9]) instead of a 2-category.

Definition 2.8 (The bicategory Prof) The bicategory Prof has small cat-
egories as 0-cells, profunctors as 1-cells and natural transformations between
them as 2-cells. The identity 1-cell C -— C is given by the hom-functor
C(—,4) : C°? x C — Set; it is the unit for composition because of the Yoneda
lemma, coend-form (Lem. 2.5).

2.4 Some Properties of Prof

Here we describe some structural properties of Prof that will be exploited
later, namely the direct image of a functor and tensor products in Prof. For
the former, [7] is a principal reference; Fiore’s notes [10] are not specifically on
profunctors but provide useful insights into relevant mathematical concepts.

A function f : .S — T induces the direct image relation f, : S—+ T, defined
by: f.(s,t) iff t = f(s). There is an analogous construction from functors to
profunctors.

Definition 2.9 Let F' : C — D be a functor between small categories. It
gives rise to

the direct image profunctor F,:C —— D by F.(Y,X)=D(Y, FX) .

32

AsADA, HASUO

The mapping (_). also applies to natural transformations in an obvious
way; this determines a pseudo functor (see e.g. [9]) (L)« : Cat — Prof that
embeds Cat in Prof.

Notations 2.10 Throughout the rest of the paper, the direct image F, of a
functor F' shall be simply denoted by F'. The identity profunctor id : C+ C—
that is the hom-functor—will be often denoted by C : C + C.

The Cartesian product operator x in Cat lifts Prof; given profunctors
F:C+C and G:D -+ D, we define

FxG:CxD+C'xD' by (FxG) (X, Y, X,)YV)=FX X)xGY"Y) .

(7)
The symbol X occurring in the last denotes the Cartesian product in Set.
The lifted operator x in Prof makes it a “monoidal bicategory,” a notion
whose precise definition involves delicate handling of coherence. We shall not
do that in this paper. Nevertheless, we will need the following property.

Lemma 2.11 The operation x on Prof is bifunctorial: that is, given four

P Q P N
profunctors C+ D+ E and C'+ D'+ E' we have (Q o P) x (Q' o P') =
(Q@xQ)o(PxP).

Proof This is due to the Fubini theorem for coends. See [20, §IX.§] O

It is obvious that the operator x acts also on 2-cells (that are natural
transformations).

3 Arrows as Profunctors

We review the results in [1,16] that identify Hughes’ notion of arrow with a
profunctor with additional algebraic structure.

First we present the precise definition of arrow. Usually it is defined over
a Cartesian category C. However, since it is rather the monoidal structure of
C that is essential, we shall work with a monoidal category.

Definition 3.1 (Arrow [13]) Given a monoidal category C = (C,®,I), an
arrow over C consists of carrier sets { A(J, K)} ; kec and operators arr, >s> and
first as described in §1.1. The operators must satisfy the following equational

33

AsADA, HASUO

axioms.

(a>>b)>>c=a>>(b>>c¢)
arr(go f) =arrf >>arrg

>3- ASs0C)
arr-Funcl)
arr-FuNc2)
firsty i,ra > arrpg = arrpx > a p-NAT)

(
(
a=a>3>;KKarridg (
(
firsty kL a >> arr(idg ® f) = arr(idy @ f) >> firstyx,ma (arr-CENTR)
(
(
(

arridy >>; 5Kk a

)
(firsty i, Lom a) > (arrak,p,m) = (arrag,n,v) S>> first(first a) a-NAT)
firsty i, (arr f) = arr(f ® idyr) arr-PREMON)
firsty, o, am(a >33 b) = (firsty x,nm a) > (firstgx,L,m b) (first-FUuNC)

Here some subscripts are suppressed. The morphism px : K ® I = K is the
right unitor isomorphism; o denotes an associator isomorphism. The names of
the axioms hint their correspondence to the (premonoidal) structure of Freyd
categories [19,23].

Next we introduce the corresponding construct in Prof, which we shall
tentatively call a Prof-arrow.

Definition 3.2 Let C = (C,®,I) be a small monoidal category. A Prof-
arrow over C is:

* a profunctor A : C - C,

e equipped with natural transformations arr, >>> first of the following types:

e Chghe e e
Yarr , >> , | first ,
T \i{/ C——C

where all the diagrams are in Prof,

e subject to the equalities in Table 1. Recall Notations 2.10; for example the
profunctor (C, I) in (first-p) is the functor (C,I) : X — (X, I), embedded
in Prof by taking its direct image.

The notion of Prof-arrow is in fact a familiar one: it is an internal strong
monad in Prof. Indeed, when one draws the same 2-cells in Cat instead of in
Prof-—replacing A by T, arr by 7, > by u” and first by str’—the definition
coincides with that of strong monad [18,21].2 More specifically, the first two
axioms in Table 1 are for the monad laws; and the remaining axioms asserts
compatibility of strength with monoidal and monad structure. For example,
the axiom (first->>>) interpreted in Cat is read as the commutativity of the

2 The corresponding strength operator str’ is of the type st : TX ® Y — T(X ®Y'), which
is slightly different from the usual strength operator that isstr: X @ TY - T(X ®Y).

34

following diagram.

, Hasuo

XY —T(ITXQY) I THX @Y)

T®Y\L
TXR®RY

MT
T(X®Y)

C—f—C i c = ¢C c = ¢C 1 C—F4—C (UnIT)
A A
A C A C A

Assoc

L iL>>> j L iL>>> J\ ()

AXCxC AXCxC
C3——F——C3 3 ——"F——C3
®x«i U firstxC i@xc CX@f Cx@i \/\

c? £ C?—— i C? C?——z—C? £ c? (first-a)
®i 4 first «iv—® ®—iv» | first %/@/
C——F——C C—4——C

CIL Axc c—% L2 sjc c?
oY= 4 first \\ % (first-p)
c—ﬁc = —C
CxC
/\ ©
CQ%CQ = —9->c {Jor C (first-arr)
X
®i l}f‘lrst ®—iv» N
C 5 C
(C2 >C24¢_>(c2 5 AXC 5 AXC 2
«i;@l}flrst i@l}flrst «iv—® ¢ (i>>>><(c ¢
C ¢T3t = o (first-335>)
4 first
A C——4——C
Table 1

Equational axioms for Prof-arrow

Proposition 3.3 [1] For a monoidal category C that is small, the notion of

arrow (Def. 3.1) and that of Prof-arrow (Def. 3.2) are equivalent.

Proof While the reader is referred to [1] for a detailed proof, we shall illus-
trate a few highlights in the correspondence between the two notions. We shall
write arr’, > and first’ (with primes) for the three operators of a Prof-arrow
(Def. 3.2), to distinguish them from the corresponding operators of an arrow

(Def. 3.1).

Let us first observe that a 2-cell first’ in Prof gives rise to the first operator

35

AsADA, HASUO

in Def. 3.1. The former is an element of the LHS below, where > denotes
composition of profunctors (Def. 2.7).

Nat((® 0 (A x C))(—, +1,+2), (A0 ®)(—,+1,+2))

= fX,K,Ye(C[(®o(AXC))(X,K,)Y), (Ao®)(X,K,Y) } by Cor. 2.3
> [y [J7TCX, T @ L) x A(J,K) x C(L,Y),
[TAX,U)x C(U,K®Y)] by Def. 2.7, Def. 2.9 and (7)
~ [\ kv [C(X, T ® L) x A(J,K) x C(L,Y), [TAX,U) x C(U,K ®Y)]
since a hom-functor [—, S] turns a coend into an end
= fX,K,Y,J,L[C(Xv J® L), [A(J7 K), [C<L7Y)a
fUA(X, U)xC(U,K®Y)]]] by Currying

= fJ,K,L [A<J7 K)7 A(J ® L7 K ® L)]
by canceling X,Y by Lem. 2.4 and U by Lem. 2.5
= Nat xDinaty, (A(J,K), A(J® L, K® L)) by Prop. 2.2 and Cor. 2.3.

Therefore a 2-cell first’ in Prof gives rise to a family of functions A(J, K) —
A(J ® L, K ® L) that is natural in J, K and dinatural in L. This is precisely
the type of the first operator in Def. 3.1. The equational axioms of an arrow
are indeed satisfied due to those of a Prof-arrow. We note that the axiom
(arr-CENTR) is satisfied not because of any specific axiom of a Prof-arrow,
but because of the dinaturality of first’ as a 2-cell in Prof.

For the reverse direction where an arrow induces a Prof-arrow, we have
to equip the carrier {A(J, K)} x of an arrow with action of morphisms in C,
rendering A into a functor C°® x C — Set. This is done with the help of
arrow operators. Specifically, A(g, f)(a) := arrf >=>> a = arrg, that is:

Y Y X / . Y X!
= My Prapfamg S

Each of the arrow operators yield its corresponding Prof-arrow operator; the
latter’s (di)naturality is derived from the arrow axioms. So are the equational
axioms for a Prof-arrow. O

Prop. 3.3 offers a novel mathematical understanding of the notion of arrow.
Its axiomatization seems to have stronger justifications than the original one
(Def. 3.1) does. It also seems simpler than the treatment of first in Freyd
categories which involves technicalities like premonoidal categories and central
morphisms. It is this simplicity that is exploited in the rest of the paper.

When the base monoidal category C is symmetric—which is our setting in
the sequel-—we can obtain another sideline operator second.

Definition 3.4 Let A be an arrow over a small symmetric monoidal category

36

AsADA, HASUO

(SMC) C. We define an extra operator second as the following 2-cell in Prof.

2 CxA 2
CxA C C
CZ——F——(? Hmom) (mami)f
i—@ | second i@ = 2 (2 . axr C2 & (8)

C) C @% U first @%
A

Here the profunctor (my, ;) is the direct image of the functor (my, m) : C* —
C?, mapping (X,Y) to (Y, X) (cf. Notations 2.10).

Notations 3.5 In the above diagrams as well as elsewhere, there appear
two different classes of iso 2-cells in Prof. One class is due to the unital-
ity /associativity /symmetry of ® on a monoidal base category C; they are iso
2-cells in Cat embedded in Prof via direct image (§2.4). Such iso 2-cells shall
be filled explicitly with the 2 sign, like the two on the RHS in (8).

The other class is due to the properties of the operation x on Prof, typi-
cally Lem. 2.11. Such iso 2-cells will be denoted by empty polygons, like the
one on the RHS in (8).

Some calculations like in the proof of Prop. 3.3 reveal that this new op-
second j k1,

erator realizes a class of functions A(J, K) — " A(L x J,L x K), that is
graphically

g e [t [

J K

Lemma 3.6 Between the first and second operators, the following equality
holds.

(C3 el C3 (C3 A C3
Cxg ®><(Ci |} secondxC ~iv—®><(C Cxe® Cx@i | Cxfirst i—(Cx@
C2 = C2 X C2 = 2 = C2 CxA C2
(8% U first ®i» (8% |} second ®—iv»
¢C————C ¢C————C
Proof Use the equality (first-a) and the coherence for an SMC C. O

4 Arrow-Based Components

In this section we develop the scenario in §1.4 in technical terms. First we
introduce an arrow-based coalgebraic modeling of components.

Definition 4.1 (A-component) Let A be an arrow on Set, and J, K € Set.
An (arrow-based) A-component with input-type J, output-type K and com-
putational structure A is a coalgebra for the functor A(J, _ x K') : Set — Set.

37

AsADA, HASUO

That is,
A(J, X x K
U

X

Here an arrow A is in the sense of Def. 3.1. There the base C of an arrow
need not be small; thus we choose (Set, x,1) as C. Our modeling specializes
to Barbosa’s (2) when we take as A a monad-based arrow Ar (§1.1). Our
modeling not only generalizes Barbosa’s one but also brings conceptual clarity
to the subsequent arguments.

Our goal is to lift the arrow structure of A to the categorical arrow structure
of A-components. Let us make this goal precise.

Definition 4.2 (Categorical arrow) A categorical arrow consists of

o a family {A(J, K)},k of carrier categories indexed by J, K € Set;

* (interpretation of) arrow operators arr, >=s> and first (cf. Def. 3.1), namely
functors

1 ard, A(J, K) for each function f : J — K in Set,
A K) x AK, L) ~225% A(J,L) for each J, K, L € Set,
firs
A(J, K) KL A(J % LK x L) for each J, K, L € Set.

Here the category 1 is the one-object and one-arrow (i.e. terminal) category;
and

e the operators are subject to the arrow axioms in Def. 3.1, up-to isomor-
phisms. For example, as to the axiom (>>>-AssocC), the following diagram
must commute up-to an isomorphism.

> k,0Xxid

A(J,K) x A(K, L) x A(L, M)
id><>>>K,L,MJ/ (3

A(J, K) x A(K, M)

A(J, L) x A(L, M)
AR (9)

A(J, M)

1%

= K,M

The graphical understanding of a categorical arrow is the same as that of
an arrow; see §1.1. In §1.3 we described why it is natural and necessary to
require the axioms be satisfied only up-to isomorphisms.

Remark 4.3 Satisfaction up-to isomorphisms raises a coherence issue. The
precise coherence condition for categorical arrows is described in [11], in a more
general form of coherence for categorical models of FP-theories. Although we
shall not further discuss the coherence issue, the calculations later in §5 provide
us a much better grip on it than the direct calculations in [11] do.

The notion of categorical arrow in Def. 4.2 could be formalized on any
monoidal category C other than Set, although we do not need such additional
generality.

38

AsADA, HASUO

The main contribution of this paper is the following result as well as its
proof presented using the rest of the paper.

Theorem 4.4 (Main contribution) Let A be an arrow on Set. The categories
{Coalg(A(J, _ x K))}k of A-components carry a categorical arrow.

On top of it, we can appeal to the formalization [11,12] of the microcosm
principle [4] to obtain the following compositionality result.

Corollary 4.5 In the setting of Thm. 4.4, assume further that for each J, K €
Set the functor A(J,_ x K) has a final coalgebra Cyyc : Zyx = A(J, Z5 X K).

(i) The family {Z;k} sk is canonically an arrow.

(ii) Behaviors by coinduction are compositional with respect to arrow oper-
ators. For example, with respect to the operator >, this means the
following. Given two A-components ¢ : X — A(J, X x K) andd :Y —
A(K,Y x L) with matching 1/0 types, the triangle (%) below commutes.

AJ (X XY)X L)=--——— +A(J, Zy x L)
Jes>d = final
behss.q
XxY-—- - -2z 2L
beh, x behy (x =
Lk X LKL

Here ¢ > d is “composition of components” using the categorical arrow
structure in Thm. 4.4; >>7Z is “composition of behaviors” derived in (i);
and beh.ss.q is the behavior map for the composed components induced by
coinduction (the square on the top). O

In [11,12] it is shown that algebraic structure carried by the categories of
coalgebras—Ilike the one in Thm 4.4—can be obtained by:

* the same structure on the base categories, and

e the lax compatibility of the signature functors with the relevant algebraic
structure.

In this case the algebraic structure on the base categories lifts to the categories
of coalgebras. We shall follow this path. Restricting the general definitions
and results in [11,12] to the current setting, we obtain the following.

Definition 4.6 Let {F;x : Set — Set};x be a family of endofunctors,
indexed by J, K € Set. It is said to be a lax arrow functor if:

e it is equipped with the following natural transformations

Farrf o1 —>FJ,K1 ,
Fssypr o+ Fur X X Fr Y — Fjp (X xY)
FﬁrStJ’K’L . FJ,KX — FJXL,KXLX ,

39

AsADA, HASUO

each of which is natural in X, Y, for each J, K, L € Set and each f:J — K
in Set;

e that are subject to the equations in Table 2, that are parallel to those in
Def. 3.1. The diagrams there are all in Set; obvious subscripts are sup-
pressed.

(>>>-Ass00) (arr-Funcl)
id X Fss.
F‘],KXXF}QLYXFL’]MU*)FJ,KX><FK7M(Y><U) 1
Fss. Xid\L (FarrfaFarrg>\L Farr(gof)
FJ’L(XXY)XFLJ\{U Fss FJ,K1><FK,L1
F>>>J/ F>>>\L N
Fra((X XY) xU)—=—Fru(X x (Y xU)) Frp(lx1)—————Fyrl
(arr-Func2) (p-Nart)
.idvFarridK> (Farr‘frl,id>
FyrX FjrX X Frkl FyrX ———— Frx1,01 x Fy g X
(Farrid 5 7id>\L 1Fs Ffirs\L 1Fss
FJleXFtLKX id FJ,K(Xxl) FJxl,lex FJ><17K(1><X)
F>>>\L - g\L <id7Farr7r1>\L
Frr(lxX)———FjrX Frx1,rx1X X Frxi,xl o~
Fss| N
Frxig(X x1)——— Frxi,x X
(arr-CENTR) (a-NAT)
Firs Firs
FreX " Froprexn X FrgX—" s FiprxiX
FfivstJ/ \L<Farr(J x f)-id) Fﬁr“\L ‘LFH'“
P x Frcooxul Fry(nxmy,kxrxanX Foyxroyxm,(xxpyxmX
JXL,KXL XFJXL',KXL'X <id’Farra>\L L(Farraﬁid>
<id7Farr(K><f)>l lF>>> FJx(LxM),Kx(LxM)X FJx(LxM),(JxL)le
FroxaX X X) X Frex(LxM),(KxLyxMm 1 XF(rxpyx M, (KxLyx MX
XFrwr,rxrl Ik R =]
F>>>\L Fs FJ><(L><M),(K><L)><M(1 x X)
Frxr,rxo (X x1) = o =|
e Fruwxan),(xxpyxm (X X 1) S Fry(xa),(kxLyx X
C ErenrxpX
(arr-PREMON) (first-Func)
Farry First X Fiirst
1——— Fykl FruX X FrrY ———"5 FrxmxxmuX X Frxu,pxmY
m 1P Fss| 1Fss
FJXL,KXLl F(],L(XXY)T)FJXJ\/[,LX]w(XXY)
Table 2

Equational axioms for lax arrow functors

A lax arrow functor therefore looks like an arrow (think of F)j x(X) in place
of A(J,K)), but it carries an extra parameter (like X, Y or X x Y') around.

Proposition 4.7 If {F;k} sk is a lax arrow functor, then {Coalg(Fj)}k
18 canonically a categorical arrow.

Proof This follows from a general result like [11, Thm. 4.6]. Here we shall
briefly illustrate what the categorical arrow {Coalg(F k)}sx looks like, by

40

AsADA, HASUO

describing the sequential composition >>> : Coalg(F) k) x Coalg(Fx) —
Coalg(F;). Using Fss in Def. 4.6 it is defined as follows.

Fro(X xY)
(FJ,KX FK,LY) =5 s
Tc , Td > F‘LKX X FK,LY
X Y Texd
X

The definitions are similar for the other arrow operators. The arrow axioms
are satisfied due to the corresponding equational condition on the lax arrow
functor. 0O

This proposition reduces our goal (Thm. 4.4) to showing that the family
{A(J,_ x K)} i is a lax arrow functor. This is what will be shown in the
next section, through manipulation of 2-cells in Prof.

5 Calculations in Prof

There is one technical issue in front of us: the size issue. The 0-cells of Prof
are small categories; the smallness restriction is necessary for composition of
profunctors to be well-defined (Def. 2.7). However, with Set being not small,
the arrow A in Def. 4.1 cannot be a 1-cell in Prof. The arrow A needs to be
based on Set so that A(J,_ x K) is an endofunctor Set — Set.

In this paper we shall get round of the problem by pretending that Set is
small. There are two possible justifications.

e We can resort to the category Ens of classes when it is needed—such as
when we take composition of profunctors via a coend. This means upgrading
all the sizes that appear in the definition of Prof: its 0-cells are locally small
categories; its 1-cells P : C+ D are bifunctors D°? x C — Ems. In this case,
in Def. 4.1, we would restrict the arrow A to be small, in the sense that its
image A(J, K) restricts to Set. More detailed treatment is found in [1].

Set? x Set%Ens

~ 7Set

* We replace Set by some small cocomplete category defined internally in
a suitable topos [14]. In other words, we develop our theory on top of a
certain type theory which is modeled by such a topos.

In any case, we would like to isolate the size issue as much as possible. There-
fore we shall first establish those technical results which hold for any small
symmetric monoidal category (C,®,). These results are proved by manip-
ulating 2-cells in Prof. After that we instantiate (C,®,I) by (Set, x,1)—
pretending that Set is small.

41

AsADA, HASUO

Definition 5.1 Let (C,®, I) be a small SMC, and A be an arrow on it. There
arise three 2-cells in Prof—which we denote by FA, F4 and F{, —of the

arrs > first
following types.
Cx® CxA
C—=C*——=C? ®xC, g AXC
(I®_) (EA C ®x<c$ VP4 i@ (C3J—>(Ciﬁ_>(cz
A arr\\ CQWC (C;H(C CX@i uFfirst i,@
C——5—C \j C?—4—C——C
A
Explicitly, these 2-cells are given by the following composites.
C O e v € g AxC
[(8?*/1}%}@\) ®><C$ = i@ |} second i-@ C3%CQ —@(ﬂ
C—3 2C +—C—5—C— C Cxef 4= (@ fist |

A

Here the 1-cell I ® _ on the left is the direct image of the functor X
I ® X (Notations 2.10); recall that I denotes the monoidal unit. Also recall

Notations 3.5. The 2-cells arr, >3> first, second are due to the arrow structure
of A (Def. 3.2, 3.4).

The motivation for this definition is clear from the names of the 2-cells.
Indeed, through some calculations in Prof and application of the Yoneda
lemma, one easily sees that the three 2-cells Fi, F4 | Fgl are the same thing
as (di)natural transformations

Fd . C(J,K) — A(J,I® K) , natural in J, K;

arr

F;‘;>J’K}L P ALXQK) X AK,LY®L) — A(J,(XQY)® L)
natural in J, L, XY, dinatural in K,
Fig,er P ALX@K) — AJO L X @ (K®L)) ,

natural in J, K, X, dinatural in L,

respectively. These (di)natural transformations bear clear similarity to the
ones in Def. 4.6 when F k is instantiated with A(J, _ ® K).
Let us now turn to equations.

Lemma 5.2 Let A be an arrow over a small SMC C. The three 2-cells
FAF4 and Fi, in Def. 5.1 satisfy the equalities in Table 3; they are parallel
to the equalities in Def. 3.2.

Proof First expand the definitions of F7, F4 and F{,, and then use the
equational axioms in Def. 3.2. One also needs Lem. 3.6. O

42

AsADA, HASUO

(UNIT) CxC o, ® 4
CxC Ao® (1 i | i Ic&
Cx(I®_) e
<mzm$\ R "lz = C/{D = CSLHCQWC
(ng‘—ﬂc W(C ~_ ®xCf VRS ®‘i; VFA
2 ~UF>>> A Ao® CQTC Aa” €
Crame e
A
A
(Assoc) cr Er8 s A s
4 C2x 3C2xA 3 (C>}<® 5 Cx 2 ®xC Cx®X%C
C — C — C C C 3/{ UCX§§> 5 CXA o
odf og g m e S e
CoagCarC—4—C c—5c ®x i@xc o VFL i—® A
®XC VP \O—j
c*——C p) !
(first-av) @xC2 Axc?
4 3 3
@4%03%@"’ % ﬁ@—ggi %%W
<C $® c _ C?x® o~
Fgxaxe b i = CoeCogee £ 0
—HCQW(? Cx@d w o ef
(flrst—p)‘ o («:2 (C3 OKC, 2 _AxC
1 ®xC AxC ‘
- CS (C2 | CQ — CI) %
EJ}*) Joxe wrd, ®f \®/\C—0—>C/%/%C
C—g—C——C
(first-arr)
(1,€2)
I® ><<C FAxC
c? = ”’Zxc CX@i IR
iCX® UFflrst a"
c?) C)
(first->>)

Cx C (C><A><(C ®xC
(C4 ® (CS 3 /

C CXAX(C ®@X%C ‘ C
(c4 @ (C3 3 {

i C C2 AxC
C2X®$ ‘uCXFflrst ~iv—C><® uFfi/?st

C? Foxc? LF4 xcC A%C
- . {0 = C*——t—C?
CorCerC—47C—4 % ®\é\/‘$‘cx®

C

A ¥ Fflrst
®x C$ VP) C Ay C

&

Table 3
Equalities that hold for Fi, F>‘i>, Ffﬁ\St

The equalities in Table 3 might look complicated. However, coming up
with them is rather routine work looking at Def. 5.1 and Def. 3.2.

We now instantiate (C, ®, I') with (Set, X, 1), pretending Set to be small.

Lemma 5.3 Let A be an arrow Set®® x Set — Set. The family {A(J.
K)} k of endofunctors is a lax arrow functor.

43

AsADA, HASUO

Proof The three 2-cells in Def. 5.1 provide the three natural transformations
required in Def. 4.6. The equations asserted in Def. 4.6 follow from those in
Lem. 5.2. Checking all this is (laborious) routine work. O

Combining Prop. 4.7 and Lem. 5.3, our main result Thm. 4.4 is proved.

Remark 5.4 A characterization of categorical arrows in the spirit of Prop. 3.3
can possibly yield a even more direct proof of Thm. 4.4. Unfortunately until
now we lack necessary infrastructure such as a lifting result like Prop. 4.7. We
are currently investigating possible formalization using fibered spans (see e.g.
Jacobs [15]).

In Prof the trace operator for an arrow (loop in Paterson [22], see also
Benton and Hyland [8]) can be formalized in a similar way to other operators
like >>. Its description as well as possible application to components will
presented in another venue.

Acknowledgments
Thanks are due to Paul-André Mellies for advocating use of profunctors;
and to Marcelo Fiore, Bart Jacobs and Bartek Klin for helpful discussions.

References

[1] Asada, K., Arrows are strong monads (2009), preprint,
www.kurims.kyoto-u.ac.jp/ asada/papers/arrStrMnd.pdf.

[2] Atkey, R., What is a categorical model of arrows?, in: V. Capretta and C. McBride, editors,
Mathematically Structured Functional Programming, 2008.

[3] Baez, J. C. and J. Dolan, Categorification, Contemp. Math. 230 (1998), pp. 1-36.

[4] Baez, J. C. and J. Dolan, Higher dimensional algebra III: n-categories and the algebra of
opetopes, Adv. Math 135 (1998), pp. 145-206.
URL citeseer.ist.psu.edu/article/baez97higherdimensional .html

[5] Barbosa, L., “Components as Coalgebras,” Ph.D. thesis, Univ. Minho (2001).

[6] Barr, M. and C. Wells, “Toposes, Triples and Theories,” Springer, Berlin, 1985, available online.

[7] Bénabou, J., Distributors at work, Lecture notes taken by T. Streicher (2000),
www.mathematik.tu-darmstadt.de/ streicher/FIBR/DiWo.pdf.gz.

[8] Benton, N. and M. Hyland, Traced premonoidal categories, Theoretical Informatics and
Applications 37 (2003), pp. 273-299.

[9] Borceux, F., “Handbook of Categorical Algebra,” Encyclopedia of Mathematics 50, 51 and
52, Cambridge Univ. Press, 1994.

[10] Fiore, M., Rough notes on presheaves (2001), available online.

[11] Hasuo, I., C. Heunen, B. Jacobs and A. Sokolova, Coalgebraic components in a many-sorted
microcosm, in: A. Kurz, M. Lenisa and A. Tarlecki, editors, CALCO, Lect. Notes Comp. Sci.
5728 (2009), pp. 64-80.

44

citeseer.ist.psu.edu/article/baez97higherdimensional.html

AsADA, HASUO

[12] Hasuo, 1., B. Jacobs and A. Sokolova, The microcosm principle and concurrency in coalgebra,
in: Foundations of Software Science and Computation Structures, Lect. Notes Comp. Sci. 4962
(2008), pp. 246—-260.

[13] Hughes, J., Generalising monads to arrows., Science of Comput. Progr. 37 (2000), pp. 67-111.
[14] Hyland, J. M. E., A small complete category, Ann. Pure & Appl. Logic 40 (1988), pp. 135-165.
[15] Jacobs, B., “Categorical Logic and Type Theory,” North Holland, Amsterdam, 1999.

I

[16] Jacobs, B., C. Heunen and 1. Hasuo, Categorical semantics for arrows, J. Funct. Progr. 19
(2009), pp. 403-438.

[17] Kelly, G. M., “Basic Concepts of Enriched Category Theory,” Number 64 in LMS, Cambridge
Univ. Press, 1982, available online:
http://wuw.tac.mta.ca/tac/reprints/articles/10/tr10abs.html.

[18] Kock, A., Monads on symmetric monoidal closed categories, Arch. Math. XXI (1970), pp. 1-
10.

[19] Levy, P. B, A. J. Power and H. Thielecke, Modelling environments in call-by-value programming
languages, Inf. & Comp. 185 (2003), pp. 182-210.

[20] Mac Lane, S., “Categories for the Working Mathematician,” Springer, Berlin, 1998, 2nd edition.
[21] Moggi, E., Notions of computation and monads, Inf. & Comp. 93(1) (1991), pp. 55-92.

[22] Paterson, R., A new notation for arrows, in: ICFP, 2001, pp. 229-240.

I
]
I
[23] Power, J. and E. Robinson, Premonoidal categories and notions of computation., Math. Struct.
in Comp. Sci. 7 (1997), pp. 453-468.

[24] Rutten, J. J. M. M., Universal coalgebra: a theory of systems, Theor. Comp. Sci. 249 (2000),
pp- 3-80.

[25] Street, R., The formal theory of monads, Journ. of Pure & Appl. Algebra 2 (1972), pp. 149-169.

[26] Uustalu, T. and V. Vene, Comonadic notions of computation, Elect. Notes in Theor. Comp.
Sci. 203 (2008), pp. 263-284.

45

CMCS 2010

On Coalgebras over Algebras

Adriana Balan'

Department of Mathematics I
University Politehnica of Bucharest

Alexander Kurz

Department of Computer Science
University of Leicester

Abstract

We extend Barr’s well-known characterization of the final coalgebra of a Set-endofunctor as the
completion of its initial algebra to the Eilenberg-Moore category of algebras for a Set-monad M
for functors arising as liftings. As an application we introduce the notion of commuting pair of
endofunctors with respect to the monad M and show that under reasonable assumptions, the final
coalgebra of one of the endofunctors involved can be obtained as the free algebra generated by the
initial algebra of the second endofunctor.

Keywords: Coalgebra, algebras over a monad

1 Introduction

Although most research on coalgebras is focused on Set-coalgebras, coal-
gebras whose carrier has additional structure have been widely considered.
Here we are interested in coalgebras the carriers of which are algebras, see eg
[6], [19]. Our own interest arises from the following two developments.

First, streams or weighted automata as pioneered by Rutten [15], [16], [17]
are mathematically highly interesting examples of coalgebras, despite the fact
that the type functor is very simple, eg just

HX =AxX

L Supported by a Royal Society International Travel Grant

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

BaLAN, KURZ

in the case of streams. The interesting structure arises from A and in typical
examples it will carry the structure of a semi-ring. In this paper, we will
bring this structure to the fore by lifting H to the category of modules for a
semi-ring, or more generally, to the category of algebras for suitable monads.

Second, in recent work of Kissig and the second author, it turned out that
it is of interest to move the trace-semantics of Hasuo et al [7] from the Kleisli-
category of a commutative monad to the category of algebras for the monad
(for example, this allows to consider wider classes of monads). Again, for trace
semantics, semi-ring monads are of special interest.

In Section 2, we show that Barr’s theorem [5]—roughly saying that the
w-limit of the final H-sequence is the Cauchy completion of the w-colimit of
the initial H-sequence—extends from Set-coalgebras to Alg(M)-algebras for
a monad M on Set. Note that Barr’s theorem needs the assumption H0 # 0,
which is not the case for the functor H of stream coalgebras (see above).

We consider the situation of an endofunctor H on Set such that there is
a lifting of H to Alg(M). Under some reasonable assumptions we are able to
prove that the final H-coalgebra can be obtained as the Cauchy completion
of the image of the initial algebra for the lifted functor, under the usual ul-
trametric inherited from the final sequence. For this, we need to understand
better the initial algebra of the lifted functor. This is the purpose of Section 3.
For two endofunctors H, T and a monad M on Set, we call (T, H) an M-
commuting pair if there is a natural isomorphism HM = MT'. It follows that
if one endofunctor admits an algebra lift H, the other endofunctor has a Kleisli
lift and the left Kan extension T' of the Kleisli lift to Alg(M) is isomorphic
with the algebra lift H, then this provides an example of such a commuting
pair. Conversely, one may wonder when two such liftings (when they exist)
are isomorphic (in the sense above) for a commuting pair of endofunctors.
The result is affirmative in case all functors involved are finitary, with the
additional condition that the natural isomorphism HM = MT be one of alge-
bras, where the algebra structure on HM X is provided by a distributive law
ensuring the lift existence. If this is the case, then one can recover the initial
algebra for the lifted endofunctor as the free M-algebra built on the initial
T-algebra. Some special cases are considered as examples. A deeper analysis
of these will be considered in a forthcoming paper.

47

BaLAN, KURZ

2 Final coalgebra for endofunctors lifted to categories
of algebras
2.1 Final sequence for Set-endofunctors

Consider an endofunctor H : Set — Set. From the unique arrow ¢ :
H1 — 1 we may form the sequence

1 t H1 H"1 H"™t Hrtll<— - (21)
Denote by L its limit, with p, : L — H"1 the corresponding cone. As we
work in Set, recall that the limit L can be identified with a subset of the

cartesian product [[H"1, namely
n>0

L= {(zn)n>0 | H"t(2n41) = 0}

By applying H to the sequence and to the limit, we get a cone

—_
o~

o

—

H"1 H™ gl <——- -

with HL — 1 the unique map to the singleton set. The limit property leads
toamap 7: HL — L such that p, o7 = Hp,,_1.

For each H-coalgebra (C,¢c : C' — HC)) it exists a cone «, : C — H"1
over the sequence (2.1), built inductively as follows: ag : C — 1 is the
unique map, then if o, : C — H™1 is already obtained, construct «, | as
the composite

C 2% gCo 2o gty (2.2)
Then the unique map a¢ : C — L such that

Pn © Qo = Oy

satisfies the following algebra-coalgebra diagram [14]:

C«LL

| K

HOWHL

On the sequence (2.1), endow each set H"™1 with the discrete topology
(so all maps H"t will be continuous). Then put the initial topology [18]
coming from this sequence on L and HL. It follows that 7 is continuous. In
particular, the topology on L is given by an ultrametric: the distance between

48

BaLAN, KURZ

any two points in L is 27", where n is the smallest natural number such
that p,(z) # pn(y). The cone a,, : C — H"1 yields on any coalgebra a
pseudo-ultrametric (hence a topology), and the unique map a¢ : C — L is
continuous with respect to it.

If H is w-continuous, it preserves the limit L, hence the isomorphism
¢ =71 L~ HL makes L the final H-coalgebra. Moreover, using the above
topology, the map &£ is a homeomorphism and verifies

Hpn—l o 5 = Pn (23)

2.2 Lifting to Filenberg-Moore category of algebras for a monad

Let M = (M,m : M? — M,u: Id — M) be a a monad on Set. Denote
by Alg(M) the Eilenberg-Moore category of M-algebras and by F™M - UM :
Alg(M) — Set the adjunction between the free and the forgetful functor.
Then Alg(M) has an initial object, namely (F™M0,mqy : M?0 — MO0), the
free algebra on the empty set, and a terminal object 1, the singleton, with
algebra structure given by the unique map M1 — 1.

For a Set-endofunctor H, it is well known [9] that liftings of H to Alg(M),
i.e. endofunctors H on Alg(M) such that the diagram

Alg(M) —= Alg(M) (2.4)

om| om|

Set a Set

commutes, are in one-to-one correspondence with natural transformations A :
MH — HM satisfying

H—"%MH M2H -V HM 22 g2 (2.5)
m l,\ mHl le

HM MH A HM

Remark 2.1 It is worth noting that the lifting is not unique (as there may
be more than one distributive law A : M H — HM). For example, take G a
group and HX = M X = G x X; consider H as an endofunctor and M as a
monad with natural transformations u, m obtained from the group structure.
The algebras for this monad are the G-sets. Then it is easy to see that a map
f:GxG — G x G induces a distributive law A : M H — HM if it satisfies
fle,x) = (z,e) for all z € G, where e stands for the unit of the group, and
flpxG) = (G x u)(f xG)(G x f), where we have denoted by u the group
multiplication. Take now fi(z,y) = (zy,x) and fo(z,y) = (zyzr~ ', x); these

49

BaLAN, KURZ

maps produce two distributive laws Ay, Ao : M H — HM which do not give
same lifting H, as the G-action on HX would be (x,y,2) — (zy,z — 2)
for i, respectively (z,y,z) — (zyz~', 2z — 2) for A\y. Here 2,y € G,z € X
and — stands for the left G-action on X. If the liftings were isomorphic,
then the associated categories of coalgebras would also be isomorphic. In
particular, notice that H is a comonad (as any set, in particular GG, carries
a natural comonoid structure) and both maps fi, f» are actually inducing
monad-comonad distributive laws \q, respectively Ay. Hence each lifting car-
ries a comonad structure such that the associated categories of coalgebras
for the lifted functors are Eilenberg-Moore categories of coalgebras and they
should also be isomorphic. But for f;, a corresponding coalgebra structure
is the same as a G-set (X, —) endowed with a map 6 : X — G such that
0(g — x) = gf(x), while for the second structure, the compatibility relation
yields a crossed G-set, i.e. (g — z) = gf(x)g~".

In particular, for any M-algebra (X, x), HX becomes an algebra with

MHX 2= HMX 22 gy

and for all algebra maps (X,z) — (Y, y), the corresponding map HX —
HY respects the algebra structure. Also, for any H-coalgebra C Loy C,
MC' inherits an H-coalgebra structure by

Ac

¢ MCMe yrpo 2o gy

In particular, if the final coalgebra (L, L S H L) exists, then there is a unique
coalgebra map v: ML — L, given by:

MLY>[(2.6)
Mg
MHL ¢
AL
HML ™ ~HL

Then (L,v) and (HL, Hy\p) are M-algebras and ¢ : (L,v) — (HL, HyApL)
becomes an M-algebra map. By the lifting property, fI(L, v) = (HL,Hy\p)
and as any H -coalgebra (its underlying set) is the carrier of an H-coalgebra,
it follows that ((L,~),€) is the final H-coalgebra. Hence despite the fact that
the lifting might not be unique, the underlying set of the final H-coalgebra is
preserved (but with possibly different algebra structure, depending on \).
Coming back to the final sequence (2.1), note that any term H"1 has an

M-algebra structure, given by:
50

BaLAN, KURZ

e the obvious unique M-algebra structure on 1, ag: M1 — 1

e given a, : MH"1 — H"1, define a,,,, as the composite
ME™ MY g 2o gy (2.7)

Moreover, all maps in the sequence (2.1) are M-algebra maps by (2.5). Ap-
plying M to the sequence produces a cone from ML to the final sequence. If
we assume H is w-continuous (hence £ : L ~ HL is an isomorphism), we
can understand better this cone-construction:

Lemma 2.2 The cone ML Y58 MH s H™ coincides with the cone
ap : ML — H™1 induced by the H-coalgebra structure of ML from (2.6).

Proof. Inductively. For n = 0, there is nothing to show as 1 is the terminal
object in Set. Assume «,, = a,Mp,, then in the following diagram

the upper triangle commutes by (2.3), the middle square by naturality of A
and the lower triangle by applying H to the inductive hypothesis. It follows
that a1 = an1 Mppya. o

In consequence, the unique coalgebra map +v : ML — L constructed in
(2.6) is also the unique map aysr, : ML — L for the coalgebra M L.

Lemma 2.3 The projections p,, : L — H"1 are M-algebra morphisms, with
(2.6) and (2.7) giving the algebra structures of L, respectively H™1.

Proof. Again by induction. The first step is trivial. Assume that p, is an
51

BaLAN, KURZ

algebra map: m, oy = a, o Mp,; then we have the following diagram

ML, Moot ppH
sV _Alwp,
MHL Arma
@ @
y HMLT2 g v e
Hy (5)
HL Has,
/ (3) drn
L — H™

where: (1) commutes by applying M to (2.3); (2) commutes by (2.6); (3)
commutes by (2.3); (4) commutes by the naturality of A and (5) commutes by
applying H to the inductive hypothesis. O

Resuming all above, we have the following diagram of Me-algebras and
M-algebra morphisms, in which the lower sequence is limiting;:

Mpn
A//:L///""” N\
M1<MEvrH MHT A rpnti) < ML
aoJ/ a1l anl an+1l 7
v
e R
_—

2.3 Topology on the final coalgebra

From now on, we shall assume that H is an w®-continuous endofunctor
which admits a lifting to Alg(M). Remember that all H"1 were considered
with the discrete topology. Endow also all M H"1 with the discrete topology
(intuitively, this corresponds to the fact that operations between algebras
with discrete topology are automatically continuous) and M L with the initial
topology coming from the cone Mp, : ML — MH"1 (which is the same

as the initial topology from the cone ML Mo pppmg H"1, as a, are
continuous maps betbween discrete spaces).

Proposition 2.4 Under the above assumptions, the final H-coalgebra inherits
a structure of a topological M-algebra®, i.e. L has a M-algebra structure

2 Usually the notion of a topological algebra refers to algebra for some finitary, algebraic
theory equipped with topologies on the underlying set, so that the algebra operations are

52

BaLAN, KURZ

v : ML — L such that v is continuous with respect to the topologies on L
and M L.

Proof. By definition of the initial topology, 7 is continuous if and only if all
compositions 7y o p,, are continuous. But vy op, = a, o Mp,, a, are continuous

as maps between discrete sets and Mp,, are continuous by the initial topology
on ML. O

Notice that this result relies heavily on the construction of the final coal-
gebra as the limit of the sequence (2.1). Without it, we could not obtain this
just by assuming that H has a final coalgebra and H has a lifting to Alg(M),
as there is no obvious choice for the topology on M L. Also it can be inter-
preted as saying that all operations on L are continuous (as they are obtained
as limits of operations on discrete algebras).

Remark 2.5 Instead of an w’-continuous endofunctor, we could use a fini-
tary one. It is known [20] that the final coalgebra exists, but the previous limit
yields only a weakly final coalgebra. From this, a supplementary construction
gives the final coalgebra. Obviously, the final coalgebra has an M-algebra
structure as in (2.6). Following Worrell’s construction [20], the terminal se-
quence would still induce a topology on L, and the easiest way would be to
take on M L the initial topology with respect to v, but this is not the same as
the construction pursued here (the topology on M L comes from the terminal
sequence).

2.4 Initial H-algebra and final H-coalgebra in Alg(M)

If H preserves colimits of w-sequences, then its initial algebra is easy to
build: recall that Alg(M) has an initial object, namely the free algebra on
the empty set, M0. In order to simplify the notation, we shall identify all
algebras H"F' MQ with their underlying sets H"M0. Then it is well-known
that the initial H-algebra is the colimit in Alg(M) of the chain

! H! Hn
MO — HMO0 — ... — H"M0 — ...

where ! : M0 — H MO is the unique algebra map. Denote by i,, : H"M0 —
I the colimiting cocone. We do not detail anymore this construction as we
did for coalgebras as it will not be used in the sequel. However, we shall need
the following (which does not require H to be continuous, just the existence
in Alg(M) of limit lim "1 and colimH"MO0): it exists a unique M-algebra

continuous [10]. As Eilenberg-Moore algebras for a Set-monad are the same as algebras for
(not necessarily) finitary algebraic theories [1], we find that the term topological algebra
characterizes the best the present situation.

53

BaLAN, KURZ
morphism f : I — L such that

HPMO “ T
H"S\l/ \l/f (28)
H"l &~ L

commutes for all n (see for example [3], Lemma IL.5 for a proof), where s :
MO — 1 is the unique algebra map from the initial to the final M-algebra.
Assume MO0 not empty, then [will also be not empty, as it comes with a
cocone of algebra maps with not empty domains.

We shall generalize in this section the result of Barr [5] from Set to
Alg(M), for the special case of Alg(M)-endofunctors arising as liftings of
Set-endofunctors. The proofs use similar ideas to the ones in [5] and [3].

We shall assume that there is an algebra map

j:1— MO (2.9)

As MO is initial, j o s = Id. By finality of 1 in Alg(M), so j = Id, hence we
may identify MO0 and 1 as the zero object in the category of algebras.

Remark 2.6 There is a large class of monads satisfying this condition: the
list monad (and the commutative monoid-group-semi-ring monad), the (finite)
power-set monad, the maybe monad, the k-modules monad for a semi-ring k.
For all these, the free algebra with empty generators is built on the singleton.
But there are also monads for which the free algebra on the empty set has
more than one element, as the exception monad or the families monad, or it
is empty, as is the case for the monad M X = X x I, for M a monoid. It
is still under work whether the results of the present paper hold under this
weakened assumption.

We have ! : 1 = M0 — HMO = H1 and to! = Id in Alg(M). Hence in
the final sequence (2.1) all morphisms are split algebra maps, the colimit is
the initial H-algebra and the limit is the final H (and H)-coalgebra:

t H™t
IS HIS..SH' S HMY s . (2.10)
! H™!

Theorem 2.7 Let H a Set-endofunctor wP-continuous, M a monad on Set
such that:

(i) H admits a lifting H to Alg(M) which is w-cocontinuous;
(i) MO =1 in Alg(M);

then the final H-coalgebra is the completion of the initial H- algebra under a
suitable (ultra)metric.

o4

BaLAN, KURZ

Proof. Consider the following diagram (in Alg(M)), where all algebras in-
volved have structure map defined via the distributive law .

! H'
t Ht
I 7 L

Put on I the smallest topology such that f is continuous, where L has the
structure of a topological algebra from Proposition 2.4. This coincides with

the initial topology given by the cone [RN SNy S (3 Moreover, I becomes
a topological algebra and all 7, are continuous algebra maps, if on M1 we
take the topology induced by the map Mf : MI — ML. In particular,

M f is continuous. Denote by M1 5 T the algebra structure map of I.
Then fo(= vo Mf (remember that f is an algebra map). As L is a
topological M-algebra, it follows that fo(is continuous, hence (is continuous
by construction. About i,: these are by construction algebra maps (as the
components of the colimiting cocone in Alg(M)) and also continuous, as H"1
are discrete. The only remaining thing we need to prove is the density of
I (more precisely, of Imf) in L. We start by applying Barr’s argument to
show that L is complete under this ultrametric. First, use that limits in
Alg(M) are computed as in Set to conclude that L is Cauchy complete: take
a Cauchy sequence z(™ in L in the initial topology (ultrametric) and assume
d(x™ x(m)) < 27min(mn) for all m, n. This implies p, f(x™) = p,, f (™)) for
all n < m. Thus y = (puf(2™)),>0 defines an element of L and limz(™ = y
with respect to the ultrametric on L. Next, a similar construction to the
one in [4] will show us that the image of I under the algebra morphism f is
dense in L. For this purpose, consider the additional M-algebra sequence of
morphisms (hy,)n>0, given by

h o L2 g™ = Ho Mo 2 gty o L g

We have p,, 1 0 h, = H"! o p,. Consider now an element x € L. Then
by construction (y™ = h,(z)),>o form a sequence of elements lying in the
image of f and we shall see that this sequence is convergent to x. Indeed,
from p,41(y™) = H™ o p,() it follows that

Pu(y™) = H" ot op,i1(y™) = H" ot o H" o p,(z) = p,(z)

the n-th projection of the n-th term of the sequence (y™), >0 coinciding with
the n-th projection of the element z; hence d(y™,x) < 27" which obviously
implies convergence, limy™ = z in L. Therefore the image of I through the
canonical colimit—limit arrow is dense in L. O

95

BaLAN, KURZ

Remark 2.8 (i) If we consider on the initial algebra I the final topology
coming from the w-chain, this is exactly the discrete topology (and met-
ric), since all H"1 are discrete, hence I would be Cauchy complete and
f I — L automatically continuous. No interesting information between
I and L can be obtained in this situation.

(ii) From (2.9) and (2.8) we have p, o f o4, = Id, hence f o1, is a monomor-
phism. But all morphism in the above sequence are split algebra maps by
(2.10), hence all H™! are mono’s. Recall now from [3] that in any locally
finitely presentable category,

e the cocone to the colimit of an w-chain formed by monomorphisms is a
monomorphism and

e for every cocone to the chain formed by monomorphisms, the unique
map from the colimit is again a monomorphism.

If we assume M finitary, its Eilenberg-Moore category of algebras would

be locally finitely presentable. Hence the algebra map f would be mono.

But M is a monad on Set, hence it is regular. It follows that we can

identify I with a subalgebra of L. The algebra isomorphism ¢ : I ~ I'mf

would also be a homeomorphism, if we take on I'm f the induced topology

from L D Imf.

(iif) The w-cocontinuity of H is automatically satisfied if we assume M, H
to be finitary. For, the monad being finitary, the forgetful functor UM
would preserve and reflect sifted colimits. But UMH = HUM, hence H
commutes with sifted colimits, in particular with colimits of w-chains.

Example 2.9 Consider k a semi-ring and M the monad that it induces (as
n [12], Section VI.4, Ex. 2, where the ring R is replaced by the semi-ring k),
then Alg(M) is the category of k-modules and MO is the zero module. Take
the Set-endofunctor HX =k x X, where A is a finite set. Then it is easy to
see that a lifting of H exists and it is given by the same formula, where this
time the product and the power are computed in the category of modules. The
final H-coalgebra is the power k" (the formal power series in noncommuting
A variables), while the initial H-algebra is the direct sum of A* copies of
k (the polynomial algebra in same variables) (recall that in this case, finite
products and coproducts coincide in Alg(M). The approximants of order
n in the corresponding w-sequence are H"1 = k!T4+++4" the polynomials
in (non-commuting) A-variables of degree at most n). We shall detail this
for the easiest case, where A is the singleton {t}; the distance between two
elements of the final coalgebra k[[t]], i.e. between two power series f(t), g(t)
in variable ¢, is given precisely by 277 4/()=91) "where ord(f(t) — g(t)) is the
order of the difference f(t) — g(t) (the smallest power of ¢ which occurs with a
nonzero coefficient in the difference). Take a Cauchy sequence of polynomials
fu(t) = ag + aft + ..., where only finitely many a} are nonzero, for each

56

BaLAN, KURZ

n,j € N. For every r > 0, there exists an n, such that for every n > n,, we
have ord(f,(t) — fn,(t)) = r; this implies a} = a}" for all j <7 and n > n,.
Let f(t) = ag® + ai't + One immediately verifies that the power series
f(t) is the limit of of the sequence (f,,(t))n>0. Hence the final coalgebra k|[t]]
is indeed the completion of the initial H-algebra k[t].

3 An application: M-commuting pairs of endofunctors

Consider an endofunctor H and a monad M, both on Set. There are two
ways of relating the endofunctor to the monad by a natural transformation,
as follows:

* A\: MH — HM satistying (2.5), which is the same as an algebra lift (see
2.4) H: Alg(M) — Alg(M), UMH = HUM);

e or¢: HM — M H satisfying

H-UYHM HM2 - MHM > p2g (3.1)
m \LC Hml lmH
MH HM J MH

It is well known that this is equivalent to the existence of a Kleisli lift, i.e. an
endofunctor H : KI(M) — K L(M) such that HFy = FayH, where Fyp -
Set — KI1(M) is the canonical functor to the Kleisli category of the monad.
In this case, we can perform the following additional construction: denote
by Z : KI(M) — Alg(M) the comparison functor. Take the Alg(M)-
endofunctor given by the left Kan extension along Z (which exists since
every algebra in Alg(M) arises as a coequaliser of free algebras in a canonical

way):
H = Lanz(ZH) (3.2)

As the Kleisli category KI(M) is isomorphic to a full subcategory of
Alg(M), this would yield a natural isomorphism ZH = HZ. Composing
this with the functor Fyg, we obtain HFM = FM[H as in the diagram
below:

Alg(M) = Alg(M) (3.3)
™ KZ(TM)LKZ(TM) ™
SL T Set

27

BaLAN, KURZ

With the above notations, consider now two Set-functors 7', H such that
exist both a lifting of H and a Kleisli lift of 7', and H = T'. Then we have

MT = UMpMT = yMTFM
>~ MM — gUMEM — g M

i.e. M acts like a switch (up to isomorphism) between the endofunctors 7" and

H.

Definition 3.1 Let (M, m,u) be a monad on Set. A pair of Set-endofunctors
(T, H) such that HM = T'M is called an M-commuting pair.

Notice also that H = T implies
HFM = TFM >~ pMp

hence HM = MT is an isomorphism of M-algebras:

MHMX 22 garzx I gy x (3.4)
=Mix Six
M2TX R MTX

Here we have used the distributivity law A : MH — HM to obtain the
algebra structure on HM X, for any set X.

Conversely, if (T, H) is an M-commuting pair, one may wonder about their
relation with the category of M-algebras. Suppose H has an algebra lifting
H, T has a Kleisli lift and (3.4) holds; then from HM = MT and

HM = HUMFM — M pM
MT = UMFMT o~ M7 M

it follows that UMHFM =~ UMTFM that is, the images of H and T on free
algebras share (up to bijection) same underlying sets. Taking into account that
HM = MT is an isomorphism of M-algebras (3.4), we obtain that H = T
on free algebras. Assume now that M, T and H are finitary. Then, by
construction, T is determined by its action on finitely generated free algebras,
and so is H (because it preserves sifted colimits by Remark 2.8(iii)). It follows
H~T.
We have obtained thus

Proposition 3.2 Let H, T two endofunctors on Set and M a monad on Set.
Assume that H has an algebra lift H and T has a Kleisli lift with respect to

the monad M. Denote by T the corresponding left Kan extension, as in (3.2).
Then:

o8

BaLAN, KURZ

(i) If H = T, then (T, H) form an M-commuting pair and HM = MT is
an algebra isomorphism.

(ii) Conversely, if M,H,T are finitary and MT = HDM as algebras, then
H~=T.

Example 3.3 Take TX = 1+ Ax X, with A finite and M any monad. Then a

Kleisli lifting of T" exists, namely for each map X —/ MY, take T X L mry
to be the composite

TX =14+ Ax X "™ 140 Ax My —
I+ MAXY) — M1+ M(AXY)— M(1+AXY)

where the map 1+ Ax MY — 1+ M(A xY) is obtained from the canonical
strength of the monad, while 1 + M(A X Y) — M1+ M(A x Y) uses the
unit of the monad and M1+ M(A xY) — M(1 + A xY) comes from
the coproduct property. Also, it is easy to see that the extension of T to
Me-algebras is TX = FM1 + A . X, for each algebra X, where this time the
coproduct (respectively the copower) is computed in Alg(M). If the category
of M-algebras has finite biproducts (as in the case of the monad induced by
a semi-ring as in Example 2.9), then T is the lifting to Alg(M) of the Set-
endofunctor HX = M1 x X*. Hence (T, H) form a commuting pair.

Corollary 3.4 Assume the assumptions of Proposition 3.2(ii) hold. If H is
w-continuous and M0 = 1 as M-algebras, then the final H-coalgebra is the
completion of the free M-algebra built on the initial T-algebra under a suitable
metric.

Proof. Follows from Theorem 2.7, by noticing that the M-image of the initial
T-algebra (which exists as 7' is finitary, hence w-cocontinuous) is the initial
T-algebra (by construction, T is finitary, so w-cocontinuous), while H and H
share same final coalgebra. O

Example 3.5 We come back to the case where the monad is induced by a
semi-ring k, as in Example 2.9. Then the initial T-algebra is A*, the monoid
of all words (including the empty one) built from the alphabet A, i.e. all finite
sets of inputs. The free M-algebra built on A* is the direct sum of A* copies
of k, that is, the polynomial k-algebra in uncommuting variables k[A] (in the
category of k-semimodules), while the final H-coalgebra is the power k", the
noncommutative power series k-algebra.

However, the situation described until now in this Section has some deficits:

¢ For two endofunctors 7" and H, find the appropriate monad such that (7, H)
form a commuting pair. As there is a special bond between algebras of T

29

BaLAN, KURZ

and coalgebras of H, it is expected that the general case of any two finitary
endofunctors would have no solution.

If (T, H) is an M-commuting pair, find both distributive laws between H

and M, respectively between M and T'. For the second one, there is the

following suitable situation: for all commutative monads M and all ana-

lytic functors T', a distributive law TM — MT can be constructed [13].

However, lifting to Eilenberg-Moore category seems to be more problematic,

even for simplest cases of polynomial functors, as follows:

- if H is a constant functor, then the image of H (the set) must be the
carrier of an M-algebra;

- if HX = A x X, and A is the carrier of an algebra, a lift is easily seen to
exist, as the forgetful functor UM preserve products. Conversely, if H is
a lifting of H, then there is an algebra structure on A, namely H (1).

- if HX = X", a power functor, then the lifting exists as the forgetful
functor UM preserves limits;

i HX = A+ X or HX = X + X, there is no obvious distributive law
AN MH — HM.

Assume that M is a commutative monad, then a tensor product ® can be de-
fined on Alg(M) such that the free functor FM : (Set, +) — (Alg(M), ®)
is strong monoidal [8]. If T contains binary products, as T} X = A x X or
T, X = X x X, an obvious choice of Kleisli lift would give T1 X = FMA® X,
respectively 75X = X ® X, where this time X € Alg(M). Now recall
that the tensor product on Alg(M) is obtained as a reflexive coequal-
izer, hence if we assume the monad not only commutative but also fini-
tary (as all results in this section rely on the finitariness of M), it follows
that the forgetful functor would transform the tensor of any two algebras
(X,z : MX — X),(Y,y : MY — Y) into the reflexive coequalizer
(computed this time in Set) of the maps

M(zxy)
M(MX x MY) = M(X xY)

mx xy oM p2

where s : MX x MY — M(X x Y) is the monoidal structure of the
monad. In particular, for either one of the endofunctors T'="T,, T' =T, a
corresponding commuting pair (7', H) exists and can be constructed by the
above argument. Moreover such an H is finitary by construction. If H is
also wP-continuous and M0 = 1 as algebras, then by Corollary 3.4 the final
H-coalgebra is the singleton (as the initial algebras for both T3, T5 are the
empty set).

60

BaLAN, KURZ

4 Conclusions

The general picture behind Barr’s theorem is conceptually simpler: if one
starts with an arbitrary category C (with initial object, final object and w-
(co)limits) and a C-endofunctor, then the theorem roughly says that the w-
limit of the terminal sequence is a completion of the w-colimit of the initial
sequence. Of course an appropriate notion of completion is required; it could
be of topological nature (as in [5]), or about ordered structures [3].

Currently we restrict to monads for which the free algebra on the empty
set is the singleton. However, dropping this assumption would add more
requirements on the endofunctor. Another aspect that we intend to consider is
working with accessible Set-endofunctors. About the second part of the paper,
the notion of a commuting pair of endofunctors with respect to a monad seems
to be new, but a more detailed analysis and examples are necessary in order
to better understand this structure. We plan to do this in a future paper.

References

[1] Addmek J., H. Herrlich and G.-E. Strecker, ” Abstract and Concrete Categories”, John Wiley
& Sons, 1990.

[2] Addmek, J. and J. Rosicky, On sifted colimits and generalized varieties, Theory Appl. Categ.
8 (2001), 33-53.

[3] Addmek, J., Final coalgebras are ideal completions of initial algebras, J. Log. Comput. 12
(2002), 217-242.

[4] Addmek, J., On final coalgebras of continuous functors, Theor. Comput. Sci. 294 (2003), 3-29.

[5] Barr, M., Terminal coalgebras in well-founded set theory, Theor. Comput. Sci. 114 (1993),
299-315.

[6] Corradini A., M. GroBe-Rhode and R. Heckel, Structured transition system as lax coalgebras.
In ”Coalgebraic methods in computer science CMCS’98”, Electr. Notes Theor. Computer Sci.
11 (1998), 22-41.

[7] Hasuo I., B. Jacobs and A. Sokolova, Generic trace theory. In ”Coalgebraic methods in
computer science CMCS’06”, Electr. Notes Theor. Computer Sci. 164 (2006), 47-65.

[8] Jacobs, B., Semantics of weakening and contraction, Ann. Pure Appl. Logic 69 (1994), 73-106.

[9] Johnstone, P. T., Adjoint lifting theorems for categories of algebras, Bull. London Math. Soc.
79 (1975), 294-297.

[10] Johnstone, P. T., ”Stone spaces”, Cambridge Univ. Press, Cambridge, 1982.

[11] Linton, F.E.J., Coequalizers in categories of algebras. In ”Seminar on Triples and Categorical
Homology Theory”, LNM 80, Springer Verlag, 1969, 75-90.

[12] Mac Lane, S., ” Categories for the working mathematician”, 2nd Ed., GTM 5, Springer Verlag,
New York, 1998.

[13] Milius, St., Th. Palm and D. Schwencke, Complete Iterativity for Algebras with Effects. In
” Algebra and Coalgebra in Computer Science”, LNCS 5728, Springer Verlag, 2009, 34-48.

[14] Moss, L., A Note on Expressive Coalgebraic Logics for Finitary Set Functors, J. of Logic and
Comput. Adv. Acc. 2008.

61

BaLAN, KURZ

[15] Rutten J., Automata and coinduction - an ezercise in coalgebra. In ?CONCUR’98”, LNCS
1466, Springer Verlag, 1998, 194-218.

[16] Rutten J., Behavioural differential equations: A coinductive calculus of streams, automata, and
power series, Report SEN-R0023, CWI, Amsterdam, 2000.

[17] Rutten J., Coinductive counting with weighted automata, J. Autom. Lang. Comb. 8 (2003),
319-352.

[18] Schaefer H. H., ” Topological vector spaces”, GTM 3, Springer Verlag, 1971.
[19] Turi D. and G. Plotkin, Towards a mathematical operational semantics. In "LICS’97”, 1997.

[20] Worrell, J., On the final sequence of a finitary set functor, Theor. Comput. Sci. 338 (2005),
184-199.

62

CMCS 2010

Families of symmetries as efficient models of
resource binding

Vincenzo Ciancia'

Institute for Logic, Language and Computation - Amsterdam (NL)

Alexander Kurz?

University of Leicester (UK)

Ugo Montanari®

Universita di Pisa (IT)

Abstract

Calculi that feature resource-allocating constructs (e.g. the pi-calculus or the fusion calculus)
require special kinds of models. The best-known ones are presheaves and nominal sets. But named
sets have the advantage of being finite in a wide range of cases where the other two are infinite.
The three models are equivalent. Finiteness of named sets is strictly related to the notion of
finite support in nominal sets and the corresponding presheaves. We show that named sets are
generalisd by the categorical model of families, that is, free coproduct completions, indexed by
symmetries, and explain how locality of interfaces gives good computational properties to families.
We generalise previous equivalence results by introducing a notion of minimal support in presheaf
categories indexed over small categories of monos. Functors and categories of coalgebras may be
defined over families. We show that the final coalgebra has the greatest possible symmetry up-to
bisimilarity, which can be computed by iteration along the terminal sequence, thanks to finiteness
of the representation.

Keywords: Presheaves, Families, Named Sets, History-dependent Automata, Coalgebras,
Symmetry Reduction, Partition Refinement

! Research supported by the Comunidad de Madrid program PROMESAS (S-
0505/TIC/0407), and by the VICI grant 639.073.501 of the Netherlands Organization for
Scientific Research (NWO)
2 Research partially supported by EPSRC EP/G041296/1
3 Research partially supported by the EU FP6-IST IP 16004 project SENSORIA

This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

CiaNcCIA, KURZ AND MONTANARI

1 Introduction

Full abstraction and nominal calculi. One of the greatest concerns in
programming language semantics is to find fully abstract models, where all the
semantically equivalent programs are identified. A difficult question is how to
do this for the so-called interactive systems, where the focus is not the final
result of the computation, but rather on the interactions with the environment
along the possibly non-terminating behaviour of a system. For languages such
as the CC'S [35] or the 7m-calculus [36], the operational semantics is expressed
in terms of labelled transition systems (LTS), and the fully abstract model is
the quotient of all the possbile systems with respect to bisimilarity.

Calculi with resource allocation mechanisms (the so called nominal cal-
culi) typically have a notion of bisimulation that does not coincide with the
standard one over LT'S. Thus, standard definitions and algorithms can not
be reused. This is solved by resorting to presheaf categories, that is, cate-
gories of functors from a small category C to Set (see [23,10,9,24,34,33], and
the foundational work by Moggi [37]), or to nominal sets [25] as done in [38].
Presheaves handle names, and in general resources, as having a global meaning
across all possible processes. Thus, each freshly generated name must be dif-
ferent from all the previous ones, giving rise to infinite states in the presence of
loops. Therefore, the operational semantics of a calculus typically has infinite
states even for very simple processes, making it difficult to compute the ab-
stract semantics, or to implement finite state methods, such as minimisation,
equivalence checking or model checking.

Named sets. In the parallel research line of named sets [40,41], these dif-
ficulties were overcome using local names; in this case, establishing a binding
between names of elements is necessary whenever two elements are related.
This machinery allows one to reuse previously generated names that have been
discarded. In [41], many formalisms (e.g. Petri nets and process calculi) have
been mapped into named sets in a fully abstract way. The most important
finding here is that modelling the symmetry group of each agent is necessary
to have a unique abstract model of the m-calculus, leading to [20,43,21], where
a coalgebraic minimsation (partition refinement) algorithm for the 7-calculus
has been implemented, based on history-dependent automata, that is, coalge-
bras in the category of named sets. The importance of modelling symmetries
is recognised both in the theory of programming language semantics [45] and
in practical applications such as model checking [18]. Due to well known re-
sults of group theory (in particular Lagrange’s theorem, see e.g. [17], §3.3),
finite groups have an efficient representation in terms of generators, which is
logarithmic with respect to the size of the group. Moreover, many operations
on groups can be computed on the compressed representation [32].

The categorical equivalence between nominal sets, named sets and the

64

CiaNcCIA, KURZ AND MONTANARI

pullback-preserving full subcategory? of Set!, called the Schanuel topos, has
been established in [27,22]. In [12,13], a number of ad-hoc constructions on
named sets used for the m-calculus are turned into categorical notions such as
products, coproducts, the power set and name abstraction, thus allowing one
to reuse the same machinery to represent the semantics of other calculi with
names.

Our contribution. An advantage of presheaf categories is the flexibility
that can be obtained by varying the index category C, giving rise more complex
structures than pure names (see e.g. [28], or [3]). This flexibility is lost when
using named sets, since the index category is fixed to be I. First, in §2 we
introduce families as concrete representation of free coproduct completions.
Our contribution starts in §3 observing that named sets with symmetries are
generalised by the categorical model of families over a category of groups
of automorphisms and related morphisms, that we call Sym(C). This model
is equivalent in the categorical sense to a full subcategory of Set®, namely
coproducts of symmetrised representables, that is, representables quotiented
by composition with groups of automorphisms. Presheaves are represented by
families as sets of elements that have an attached symmetry on their available
local interfaces.

In a sense, this already generalises the equivalence results of [27,22]. How-
ever, the exact characterisation of which presheaves are (isomorphic to) co-
products of symmetrised representables is a difficult problem. Perhaps the
most important topic in [25] is the notion of finite support, which generalises
the notion of free variables in terms. The support is in turn the key ingredient
to define named sets and the categorical equivalence between the two. In §4
we introduce a general notion of support in presheaf categories. Exploiting
this definition, we show that the equivalence result of [27,22] can be extended
to presheaves indexed by small categories, respecting three conditions: the
index category has wide pullbacks, and the presheaves preserve them; the in-
dex category is made up of monos; all the arrows of the index category from
an object to itself are isomorphisms. A non-trivial example respecting these
conditions is the category E of finite equivalence relations and injective maps
between their underlying sets, used in [3,4] to represent explicit fusions of
names in process calculi.

Presheaves and families have a very different nature. We refer to this
as locality of interfaces. In §5 we give a mathematical explanation of this
property, which is reflected in the product construction. The product is just
computed point-wise in presheaves, while it involves a mapping of the local
interfaces of each involved element into a greater one, in the case of families.
This corresponds to two radically different, though equivalent, views on how

4 Here I is the category of finite subsets of the natural numbers and injections between
them.

65

CiaNcCIA, KURZ AND MONTANARI

systems with interfaces may be related: either assuming a naming authority
giving a global meaning to each available resource, or relying on locally scoped
links that connect the different systems.

In §6, we show how to compute the behavioural symmetry of an element of
a coalgebra, that is, the greatest group of isomorphisms that leave an element
bisimilar to itself. We remark that §5 and §6 do not depend on the conditions
of §4, but rather they are in the general framework of §3.

Related work. To the best of our knowledge, the study of families for an
efficient representation of the semantics of programming languages, and the
interpretation of their properties as a theory of locality of interfaces, are new
and have never been investigated before. Coproducts of symmetrised repre-
sentables are also interesting as a generalisation of the analytic functors of
Joyal [30]. This is shown by Addmek and Velebil [2] for the case of locally
presentable index categories. That research line is different in scope and aim
from this work: there, a characterisation of the morphisms between analytic
functors (the regular natural transformations of [30]) would be desirable, but
it is still an open problem. Instead, in §4 we develop an equivalence of cate-
gories, characterising all the natural trasformations of the subcategory by the
means of morphisms of families. Moreover, the conditions of [2] to characterise
coproducts of symmetrised representables and ours do not imply each other,
and there are examples of categories, relevant for our purposes, that only fall
under our conditions (see §4).

2 Background

Here we introduce the basic notions related to the family construction Fam(C),
which is a representation of the free coproduct completion of C.

Remark 2.1 (notational conventions). For C a category, we denote with |C|
its objects, with C(n,m) the set of arrows from n to m. We extend some
categorical notations to sets of arrows. Let F' C C(n,m) be a set; we define
dom(F) = n and cod(F) = m. When F and G are two such sets, with
dom(F) = cod(G), f : cod(G) — m/, and g : m" — dom(F), we define
foG={fog|lgeG}, Fog={fog|feF},and FoG={fog]|[E¢€
F,g € G}. As a notation for the elements of the coproduct [] . P, in Set,
we use the set of pairs {(x,p) | x € S,p € P,}. The copairing of a tuple of
arrows f;er is denoted with]_[Z.e ; fi- We often omit the parenthesis in function
and functor application, e.g. we write Ffx to denote the action of the functor
F : C — Set on the arrow f, applied to the element x. With pullbacks we
actually refer to wide, but small, pullbacks, that is, limits of small diagrams
made up of an arbitrary number of arrows into the same object.

A direct description of the free coproduct completion of a category C is

66

CiaNcCIA, KURZ AND MONTANARI

obtained by the family construction, defined as follows.

Definition 2.2 Given a small category C, objects of the category Fam(C) are
families of objects of C, that is, coproducts [, ,{n;} of singletons in Set,
where [is a set, and, for each i € I, n; € |C|. An arrow from [[,.,{n;} to
[T;c Am;} is a tuple (f, Hie]{'}’-[f}>, where f : I — J and, for each i € I,

H ng — My ().

A family is a set I, where each i € I has an associated C-object n;. The
set I may represent, for example, the set of states of a system. The object
n; represents the interface of the state i. For example, n; can be a set of
names, a network topology, or any other possible feature associated to the
states of a process calculus. Each arrow is a function f between two sets
I and J, and for each i € I there is a map #! from the interface of i to
that of f(7). This reflects the idea that interfaces are local to each element,
therefore to properly define a function between such elements, one also has
to specify how the interfaces of destination and source elements are related.
When we use families to represent presheaves these maps go in the other
direction, that is, from the destination to the source. Looking at the above
definition, this does not make a big difference, as one can just consider the
category Fam(C?) to get these “backwards” arrows, as we shall do in the
following. A real-world example of local interfaces which can help the intuition
is the injective relabelling of memory locations that may happen after an
invocation of the garbage collector in a garbage-collected language. System
states in this case have an associated memory layout (its “interface” in our
terminology), that may change at each step of the execution. The relabelling
is the “backward” arrow that we mention, mapping the memory layout of the
destination into that of the source, thus tracking the history of variables and
their memory locations along the computation. The coproducts in Fam(C) are
freely generated, and described as follows.

Definition 2.3 The coproduct in Fam(C) of two objects [[;;{ni} and [[, ;{m;}
is defined as [[, ., ;{ox}, where o, = n; if k = (I,4), and o, = m; if k = (J, j).

3 Families of symmetries

In this section we introduce a condition on presheaves in Set®, namely being
coproducts of symmetrised representables. The terminology is borrowed from
[2]. In the rest of the paper we will discuss the good computational prop-
erties of such a representation, and introduce a representability criterion for
presheaves over index categories of monos.

67

CiaNcCIA, KURZ AND MONTANARI

3.1 The category Sym(C)

First, given a small category C, we define a category of groups of automor-
phisms, and morphisms between them, that we call Sym(C).

Definition 3.1 We define the (small) category Sym(C) of symmetries over C:

|Sym(C)| = H {® CC(n,n) | ®is a group w.r.t. composition}
ne|C|
Sym(C)(®y, Do) = {ho Py | h € C(dom(Py), dom(Py)) AN Pyoh C hody}

The identity of each object is ide = idgom(@) 0 ® = ®; the composition of
f1 :hloq)l and fQ :hgoq)g is defined as fQOfl :hgohlofbl.

An object of Sym(C) is just denoted by the group ®, omitting the index
n of the coproduct that is recovered as dom(®), the common domain of all
the automorphisms in ®. Arrows of the category are sets of arrows from
C, obtained by composition of a group of isomorphisms with a single arrow.
Notice that the composition symbol on the left hand side of the last equation
is the composition in Sym(C) which is being defined, while the composition on
the right is composition of sets of arrows, as from Remark 2.1. However the
following lemma ensures that the two possible interpretations coincide. This
is a consequence of the condition ®5 0 h C h o ¢4.

Lemma 3.2 Consider two Sym(C) arrows hy o ®y : &5 — P3 and hy o Oy :
(I)l — (I)g. It holds that (h,gohl) Oq)l = {hQOgozohl 0 Y1 ‘ Y2 c (1)2/\S01 S (I)l}

Finally we note that C has a full embedding into Sym(C).

Definition 3.3 The embedding J : C — Sym(C) is defined on objects as J(n) =
{id,} and on arrows as J(f) = {f}.

3.2 Coproducts of symmetrised representables as families

Throughout the paper, we let C denote a small category. We recall that the
(covariant) hom functor C(n, —) : C — Set, for n an object of C, acts on each
object m as C(n,m), and on each arrow f : m; — my as C(n, f)(g : n —
my) = fog:n— ma. A representable presheaf in Set® is a functor which is
isomorphic to C(n, —), for n an object of C.

Definition 3.4 Let ® be an object of Sym(C) with domain n. We call a
symmetrised representable C(n, —) ¢ a representable quotiented by the indexed
relation g1 =,,, go <= dp € ®.g1 = g2 0 p, for g1,92 : 1 — m.

The equivalence classes of such a quotient at each index m are conve-
niently described as the composition of each possible arrow with ®, that is
(C(n, —=)/o)m ={ho® | h:n — m}. Hereafter we assume that symmetrised

68

CiaNcCIA, KURZ AND MONTANARI

representables are in this form. Notice that any f o ® is an arrow of Sym(C),
which gives rise to the representation we propose. For convenience we also
state what is the action of symmetrised representables on arrows of C, namely
(C(n,—)/0)f(ho®) = foho.

Among the presheaves in Set®, some of them are isomorphic to a coprod-
uct of symmetrised representables, giving rise to a full subcategory of SetC.
This subcategory is equivalent to Fam(Sym(C)°?). In the rest of the paper we
shall advocate that a representation using families is appealing for computer
science applications. First of all, even though the proof of equivalence is eas-
ily understood, we make it precise by the means of the following well-known
proposition (see [8], Lemma 42), also used in [42], to prove the equivalence
between named sets and the Schanuel topos.

Proposition 3.5 Let D' be a locally small category having small coproducts,
and D a small category. A functor F : D — D' can be extended to an equivalence
from Fam(D) to D' if it satisfies the following conditions: F is an embedding (it
is injective on objects and morphisms); objects in the image of F are indecom-
posable (for each n in |D|, the hom functor D'(Fn,—) preserves coproducts);
every object of D' is a coproduct of objects in the image of F.

Here we instantiate the theorem with D = Sym(C) and D’ the subcategory
of coproducts of symmetrised representables in Set®. First, recall that if C is
small, the functor category Set® is locally small and has coproducts (defined
pointwise), hence Prop. 3.5 is applicable. We now exhibit a functor F :
Sym(C)?” — Set®.

Definition 3.6 The functor F acts on objects as F® = C(dom(®), —)¢. F acts
on each arrow ho®; : $ — &4 of Sym(C)° returning a natural transformation,
defined at each index n as (F(h o ®1)),(h' o ®3) = h' o ho ®;.

Next, we show that F respects the first and second conditions of Prop. 3.5.
The third condition is satisfied by construction, when restricting the codomain
of F to symmetrised representables.

Proposition 3.7 F is a functor, and in particular an embedding, i.e. injec-
tive on objects and morphisms. For each object ® : Sym(C), F® is indecompos-
able, that is, the homset functor Set®(F®, —) preserves coproducts.

As Set® has coproducts, F extends to a functor from Fam(Sym(C)?) to Set®.

Definition 3.8 The functor Presh : Fam(Sym(C)??) — Set® maps an object
[Tic,{®:} into [];., F®; and an arrow (f, Hzel{%{}> e AP} — Hjej{q);'}
into the natural transformation [[, ;(¢5¢) oFH!), where ¢ 1) denotes the f (i)™
injection of the coproduct ;. ; F®/.

By definition, each presheaf in the image of Presh is a coproduct of sym-

69

CiaNcCIA, KURZ AND MONTANARI

metrised representables. The functor is full and faitful, and becomes one
direction of a categorical equivalence when its codomain is restricted to its
image.

The other direction is given by the functor K mapping coproducts of
symmetrised representables into Fam(Sym(C)°?). The action on objects is
rather trivial. Given P = [, , C(dom(®;), —)/s,, we have KP = [[,. {®;}.
The action on arrows is more interesting: let Q@ = [[,c; C(dom(®;), —)/a;,
and g : P — @ be a natural transformation. We define the morphism
between families K(g : P — P') = (f,11,c,/{H]}). For each i € I, let
Gn ({4, idgom(@,) © ®;)) = (j,h o @;). Then we let f(i) = j and 7-[{ =hod,.
The function f is well defined by indecomposability of objects in the image of
F (Prop. 3.7), in turn coming from naturality of g.

The action of K on arrows may be roughly explained by the idea of local
interfaces in families. This is better understood after having introduced the
notion of orbit and representative, which is done in §4.

4 Pullback-preservation, monos and minimal support

In this section we illustrate a characterisation of the coproducts of symmetrised
representables in categories indexed by monos, as functors that preserve all
pullbacks. We consider the finite support condition in the work by Gabbay and
Pitts on nominal syntax [26]: each system has a unique minimal “interface”.
Preservation of pullbacks means preservation of “intersection of interfaces” in
a very general sense, and makes it possible to recover a notion of support of an
element x € Pn of a presheaf P over an arbitrary category C as the minimal
index n’ where an element ' € Pn’ exists, such that Pfz’ = x for some arrow
f.

The results presented here are similar in spirit to the representation of
analytic functors as species given by Joyal [30], and therefore to [2], where
conditions similar to ours are sketched to identify the coproducts of sym-
metrised representables. We emphasize that the latter research line aims to
characterise and extend Joyal’s analytic functors and regular natural trans-
formations (the latter is still an open problem), whereas we are interested
in all natural transformations between two coproducts of symmetrised repre-
sentables. For this reason, we are able to provide an equivalence of categories.
Moreover, the index category in [2] should be locally presentable (or at least
should have an initial object, see §3 therein), thus ruling out discrete cat-
egories and coproducts of categories (hence our results and [2] are logically
independent).

The connection between representability of presheaves as families and pull-
back preservation has been studied in various works. A well known one is [7].
There, the connection between existence of connected limits, wide pullback

70

CiaNcCIA, KURZ AND MONTANARI

preservation and familial representability is explained. But there the index
category of the familial representation is still the same index category C, of
the presheaf category, and not a category of symmetries over it. Indeed the
latter provides one a bit more structure, which we then use for the symmetry
reduction procedure of §6.

The idea of representing pullback-preserving presheaves by families of sym-
metries comes from Staton [42], where it appears as a proof technique to show
that named sets and the Schanuel topos are equivalent. The technical results
that we present in this section are a direct generalisation of that work, even
though the purposes are different, since we aim to explain the computational
properties of the families model, which is done in the rest of the paper.

A wide pullback is the limit of a cocone of arbitrary cardinality (whereas
an ordinary pullback is the limit of a cocone of just two arrows). Notice that
in the special case of the Schanuel topos of [42], these diagrams are necessarily
finite, and thus wide pullbacks are determined by the binary ones. From now
on, we let Set§ denote the wide-pullback-preserving full subcategory of Set®.
Our theory can be instantiated under the following conditions.

Criterion 4.1 We assume that all the arrows of C are monic, C has (small,
wide) pullbacks, and for every object n of C, each f € C(n,n) is an isomor-
phism.

Notice that we do not require strong properties on C e.g. completeness or
cocompleteness. Some examples may clarify the applicability of the charac-
terisation.

Discrete categories: the one-object and one-arrow category 1 can be used
as an index, resulting in a degenerate instantiation of the framework that
actuall just contains sets and functions. This is correct, as Set! is Set. More
generally, discrete categories can be used, in this case the representation that
we will define is just the set of elements of each presheaf, that is, pairs (n, x)
where n is the index where x lives. This is a very natural representation of
multi-sorted sets. These two examples show that the definition works also
in these degenerate cases, giving the expected representation.

Coproducts of categories The coproducts of two non-empty categories cer-
tainly does not have an initial object and it is not complete. However, from
the programming language semantics perspective, these index categories
can be used represent calculi that feature several distinct kinds of agents,
each one having a different notion of associated interface.

Finite sets and injections: in this case, the obtained equivalence is that
between the Schanuel topos and named sets of [22,27]. The associated
categories have been used in a wide range of applications as we already
emphasized. The correspondence between families and named sets is made

71

CiaNcCIA, KURZ AND MONTANARI

clear by the categorical definitions given in [44,13]; the category Symset
defined therein is Sym(I).

Finite graphs and injections: this category can be used to model calculi
whose network structure is made explicit in the semantics (as opposed to
the m-calculus, where the network structure is left implicit in the knowl-
edge of channels by agents) and whose semantics is closed with respect to
adding links to the network. The network coordination policies calculus
(NCP) [11], has been developed by the first author et al. in the context
of formal methods for service-oriented computing. In the calculus, states
are pairs consisting of the network topology, represented as a graph, and a
policy, which is a program. Entire fresh sub-topologies can be dynamically
allocated along the transitions of the operational semantics. Even though
category theory is not used in that work, it seems clear that the semantics
can be represented using the standard presheaf approach, with finite graphs
and injections as the index category. In NCP, bisimulation is used for the
definition of conformance of the specification and the implementation, thus
the implementation of an efficient bisimulation checker (taking into account
the dynamic allocation capabilities of the framework) is of high relevance.
Therefore, the calculus will be an appealing case study for the symmetry
reduction algorithm that we sketch in this work.

Fusions: Fusions may be described by an indexing category E of equivalence
relations with monic arrows [3]. This category has pullbacks, falls into the
conditions of our framework, and it has a rich structure of objects that is
used for fusions (see also [28,34]).

4.1 The symmetric decomposition of a presheaf

We now show that under Crit. 4.1, functors in Set?> are isomorphic to co-
products of symmetrised representables, that is objects in the image of the
functor Presh. Therefore the full category Setf coincides exactly with the
subcategory of coproducts of symmetrised representables.

We pursue our goal emplying Prop. 3.5 again. F being an embedding, and
indecomposability of objects in its image are not affected by the additional
hypothesis. However, we must prove that each presheaf in the image of F is
pullback-preserving.

Theorem 4.2 For each ®, assuming Crit. 4.1, F® preserves wide pullbacks.

The rest of the section is devoted to prove the last required condition
of Prop. 3.5, that is, each pullback-preserving presheaf is a coproduct of
symmetrised representables. We recall the notion of element of a presheatf.
Hereafter, we let G denote an arbitrary functor in Setg.

Definition 4.3 The set of elements of G is defined as EI(G) =][,¢q Gn.
72

CiaNcCIA, KURZ AND MONTANARI

For readability, but without loss of generality, in the following we assume
that all the Gn are disjoint, so that we are able to denote with just = the
element (n,z) € ElI(G). When necessary, we denote the stage n of = as st(z).

Roughly, we aim to represent presheaves by quotienting all the elements
that are “reachable” from some common element by the action of arrows. To
make this formal, we introduce the notion of orbit.

Definition 4.4 Given z € EI(G), its orbit O, is the set of elements y € El(G)

such that there exist a span st(x) sy st(y) and an element z € Gs, with
Gfzz = x and Gfyz = y.

In other words, an orbit is a connected component in the category of ele-
ments. In the following, for = € EI(G), we let D* be the diagram in C consisting
of the morphisms {d : n — st(z) | Jy € G(n).Gdy = =z}, for n ranging over [C|.
Notice that, for each d, y is uniquely determined: Gd is injective because G is
pullback-preserving, hence mono-preserving.

The following lemma forms the grounds of our representation. It is perhaps
the most important property of orbits, due to pullback preservation of Setg.

Lemma 4.5 Let x and y belong to the same orbit. Let n be the pullback
object of D* and m be the pullback object of DY. There exists an isomorphism
between n amd m making n a pullback of DY.

We now define the support of an element z, which is, roughly speaking,
the smallest index where an element having the same properties of x can be
found.

Definition 4.6 Let 2© denote a choice of an element in O,. We define the
support of x, denoted with S,, as the pullback object of D(””O), and the nor-
malising arrow N : S, — st(z) as the diagonal of the pullback diagram of
D? | where we choose S, as the pullback object by Lemma 4.5.

With diagonal here we mean the composition of any arrow in D* with the
corresponding arrow making the pullback commute.

We are going to see that an object of Setg is determined (up-to isomor-
phism) just by a set of representatives = of elements, called proper elements,
and by the set of isomorphisms over the stage of each whose action leaves T
unchanged. Preservation of pullbacks plays a fundamental role here, allowing
us to prove the following lemma and to define the representative of an element.

Lemma 4.7 There exists a unique element T € GS, such that GN,T = x.

Definition 4.8 Let x € FEIl(G). We denote with = the representative of =,
that is, the element of GS, such that GN,(Z) = z. The set of proper elements
of G is defined as Pel(G) = {Z | x € EI(G)}.

73

CiaNcCIA, KURZ AND MONTANARI

In this construction, N, plays the role of a canonical arrow whose action
recovers x from its representative . The symmetry associates to each proper
element an object of Sym(C).

Definition 4.9 The symmetry of T € Pel(G) is the group of isomorphisms
Ge={p:8,— S, |Gpz =T}

Now we can define a functor from Setf to Fam(Sym(C)°?) which, together
with the functor Presh of Def. 3.8, completes the categorical equivalence.

Definition 4.10 The symmetric decomposition SymDec : Setf — Fam(Sym(C)°?)
is defined on each presheaf G and natural transformation f : G; — Gy as

sywec(@) = [{0} symdec(f) = (\ifs. (@), [Niwod s}

TEPel(G) TEPel(G1)

The action of the functor on objects just records the proper elements of G,
and their symmetry. The action on arrows is an arrow of Fam(Sym(C)°?), thus
a function between the two index sets, and a family of arrows in Sym(C)°P.
The former returns, for each representative Z, the representative of fs, (7).
The mappings associated to the arrow are the normalising arrows of every
obtained element, composed with the corresponding symmetry. Using it, one
can reconstruct fs, (Z) from its representative. A bit more intuition may be
obtained by considering the support and symmetry of an element as a local
interface of that element. The arrow A 7@ © 9 ;7= embeds the interface of

s, (@)
m into the interface of fs, (Z), which is the same of T because f is defined
pointwise. The normalising arrow is the so-called history of names along
morphisms® used in the literature on named functions, and in coalgebras it
plays a similar role to the injective relabelling of memory locations done by
garbage collectors in the implementation of programming languages.

Lemma 4.11 We have G/h} =17, and Ngpz € h o G;.

Theorem 4.12 Every presheaf G in Setg is isomorphic to Presh(SymDec(G)),
therefore Setg is equivalent to Fam(Sym(C)°?).

Remark 4.13 A great advantage of the proposed representation of presheaves
using families is to reduce the size (the number of elements) of the represented
presheaf, even getting a finite set out of an infinite one, while preserving the
categorical properties. For example, the “inclusion” presheaf Gn =n,Gf = f
in Set?, that is, the object of names in Set?, is represented by a family having
a single element ° in Fam(Sym(I)?), namely], ,{idi}. The intuitive mean-
ing of this assertion is that each natural number is not distinguishable from

5 In our case, we should call it the history of interfaces along morphisms.
6 @ is different from the final object [], {ido}, having a single element with trivial interface

74

CiaNcCIA, KURZ AND MONTANARI

any other, and has a single “name” (and trivial symmetry) as its interface.
This “finitistic” representation is the main reason why named sets and history-
dependent automata have been considered appealing for the static analysis of
nominal calculi (model checking [29], and bisimulation checking [21]).

5 Locality of interfaces: the product construction

In [44], one of the authors extended the equivalence of [27,22] to the cate-
gories of coalgebras of equivalent endofunctors, in order to give a categorical
characterisation of the various constructions that had been used in the past
for named sets (including minimisation of the 7 -calculus). Here we generalise
the results on the product of named sets presented therein.
Multi-(co)products are a specialisation of the notion of multi-(co)limit,
studied in detail by Diers [16]. It is well known (see e.g. [14], remark 5) that
Fam(C) has products whenever C has multi-products, and dually, Fam(C°?) has
products if C has multi-coproducts. Here we provide a concrete characteriza-
tion of the functor, that emphasizes the difference between global and local
interfaces. The results presented here do not rely on arrows of C being mono.

Definition 5.1 Given a diagram D consisting of a tuple of objects (ny, ..., ng),
the multi-coproduct of D is a set mep(D) of cocones over D such that for all
cocones L' = (fy :mqy — m/, ... fr : njy = m/) over D there exists a unique
cocone L = (11 :ny — my...,u 2 ng — m) € mep(D), and a unique arrow
ur : m — m’ making the diagram L U L' U uy, commute. The unique cocone
L will be denoted, with a bit of overloading, with mep(L’).

In words, the multi-coproduct of two objects P and @) is a set of canonical
cospans between them, in the sense that they are quotiented by isomorphisms
of cospans, and they are minimal.

We note that Sym(C) has multi-coproducts.

Theorem 5.2 [If C has wide pullbacks, then Sym(C) has multi-coproducts.

In the following definitions, we assume that C has multi-coproducts, that

P =1l ini}, @ = ;e {m;}, R = [exior} are three arbitrary objects of
Fam(C?), and we denote with S the set {(i, 7, (t1,02)) | i € INj € JA(11,12) €

mep((ni, m;))}.
Definition 5.3 The product of P and @) in Fam(C?) is defined as the object
PxQ= H(i,j,(Ll,L2>>€S{COd(l’1>}‘

Elements of the product P x @ are triples, formed by an element of P, an
element of (), and a (canonical) cospan relating their symmetry.

Definition 5.4 Let 7} and 7}, denote the first two projections of the ternary
product S. The projections my : P x Q — P and 7y : P X) — @) are defined

75

CiaNcCIA, KURZ AND MONTANARI

as M = <7rll7 H(i7j7<L1,L2)>eS{L1}>7 Ty = <7Téa H<i7j7(L1,L2)>eS{L2}>‘

Definition 5.5 The pairing of (f,][,c, {HL}) : R — Pand (g, | [y {HI}) :

R — Qis the arrow (h, [[, {HI}), where h(k) = (f(k), g(k), mep((HL, HI)),

h _
and Hi. = i)

Theorem 5.6 The product, projections and pairing given above identify up
to isomorphism the binary product in Fam(C).

In the above definition, mep((H, HI)) and Uzl 3oy come from Def. 5.1.
k' E

We keep on with the intuition that the index category C in Set® should be
perceived as a set of possible types, or interfaces of elements of the presheaf.
In this light, the definition of the product above gives a notion of locality of
interfaces in families, as opposed to a notion of global interfaces in presheaf
categories.

In Set® the product is defined pointwise, and two elements may be related
by just pairing them if they are in an appropriate (common) context. That
is, any two interfaces have a natural choice of an embedding into a common,
greater interface, thus their relative meaning is established once and for all.
In the case of names (that is, where the index category is I), this is the
vision adopted by the m-calculus, where the names of all the non-restricted
channels of an agent have a global, unique meaning across all participating
parallel components of a system, as if there was a naming authority assigning
a meaning to any name.

In Fam(C°?), whenever we put two elements in a relation, we have to explic-
itly establish a link between their interfaces by exhibiting them as subobjects
of a common object, acting as the interface of the obtained tuple. In the case
of names, this corresponds to having to “pull wires” among all parallel com-
ponents of a system to make explicit how they can interact. This may be the
most natural choice whenever one wants to model systems that do not have a
naming authority, such as peer-to-peer systems.

As an example, bisimilarity in Fam(C°) is made up of triples, because it
is a subobject of the product: in order to compare two systems, we need to
establish a correspondence between their local interfaces.

6 Symmetry reduction by final semantics

The presheaf approach to operational semantics roughly consists in defining
a presheaf P of terms, that is, the initial algebra of some endofunctor over
a presheaf category, and a coalgebra from P to TP for some endofunctor T,
providing the semantics of the calculus. The unique morphism into the final
coalgebra of T then gives the coinductive definition of the abstract semantics.
Here we link the symmetry of elements in Fam(Sym(C)°) with behavioural

76

CiaNcCIA, KURZ AND MONTANARI

equivalence, defined as the pullback object of a coalgebra morphism. We
note that coalgebraic bisimilarity and behavioural equivalence coincide if the
behavioural functor T preserves weak pullbacks (see [31] or [1] for details).
Given a coalgebra in Fam(Sym(C)°?), and an element 4, having symmetry &
with dom(®) = n, we explain how computing the image of i along the unique
morphism into the final coalgebra corresponds to identify the subobject of n
that is active in the semantics of i, and the greatest possible symmetry over
this object that preserves behavioural equivalence.

The interest of this result is in providing a clean framework (namely, the
equivalence between presheaves and families) for symmetry reduction of the
semantics of programming languages. Symmetry reduction is an actively re-
searched topic in computer science that consists in finding compressed repre-
sentations of systems that have a symmetry (see [15] and subsequent works,
or the more recent [19]). This is typically done exploiting equations on the
syntax of calculi, or by adding symmetry information “by hand” to models.
Our approach is very different: it allows one to compute the behavioural sym-
metry, that is, the best symmetry up-to bisimulation. This is certainly wanted
in all the cases where bisimulation is the equivalence relation of choice (e.g.
static analysis in service oriented computing and model checking of Hennessy-
Milner-like logics). Model checking can be performed efficiently in the presence
of symmetry [18].

6.1 Symmetry reduction

Remark 6.1 Equivalences extend to categories of coalgebras of suitable “equiv-
alent” endofunctors. In particular, each endofunctor T’ over the full subcat-
egory of coproducts of symmetrised representables in Set® that has a final
coalgebra has an equivalent endofunctor over Fam(Sym(C)°?) admitting a final
coalgebra, obtained (up to isomorphism) as T = SymDec o T' o Presh.

We assume in the following such a pair of equivalent endofunctors T and
T. Even if for the scope of this work the given definition of T is sufficent, it
may be necessary to have a compositional definition of T so that the elements
of T(P) are derived from those of P. In the case of the product, for example,
the definition of §5 is isomorphic to the one that we just mentioned, but not
the same. This topic has been studied in detail in [44].

We now observe that each natural transformation between coproducts of
symmetrised representables induces a symmetry on elements of its source, ex-
plicitly represented in the corresponding arrow of Fam(Sym(C)°?). Consider a
presheaf G = [[,_, F®;, a natural transformation f : G — G, and the corre-

sponding arrow (g, [[;c {H{}) : [Tic AP} = [1;c, {5}
Definition 6.2 Let R/ denote the relation coming from the kernel pair of

7

CiaNcCIA, KURZ AND MONTANARI

the component f,, of f at n. Let x € Gn. We call the set G = {p:n —n
Gpr Rz} the symmetry on z induced by f.

Proposition 6.3 For each i € I, n € |C|, ho ®; € Fd;n, and p : n — n, we
have (F®;p(h o ®;))R{(ho ®;) if and only if pohoHI = hoHY.

Observe that po ho M) = hoH] implies that, for each A’ in h o HJ, there
is an isomorphism p’ € q)/g(i) such that po h' = I’ o p/, that is, the symmetry
induced by f is reflected in (IJ’g(i).

It is now obvious to observe that the symmetry induced by coalgebra mor-
phisms respects bisimulation. When f is the unique morphism into the final
coalgebra, the induced symmetry is the greatest possible such subset. We call
it the behavioural symmetry. In this case, the arrows in h o HY identify a
subobject of n that intuitively is the active “sub-interface” of an element, i.e.
operations that do not touch it may not affect the semantics. To make this
more precise, observe that, for each h' € h o H! we either have po h' # R/
or poh’ = h'. The first case is the one where the symmetry <I>’g(i) actually
plays a role. In the second case, as all the arrows in h o H{ are obtained by
composition of A’ with an arrow in @’g(i) composition with p leaves all of them
unchanged. Then p is acting in some sense outside of the subobject identified
by h o HY. For example, when the index category is I, the image of h is the
set of active names of a system, that is, names that are observable in the final
semantics.

6.2 Partition refinement as a generic symmetry reduction algorithm

Here and in the next section we explain how to compute bisimilarity on a
subset of the terms of a calculus, if certain finiteness conditions hold.

Consider a calculus equipped with a semantics in Set®, s : P — T'P for P
representing the syntax. As we know (see Rem. 6.1), if P is a coproduct of
symmetrised representables, there is a corresponding coalgebra t : P" — TP’
in Fam(Sym(C)°) of a suitable endofunctor T corresponding to T’.

The partition refinement in Fam(Sym(C)°?) can be computed on an object
[1,c019,} (intended to be a subobject of P" above) as follows. First, we give
an abstract description of the general algorithm, then we explain in detail
the single steps and discuss some finiteness conditions to compute them in
Fam(Sym(C)°P).

Definition 6.4 Coalgebraic partition refinement in Fam(Sym(C)°) is an itera-
tive algorithm using three variables, f, h and z, denoting arrows in Fam(Sym(C)?).

Initialization: Let f = ¢, let h : [[co{G,} — 1 be the unique morphism
into the final object of Fam(Sym(C)?), and z the unique morphism from T1
to 1.

78

CiaNcCIA, KURZ AND MONTANARI

Iteration step(f,h,z): If z restricted to Im(Th o f) is an isomorphism in
Fam(Sym(C)°?) then return Th o f. Otherwise let f' = Tf o f, ' = Th,
2! = Tz, and compute Iteration step(f’, 2, w’).

Correctness of the algorithm is well known by the theory of coalgebras (see
e.g. [46]). An intuition can be given as follows. At the n'* iteration of the
algorithm, the kernel of Tho f :]_[qu{gq} — T"1 is a partition of (), which
quotients elements that have the same observations in n steps. At each step,
this partition is refined, that is, possibly split, according to the observations
made in the n'* iteration of the system. When z is an isomorphism, a fixed
point is reached, and it is guaranteed that in all successives steps, the partition
will remain unchanged. Therefore, the elements of () that are equalised by
Th o f are bisimilar. The isomorphism z is a subobject of the final coalgebra
that represents the behaviour of the elements of Q).

Convergence of the algorithm is equivalent to deciding the semantics of a
program, therefore it can not be guaranteed a priori for all calculi. For Turing-
equivalent languages, the algorithm converges on an undecidable subset of all
the possible programs. In labelled transition systems, one gets convergence
if the set of states reachable from a given set of initial states is finite. When
using coalgebras over presheaves, even trivial programs have infinite states, but
finiteness of the elements of the corresponding family is enough to guarantee
convergence. This leads to a more refined notion of finiteness for presheaves.

Static constraints may be used (e.g. the finite-control m-calculus agents of
[21]) to identify a subset of the convergent instantiations of the algorithm.

The pairs of bisimilar systems in () are described by the kernel pair of the
final value of the arrow Tho f, and the behavioural symmetry of each element
q € Q is reflected in the symmetry of its image along the same arrow. When C
is the free category over one object and T = P, (L x —), then Fam(Sym(C)°?) is
Set, L is a set of labels, and the algorithm is the classical partition refinement
for labelled transition systems. When C is I, there is a suitable endofunctor
[13] such that the algorithm above is the partition refinement procedure for
the m-calculus of [39,21].

Computing the semantics

Two basic assumptions are needed. First, objects and arrows of C should
be “finite”, in the sense that they can be represented as data structures.
Then, f should be computable in each step of the algorithm. Without these
assumptions, the algorithm can not be implemented. Indeed, the cases studied
in the literature on presheaves for process calculi fall under these hypotheses.

To be able to compute partition refinement, we first need to describe the
final object in Fam(Sym(C°)). In a similar fashion to Thm. 5.6, the final object
in Fam(C) is a family of multi-initial objects, that is, a set M1 of C-objects such

79

CiaNcCIA, KURZ AND MONTANARI

that for each object ¢ of C there is a unique element + € MI and a unique arrow
w : 1 — c. Similarly to Thm. 5.2, it is possible to show that if C has pullbacks,
then Sym(C)° has a set of multi-initial objects.

Proposition 6.5 Given a set MI of multi-initial objects in Sym(C), the object
P = [lpers1®} is a final object in Fam(Sym(C)?). The unique arrow from
[A®;} to Pis (Ao, [1gca,{ua,}), whereis; and uq, denote respectively
the unique element of MI and the unique arrow corresponding to ®; in MI.

It holds that if a category has an initial object i, then the singleton {i}
is a family of multi-initial objects. Getting back to partition refinement, to
compute h, z and f one needs that @ is finite and that from each object of ¢
the corresponding element of the final object is computable.

One also needs that the image of f is finite on all the elements of @), in
order to be able to enumerate the elements on which z has to be an isomor-
phism. This requirement is certainly satisfied if T sends finite families into
finite families. This happens in many interesting cases, including polynomial
functors, name allocation, and certain non finite subfunctors of the power set.
Remarkably, in [44] such a “finitistic” representation is given for the early se-
mantics of the m-calculus, which is defined as an infinitary transition system,
due to the input transitions.

Under the above restrictions, one has to check if z = (f., Hz‘e]m(Thof){Hzfz}>
is an isomorphism. The criterion in Fam(Sym(C)°?) is that f. is an isomorphism
in Set and each H/* is an isomorphism in Sym(C). To check the latter, it is
necessary to determine the symmetry of elements of T"1 for each n. Having an
effective procedure to compute this symmetry depends on the chosen functor.
In [44] it is shown how to do this for polynomials, name abstraction and
subfunctors of the power set. We conjecture that these results generalise to
other categories of finite structures.

6.3 Garbage collection

We consider the representation using families appealing because it may al-
low one to implement iteration along the terminal sequence, starting from a
coalgebra defining the operational semantics, in the presence of fresh resouce
allocation. We emphasize that fresh resources are perhaps the most important
reason to employ presheaves for the semantics of programming languages.

In presheaf models, whenever behavioural functors that may allocate new
resources, such as the functor § for name abstraction of [24], are used to build
coalgebras, the operational semantics obtained by rules typically becomes infi-
nite even in very simple cases. Again, this comes from the fact that interfaces
have a global meaning in presheaves, whereas in the family representation the
symmetry of each element is local. This is reflected in the definition of arrows:

80

CiaNcCIA, KURZ AND MONTANARI

in presheaves, one does not need to provide information on how the interface
of the destination is mapped in the interface of the source, while this is exactly
the role of the family of arrows in Sym(C) (one for each element) that are the
second component of an arrow of Fam(Sym(C)°?). Thus, elements that have
the same behaviour up-to an operation on their interface are not identified
using presheaves. This is particularly problematic for recursive processes that
allocate some resources while discarding older ones, keeping a finite quantity
of resources allocated in each state (as explained in [12]). Using families, on
the other hand, all these equivalent elements are identified. It is the purpose
of the family of maps associated to each arrow of the category to identify
a “sub-interface” of each source state, which is preserved in the destination
state, thus discarding unused resources.

7 Concluding remarks

We have introduced a framework to represent the semantics of programming
languages that deal with resources or interfaces attached to system states:
coalgebras over presheaf categories obeying to certain constraints, that give
rise to a “finitistic” representation using families. This representation removes
the redundant information coming from the notion of interfaces being global
rather than local.

First of all, a complete example of application should be developed. The
field of presheaf semantics for process calculi is still a relatively new research
field, and there is not so much literature on calculi different from the -
calculus. However, by providing a representation theory, we prepare the
grounds on which to build up new applications. An interesting case study
is [4], since the presheaf category employed there respects the conditions of
84.

Applications are of great interest in the area of service-oriented comput-
ing, where resource allocation in the presence of network topologies [11], or
constraints [6] is an active field of research, and finite representations are of
vital importance for the implementation of analysis algorithms. An efficient
implementation of the generic symmetry reduction algorithm that we have
presented should be studied. For that, one may take advantage of algorithms
on permutation groups exploiting the generators [32]. Finally, similar con-
sideration apply to model checking. The study of a Stone-type duality for
coalgebras over families in a similar fashion to [5], and a corresponding model
checking algorithm exploiting the cases where the representation is finite, are
one of our most important long-term goals.

It is expected that the categorical equivalence that we presented, combining
the ease of specifying the semantics using presheaves with the implementative
advantages of named sets, will enable the development of a general framework

81

CiaNcCIA, KURZ AND MONTANARI

to specify (using presheaves) and analyse (using families) the semantics of cal-
culi that have richer interfaces than pure names, thus advancing the research
line of presheaves, named sets and history dependent automata.

References

[1] J. Adamek. Introduction to coalgebra. Theory and Applications of Categories, 14(8):157-199,
2005.

[2] J. Adamek and J. Velebil. Analytic functors and weak pullbacks. Theory and Applications of
Categories, 21(11):191-209, 2008.

[3] F. Bonchi, M. Buscemi, V. Ciancia, and F. Gadducci. A Category of Explicit Fusions. LNCS
- Festschrift for Ugo Montanari, 5065, 2008.

[4] F. Bonchi, M. Buscemi, V. Ciancia, and F. Gadducci. A presheaf environment for the calculus
of explicit fusions. Submitted, 2009.

[5] M. M. Bonsangue and A. Kurz. Pi-calculus in logical form. In LICS, pages 303-312. IEEE
Computer Society, 2007.

[6] M. G. Buscemi and U. Montanari. Cc-pi: A constraint-based language for specifying service
level agreements. In R. De Nicola, editor, ESOP, volume 4421 of LNCS, pages 18-32. Springer,
2007.

[7] A. Carboni and P. Johnstone. Connected limits, familial representability and the artin glueing.
Mathematical Structures in Computer Science, 5, 1995.

[8] A. Carboni and E. Vitale. Regular and exact completions. Journal of Pure and Applied
Algebra, 125(1-3):79 — 116, 1998.

[9] G. L. Cattani and P. Sewell. Models for name-passing processes: Interleaving and causal. In
LICS, pages 322-332, 2000.

[10] G. L. Cattani, I. Stark, and G. Winskel. Presheaf models for the m-calculus. In Category
Theory and Computer Science, pages 106-126, 1997.

[11] V. Ciancia, G. L. Ferrari, R. Guanciale, and D. Strollo. Event based choreography. Science of
Computer Programming, To appear.

[12] V. Ciancia and U. Montanari. A name abstraction functor for named sets. Electr. Notes Theor.
Comput. Sci., 203(5):49-70, 2008.

[13] V. Ciancia and U. Montanari. Symmetries, local names and dynamic (de)-allocation of names.
Information and Computation, 2009. To appear.

[14] C. Cirstea. Semantic constructions for the specification of objects. Theor. Comput. Sci.,
260(1-2):3-25, 2001.

[15] E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla. Symmetry reductions in model checking.
In Computer Aided Verification, 10th International Conference, volume 1427 of LNCS, pages
147-158, 1998.

[16] Y. Diers. Familles universelles de morphismes. Ann. Soc. Sci. Bruzelles, 93:175-195, 1979.

[17] J. D. Dixon and B. Mortimer. Permutation Groups, volume Permutation Groups of Graduate
Texts in Mathematics. Springer, 2006.

[18] E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal Methods in System
Design, 9(1/2):105-131, 1996.

[19] E. A. Emerson and T. Wahl. Dynamic symmetry reduction. In N. Halbwachs and L. D. Zuck,
editors, TACAS 2005, volume 3440 of Lecture Notes in Computer Science, pages 382-396.
Springer, 2005.

82

CiaNcCIA, KURZ AND MONTANARI

[20] G. L. Ferrari, U. Montanari, and M. Pistore. Minimizing transition systems for name passing
calculi: A co-algebraic formulation. In FoSSaCS, pages 129-158, London, UK, 2002. Springer-
Verlag.

[21] G. L. Ferrari, U. Montanari, and E. Tuosto. Coalgebraic minimization of hd-automata for the
pi-calculus using polymorphic types. Theor. Comput. Sci., 331(2-3):325-365, 2005.

[22] M. Fiore and S. Staton. Comparing operational models of name-passing process calculi. Inf.
Comput., 204(4):524-560, 2006.

[23] M. P. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract model for the pi-calculus (extended
abstract). In LICS, pages 43-54, 1996.

[24] M. P. Fiore and D. Turi. Semantics of name and value passing. In LICS, pages 93-104, 2001.

[25] M. Gabbay and A. Pitts. A new approach to abstract syntax involving binders. In LICS,
pages 214-224, 1999.

[26] M. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding. Formal
Asp. Comput., 13(3-5):341-363, 2002.

[27] F. Gadducci, M. Miculan, and U. Montanari. About permutation algebras, (pre)sheaves and
named sets. Higher-Order and Symbolic Computation, 19(2-3):283-304, 2006.

[28] N. Ghani, K. Yemane, and B. Victor. Relationally staged computations in calculi of mobile
processes. FElectr. Notes Theor. Comput. Sci., 106:105-120, 2004.

[29] S. Gnesi and G. Ristori. A model checking algorithm for w-calculus agents. In Proc. Second
International Conference on Temporal Logic (ICTL ’97). Kluwer Academic Publishers, 1997.

[30] A. Joyal. Foncteurs analytiques et espces de structures. In Combinatoire E‘numémtive, volume
1234 of Springer Lecture Notes in Mathematics. Springer Verlag, 1985.

[31] A. Kurz. Logics for Coalgebras and Applications for Computer Science. PhD thesis, Ludwig-
Maximilians-Universitat Munchen, 2000.

[32] E. M. Luks. Permutation Groups and Polynomial Time Computation. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, 11:139-175, 1993.

[33] M. Miculan. A categorical model of the fusion calculus. Electr. Notes Theor. Comput. Sci.,
218:275-293, 2008.

[34] M. Miculan and K. Yemane. A unifying model of variables and names. In V. Sassone, editor,
FoSSaCS, volume 3441 of Lecture Notes in Computer Science, pages 170-186. Springer, 2005.

[35] R. Milner. A calculus of communicating systems. Lecture Notes in Computer Science, 92,
1980.

[36] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part i. Information and
Computation, 100(1):1-40, 1992.

[37] E. Moggi. Notions of computation and monads. Information and Computation, 93(1):55-92,
1991.

[38] U. Montanari and M. Pistore. pi-calculus, structured coalgebras, and minimal hd-automata.
In MFCS, volume 1893 of LNCS, pages 569-578, 2000.

[39] U. Montanari and M. Pistore. Structured coalgebras and minimal hd-automata for the pi-
calculus. Theoretical Computer Science, 340:539-576, 2005.

[40] U. Montanari, M. Pistore, and D. Yankelevich. Efficient minimization up to location
equivalence. In ESOP, pages 265—-279, 1996.

[41] M. Pistore. History Dependent Automata. PhD thesis, Universita di Pisa, Dipartimento di
Informatica, 1999. available at University of Pisa as PhD. Thesis TD-5/99.

[42] S. Staton. Name-passing process calculi: operational models and structural operational

semantics. Technical Report UCAM-CL-TR~688, University of Cambridge, Computer
Laboratory, 2007.

83

CiaNcCIA, KURZ AND MONTANARI

[43] E. Tuosto. Non-Functional Aspects of Wide Area Network Programming. PhD thesis,
Dipartimento di Informatica, Universita di Pisa, May 2003. TD-8/03.

[44] Vincenzo Ciancia. Accessible Functors and Final Coalgebras for Named Sets. PhD thesis,
University of Pisa, 2008.

[45] G. Winskel. Symmetry and concurrency. In CALCO, pages 40-64, 2007.

[46] J. Worrell. Terminal sequences for accessible endofunctors. FElectr. Notes Theor. Comput. Sci.,
19, 1999.

84

CMCS 2010

Generic Infinite Traces and Path-Based
Coalgebraic Temporal Logics

Corina Cirsteal

School of Electronics and Computer Science
University of Southampton, UK

Abstract

This paper gives a general coalgebraic account of the notions of possibly infinite trace and possibly
infinite execution in state-based, dynamical systems, by extending the generic theory of finite traces
and executions developed by Hasuo and coauthors [8]. The systems we consider are modelled as
coalgebras of endofunctors obtained as the composition of a computational type (e.g. nondetermin-
istic or stochastic) with a general transition type. This generalises existing work by Jacobs [10] that
only accounts for a nondeterministic computational type. We subsequently introduce path-based
temporal (including fixpoint) logics for coalgebras of such endofunctors, whose semantics is based
upon the notion of possibly infinite execution. Our approach instantiates to both nondeterministic
and stochastic computations, yielding, in particular, path-based fixpoint logics in the style of CTL*
for nondeterministic systems, as well as generalisations of the logic PCTL for probabilistic systems.

Keywords: coalgebra, trace semantics, temporal logic, nondeterminism, probability

1 Introduction

Path-based temporal logics are commonly used as specification logics, partic-
ularly in the context of automatic verification. Instances of such logics include
the logic CTL* with its fragments CTL and LTL for transition systems [3],
and the logic PCTL for probabilistic transition systems [7]. In spite of the
similarities shared by these logics, no general, unified account of path-based
temporal logics exists.

Coalgebras are by now recognised as a truly general model of dynamical
systems, instances of which subsume transition systems, their probabilistic
counterparts, and many other interesting state-based models [14]. Moreover,

1 Email: cc2@ecs.soton.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

mailto:cc2@ecs.soton.ac.uk

CIRSTEA

the modal logics associated with coalgebraic models [13,1,2] are natural logics
for specifying system behaviour, that also instantiate to familiar logics in par-
ticular cases. These logics can be classified into one-step modal logics, wherein
the semantics of modal operators depends solely on the one-step behaviour of
system states (as considered e.g. in [13,1]), and extensions of such logics with
(e.g. fixpoint) operators whose interpretation depends on the long-term, pos-
sibly infinite behaviour of system states [2]. While (some of) the logics in the
second category are able to express application-relevant temporal properties
of states, their syntax does not directly refer to the computation paths from
particular states, as is the case for logics such as CTL* and PCTL. Indeed,
there is still no general, coalgebraic account of the notion of (infinite) com-
putation path, as used in the semantics of CTL* and PCTL. Worse still, in
the case of probabilistic transition systems, adding standard fixpoints to the
corresponding one-step modal language (as considered in [12,1]) is not very
useful, as it does not appear to allow the specification of properties such as:
“the likelihood of some state property p holding eventually is greater than
some ¢ € [0,1]”.

In what follows, we give a general account of the notion of computation
path, and of path-based temporal logics such as CTL* and PCTL. Following
[10,8], we model systems as coalgebras of a signature functor obtained as the
composition of a computational type T (called branching type in [8]) with a
transition type F', and require that 7' distributes over F' in a suitable way.
As examples, we consider nondeterministic and probabilistic systems, with
the non-empty powerset functor P* : Set — Set on the category of sets and
respectively the probability measure functor G; : Meas — Meas on the category
of measurable spaces describing the computational types needed to recover the
usual notions of computation path for such systems. While the transition type
describes the type of individual transitions (typically linear) and determines
the notion of computation path, the computational type describes how the
transitions from particular states are structured (e.g. using sets, or probability
distributions). The distributivity of T" over F' then allows computation paths
from individual states to be similarly structured.

Our approach to defining infinite computation paths builds on earlier work
by Jacobs [10] where infinite trace maps were defined for coalgebras of type
P o F, with P : Set — Set the powerset functor and F' : Set — Set a polyno-
mial functor. We generalise this to arbitrary computational types T' (subject
to some additional constraints), thereby obtaining notions of possibly infinite
trace and possibly infinite execution of a state in a T o F-coalgebra, that are
parametric in 7" and F. We subsequently introduce path-based temporal (in-
cluding fixpoint) logics for coalgebras of endofunctors of type T o F, whose
semantics is defined in terms of the possibly infinite executions from a partic-
ular state. By instantiating our approach, we recover known temporal logics

86

CIRSTEA

and obtain new variants of known logics. Specifically, taking 7" to be the non-
empty powerset monad P* and F = Id sheds new light on the logic CTL*
[3], which we recover as a fragment of a path-based fixpoint logic for P* o Id.
Varying F' to A x Id with A a set of labels yields an interesting variant of
CTL* interpreted over labelled transition systems. On the other hand, taking
T = G, and F = Id allows us to recover the logic PCTL [7] as an instance of
a generic temporal logic with Until operators.

The paper is structured as follows. The remainder of this section gives a
brief overview of the logics CTL* and PCTL, our main examples. Section 2
recalls some basic definitions and results required later and some details of
the generic theory of finite traces [8]. Section 3 defines infinite traces and
executions and studies their properties. Section 4 uses infinite executions
to define general path-based coalgebraic logics, including fixpoint logics and
temporal logics with Until operators. A summary of the results and an outline
of future work are given in Section 5.

Transition systems and the logic CTL*

The semantics of CTL* [5] is based on the notion of computation path.
Given a transition system with set of states S and accessibility relation
R C S x S, a computation path from a state sy is an infinite sequence of
states sgsp ... such that s;Rs;yq for i € w. The syntax of CTL* consists
of path formulas, formalising properties of computation paths and employing
operators such as X (in the nexzt state along the path), F (at some future
state along the path), G (globally along the path) and U (until operator),
and state formulas, formalising properties of states and employing operators
(A and E) that quantify (universally, respectively existentially) over the com-
putation paths from a particular state. Every state formula is also a path
formula, with the latter requiring that the first state of a path satisfies the
given state formula. For example, the property “along every path, the system
will eventually reach a success state” is formalised as A F success, or equiva-
lently as A(tt U success), where success denotes an atomic proposition. The
assumption one typically makes of the transition system of interest is that
each state s has at least one outgoing transition. (For states where this is not
the case, self-loops are added to the original transition system.) This allows
one to focus only on the infinite computation paths.

Probabilistic transition systems and the logic PCTL

In the probabilistic transition system model, the state transitions are gov-
erned by a probability distribution on the target states — this assigns a proba-
bility value to each outgoing transition from a particular state, with the values
for transitions from the same state summing up to 1. The logic PCTL [7] for

87

CIRSTEA

probabilistic transition systems is similar in spirit to CTL*: its syntax con-
sists of path and state formulas, with similar operators (X and U) for the
path formulas, and its semantics is based on the same notion of computation
path; the main difference is that, instead of stating that a path formula holds
in all/some of the paths from a particular state, the basic state formulas of
PCTL, of the form [p]., with ¢ a path formula and ~ € {<, <, >, >}, refer to
the likelihood of ¢ holding along the paths from a particular state. For exam-
ple, [tt U success|>; states that the likelihood of eventually reaching a success
state is 1. To interpret state formulas, one computes probability measures
over the computation paths from each state of a given model.

The previous examples suggest that a general account of computation
paths (to be referred to as infinite executions in what follows) should first
define the shape of a potential infinite execution (in the above cases, any in-
finite sequence of states), and then provide a suitable structure on the actual
infinite executions from each state of a particular model (e.g. a set of compu-
tation paths, or a probability measure over computation paths). The former
should be sufficient to allow an interpretation of path formulas (of a generic
path-based logic still to be defined), whereas the latter should support an
interpretation of state formulas (of the same logic).

Acknowledgement

Thanks are due to Bart Jacobs for pointing out the notion of affine monad
and its relevance to this work, and to the anonymous referees of an earlier
version of this paper for their useful comments and suggestions.

2 Preliminaries

We recall that a measurable space is given by a pair (X,YXy) with X a set
and Y x a o-algebra of (measurable) subsets of X, whereas a measurable map
between (X,Yy) and (Y,Xy) is given by a function f : X — Y with the
property that f~1(V) € Xx for each V € Xy. We write Meas for the category
of measurable spaces and measurable maps. A measurable space (X,Xx)
is called discrete if ¥x = PX. A subprobability measure on a measurable
space (X,Yy) is then a function p : Yx — [0,1] such that u(0) = 0 and
(U Xi) = >, 1(X;) for countable families (X;)ie,, of pairwise disjoint
measurable subsets of X. Thus, u(X) < 1 for any subprobability measure
pon (X,¥Xx). If u(X) =1, then p is called a probability measure. Given
a measurable space (X, YXx) and x € X, the Dirac probability measure ¢, is
defined by §,(U) = 1 iff z € U and §,(U) = 0 otherwise.

88

CIRSTEA

We write G : Meas — Meas for the subprobability measure functor [6],
sending a measurable space (X,Xx) to the set M(X,Xx) of subprobability
measures on (X, Xy), equipped with the o-algebra generated by the sets {u |
p(U) > q} with U € Xx and ¢ € [0,1]. A related functor, considered in [8], is
the subprobability distribution functor S : Set — Set, sending a set X to the
set of subprobability distributions over X, i.e. functions p : X — [0,1] with
erX p(r) <12

Given a functor F': C — C, an F'-coalgebra is given by a pair (X,) with
X a C-object and v : X — FX a C-arrow. As previously mentioned, we
work in the setting of coalgebras of endofunctors obtained as the composition
of a computational type with a transition type. The computational type
is specified by a monad T on a category C, whereas the transition type is
captured by an endofunctor F' on C. As in [8], a crucial assumption is the
existence of a distributive law A : FoT = T o F of T over F. Such a
distributive law must be compatible with the monad structure, i.e. Ao F'n = ng
and Ao Fu= ppoTAoAp, where n: |ld = T and p : T? = T denote the unit
and multiplication of the monad T.

As examples of computational types, we consider (variants of):

* the powerset monad P : Set — Set, modelling nondeterministic computa-
tions, with unit given by singletons and multiplication given by unions,

 the subprobability measure monad G : Meas — Meas, modelling probabilis-
tic computations, with unit given by the Dirac measures and multiplication
given by integration (see [6] for details).

Both of the above monads are strong and commutative, i.e. they come equipped
with a strength map stxy : X xTY — T(X xY') as well as a double strength
map dstxy : TX x TY — T(X x Y), for each choice of C-objects X,V ?:

¢ the powerset monad has strength given by stx y(x, V) = {z} xV and double
strength given by dstxy(U,V) =U xV, forx € X, U € PX and V € PY,

e the subprobability measure monad has strength given by
St(XuZX)v(szY)<x7 V)(Uv V) = V<V) iff # € U and St(XaZX)v(szY)<x7 V)(Uv V) =
0 otherwise, and double strength given by dst(x s vsy) (1, V)(U, V) =
wU) - v(V), forze X, pe M(X,Xx), ve M(Y,3y), U € Xx, V € Xy.

It is shown in [8] that any commutative monad on Set has a canonical
distributive law over any shapely polynomial functor (i.e. a functor built from
identity and constant functors using finite products and arbitrary coprod-
ucts). This provides examples of distributive laws of the powerset monad over
shapely polynomial functors. Moreover, the construction of the canonical dis-

2 Thus, a subprobability distribution can take non-zero values on at most countably-many
elements of X.
3 Moreover, these are natural in X and Y.

89

CIRSTEA

tributive law (by induction on the structure of the shapely functor) generalises
straightforwardly to any category with products and coproducts, thereby also
providing examples of distributive laws of the subprobability measure monad
over shapely polynomial functors on Meas.

As in [8], the Kleisli category of a monad (T,n,) on a category C will
play an important role when defining the notions of infinite trace and infinite
execution for systems whose computational type is given by T". This category,
denoted KI(7T"), has the same objects as C, and C-arrows f : X — TY as
arrows from X to Y. The composition of two KI(T)-arrows f : X — Y and
g:Y — Z is given by the C-arrow pzoTgo f. We let K : KI(T) — C denote
the functor defined by:

e K(X)=TX,

e K(f)=pyoTffor f: X =Y in KI(T),

and write J : C — KI(T) for its left adjoint, defined by:
 J(X) =X,

e J(f)y=Tfonx=nyoffor f: X =Y inC.

Later we will make use of the following property of the functor J:

Lemma 2.1 If the functor T : C — C (weakly) preserves the limit (Z, (7;)icw)
of an w” -chain (f;)icw, then so does J : C — KI(T).

Proof. Assume first that 7" weakly preserves the limit (Z, (m; : Z — Z;)icw)
of (fi: Ziy1 = Zi)iew- To show that (JZ, (Jm; : JZ — JZ;)ic,) is a weakly
hmltmg cone for (sz : JZi—l—l — JZi)iEw in Kl(T), let (X, ((51 X = JZz)sz)
denote an arbitrary cone for (Jf;)ic. in KI(7'). Hence, in C, puy, 0Tz o T f; 0
dit1 = 0, that is, T f; 0 0;21 = 0; for all i+ € w. This makes (d;);c, a cone
over (T'f;)icw in C, and the weak limiting property of (T'Z, (T'7;);e.,) in C now
yields a mediating map m : X — T'Z such that T'm; om = ¢; in C for all
i € w. This is equivalent to puz, o Tny o Tm;om = §; in C for i € w, that is,
Jmiom = 6; in KI(T) for i € w. The proof of the stronger statement, in the
case when T preserves the limit of (f;);e,, is similar.

As mentioned above, we assume the existence of a distributive law A of
the monad T over the endofunctor F. It is known (see e.g. [8]) that such
distributive laws A : FFoT = T o F are in one-to-one correspondence with
liftings of the functor F' : C — C to KI(T). In particular, the lifting F :
KI(T') — KI(T") induced by a distributive law A : F'oT = T o F' is defined by:

e FA=FA,
e Ff =XgoFffor f: A— BinKI(T).
The following property of this lifting will be used later:

90

CIRSTEA

Lemma 2.2 The lifting F satisfies FoJ = Jo F.

Proof. For f : X — Y in C, the C-arrows that define the Kleisli maps F.J f
and JF'f are Ay o F'ny o F'f and respectively npy o F'f. By the compatibility
of the distributive law A with the monad structure, these coincide.

In what follows we also assume that KI(T") is DC'po-enriched, that is, each
homset KI(T)(X,Y) is a partial order, with directed collections of maps (f; :
X —Y)ier admitting a join | |,.; fi : X — Y, and with composition of arrows
preserving directed joins: g o (| l,c; fi) = |lic;(9 0 fi) and (| ;; fi) o h =
Llic,(fi o h). We note that the Kleisli categories of the monads P and G
are DCpo-enriched, with the order on KI(P)(X,Y') being defined pointwise
via the inclusion order on P(Y'), and the order on KI(G)((X,Xx), (Y,%y))
being defined pointwise from the decpo <y on G(Y,Xy) given by u <y v iff
w(U) <v(U) for all U € Xy.

Finite traces and executions

In [8], the authors consider coalgebras (X,) of endofunctors of the form
T o F' with the monad T : Set — Set and the endofunctor F' : Set — Set being
related by a distributive law A : F'oT'= T o F', and with the Kleisli category
of T being DC'po, -enriched; that is, in addition to DCpo-enrichedness, the
orders on KI(T")(X,Y") are required to have a bottom element. In this setting,
the elements of the carrier Ir of the initial F-algebra provide the potential
finite traces of states of T'o F-coalgebras, and a finite trace map ftr, : X —
T(Ir) is defined via finality in KI(T'). The crucial observation is that the
initial F-algebra in Set lifts to a final F-coalgebra in KI(T') (where, as before,
F : KI(T) — KI(T) is the lifting of F to KI(T) induced by). Thus, the finite
trace map arises as the unique coalgebra morphism from the F-coalgebra in
KI(T) induced by a T o F-coalgebra in Set to the final F-coalgebra. The
resulting notion of trace of a state of a T' o F-coalgebra is referred to as fat
trace in [11], as it retains the structure specified by the transition type F and
therefore may involve branching.

A finite execution map for a T o F-coalgebra (X,) is also defined in [11],
as the finite trace map obtained by regarding (X,v) as a T o F o (X x Id)-
coalgebra. Here we propose a variant of this notion obtained by replacing the
functor F'o (X x Id) with the functor X x F. The reason for this variation is
that we expect finite executions starting in a state of a coalgebra to incorporate
the state itself.

Definition 2.3 Let T : C — C be a strong monad, F' : C — C be an end-
ofunctor, and A : FoT = T o F be a distributive law of T over F. Also,
for a T o F-coalgebra (X,7), let (Ix,tx) denote an initial (X x [F)-algebra,
and let Ax : (X X F)oT = T o (X x F) denote the natural transfor-
mation given by (Ax)y = stxry o (idx X Ay). The finite execution map

91

CIRSTEA

fexec, : X — T'Ix is the C-map underlying the unique X x F-coalgebra mor-
phism from (X, stx px o (idx,7)) to the final X x F-coalgebra.

Modal logics for coalgebras

Our path-based coalgebraic temporal logics will be based on the notion of
predicate lifting, as introduced by Pattinson [13]. However, the semantics of
these logics will differ somewhat from the standard semantics of coalgebraic
modal logics induced by predicate liftings, as defined e.g. in loc. cit. Also, the
notion of predicate lifting used here is more general than the original one of
[13], and applies to endofunctors on both Set and Meas.

We begin by fixing a category C with forgetful functor U : C — Set, and
a contravariant functor P : C — Set” such that P is a subfunctor of P o U,
with P : Set — Set” the contravariant powerset functor. Thus, for each state
space X, PX specifies a set of admissible predicates. As instances of P we
will consider the contravariant powerset functor P : Set — Set™ (in the case
of coalgebras of endofunctors on Set), and the functor taking a measurable
space to the carrier of its underlying o-algebra (in the case of coalgebras of
endofunctors on Meas).

Now given an endofunctor F': C — C and n € w, an n-ary predicate lifting
for F'is a natural transformation A : P" = P o F. For ease of notation, we
assume all predicate liftings to be unary, however, all our results generalise
straightforwardly to predicate liftings with arbitrary finite arities. We briefly
recall the syntax and semantics of coalgebraic modal logics induced by predi-
cate liftings. Given a set A of predicate liftings for F', the modal language L
has formulas given by:

Lyspu=tt|~p|oNp|[Ne (A€ A)

A coalgebraic semantics for this language is obtained by defining [¢] , CPC
for each F-coalgebra (C,+), by structural induction on ¢ € L,. The inter-
esting case is [[AJo], = (P7)(Ac([#],)) for ¢ € L4 and A € A. In Section 4,
we will see a novel use of modalities arising from predicate liftings, namely
to interpret state formulas in path-based temporal logics. There, we will typ-
ically require our predicate liftings to be monotone, in that A C B implies
Ax(A) C Ax(B) for all X and all A, B € PX.

3 Possibly Infinite Traces and Executions

Our aim is to define a notion of possibly infinite execution of a state in a
coalgebra, to be used in the semantics of path-based coalgebraic temporal
logics. Some initial steps in this direction were made in [10], where a notion
of infinite trace was defined for coalgebras of type P o F', with F': Set — Set

92

CIRSTEA

a polynomial functor equipped with a distributive law A : FoP = P o
F. Specifically, it was observed in loc. cit. that the final F-coalgebra in
Set (whose elements represent potential infinite traces) gives rise to a weakly
final F-coalgebra in KI(P). Then, for a P o F-coalgebra, an infinite trace
map was obtained using weak finality, by regarding this coalgebra as an F-
coalgebra in KI(P). The order-enrichedness of KI(P) guaranteed the existence
of a canonical choice for the infinite trace map.

Here we propose a notion of infinite trace that applies to coalgebraic signa-
tures of the form To F', with T a monad and F an endofunctor on a category C,
related through a distributive law of 7" over I’ and subject to some additional
constraints. Throughout this section, C denotes a category with countable
limits, F' : C — C is an endofunctor, 7' : C — C is a strong monad whose
Kleisli category is DC'po-enriched, and A : F'oT' = T o F' is a distributive law
of T over F.

3.1 Possibly infinite traces

As in [10], the final F-coalgebra provides the potential infinite traces of ele-
ments of T o F-coalgebras. We work under the assumption that F' preserves
the limit of the following w" -chain

1t e pop 2L

with 1 a final object in C and ! : F1 — 1 the unique such map*. Assuming
the above, the carrier of the final F'-coalgebra is obtained as the limit in C
of the above w™’-chain. We let (Z,(: Z — FZ) denote a final F-coalgebra,
and write m; 1 Z — F'1 with i € w for the corresponding projections. We
begin by showing that, under some additional constraints on the monad 7', a
T o F-coalgebra v : X — TFX induces a cone over the w” -chain:

T! TF!

71

TF1

We define an w-indexed family of maps (v; : X — TF1);c., by:

* y9g=molx : X — T1, where !x : X — 1 is the unique such map,

* Yig1 = ppitiy 0 TApiy o TFy; 0y : X — TEF™ for i € w.

That is, the maps 7; arise by unfolding the coalgebra structure ¢ times, and
using the distributive law A of T" over F' and the monad multiplication to
discard inner occurrences of 7' from the codomain of the maps ~;. As the

elements of 1 define finite approximations of potential infinite traces, the
maps 7; can be regarded as providing finite approximations of the infinite

4 This assumption is weaker than requiring F to preserve the limits of all w” -chains, a
condition that will not hold for certain instances of F' considered later in the paper.

93

CIRSTEA

trace map for the T o F-coalgebra . It is also worth noting that one can
alternatively define the ~;s as maps in KI(T'):

* v =Jx,
o Yip1=Fyoyforiew.

Lemma 3.1 Let !pp; : TF1 — 1 be the only such map. If nyolrpy =T, then
the above ;s define a cone over the w™ -chain (JEF!);c, in KI(T).

Proof. The hypothesis ensures that vy = J! o v;. Now assuming v; = JF o
Yit1, we immediately obtain Fry; = FJF! o Fry .y = JF™ ' o Fryy, where
the last equality follows by Lemma 2.2. Precomposition with ~ finally gives
Vi1 = JE T oy,

We immediately observe that the hypothesis of the above result is not
satisfied by either of the two monads identified earlier:

o for T =P, (molrr)(0) =1 # 0= (P)(0);

o for T =G, (molre)(vo) = 1 # po = (G!) (1), where 14 is the subproba-
bility measure on F'(1,7P1)° which assigns the value 0 to each measurable
set, whereas j9 and p; are the subprobability measures on (1,P1) given by
to(1) = 0 and respectively p;(1) = 1.

To remedy the situation, we will work with submonads of these two monads
for which the hypothesis of Lemma 3.1 is true. To this end, we first note that
if the monad T is such that n; : 1 — T'1 is an isomorphism, then the equality
required by Lemma 3.1 is obtained immediately by finality. Strong monads
with the above property are called affine, see e.g. [9] for an overview. Moreover,
[9] shows how to construct, for any strong monad 7', its affine submonad Ty,
which is itself commutative whenever T is. This construction yields:

e the non-empty powerset monad P+ : Set — Set as the affine part of P,

¢ the probability measure monad G, : Meas — Meas (with G;(X,Xx) con-
taining only the probability measures on (X, ¥ x)) as the affine part of G.

Thus, for T = P* and T = G;, Lemma 3.1 applies. We also note that the
canonical distributive laws of the original monads (P, respectively G) restrict
to distributive laws of their affine submonads, and that the Kleisli categories
of the affine submonads inherit an order-enriched structure from the Kleisli
categories of the original monads. For the latter statement, one must verify
that joins (taken in KI(7')(X,Y")) of directed sets in KI(7,)(X,Y) are them-
selves elements of KI(7,)(X,Y") and are preserved by arrow composition; this
is straightforward in both cases. In fact, for T" = G;, the inherited order on
KI(G1)(X,Y) is the equality. The former statement follows from a general re-
sult stating that any distributive law of a strong monad 7" over an endofunctor

® Note that (1,7P1) is a final object in Meas.
94

CIRSTEA

F restricts to a distributive law of T, over F'.

Proposition 3.2 Let A : FoT = T o F be a distributive law of T over F.
Then, X restricts to a distributive law X\ : F olT, = T, o F.

Proof. As shown in [9], the action of the monad 7, on a C-object X is given
by the following pullback diagram:

T,.X-*sTX
!Tuxi lT!X

1— 71

Thus, using that !z o Fly =!px (by finality of 1), the pullback diagram
defining T, F'X can be written as

T,FXZ5TRX
|

lTF!X

TF1

|

|

Lo
11— 71

Next, note that the maps AxoFuvx : FT,X — TFX and !pjoFlp x : FT,X —
1 define a cone over the diagram given by 1! o TF!x and n;:

T'rioTF!'yolxoFiy =

T'rpoNoFTlxoFixy =

TlppoloFmoFlpx =

T'rpronproFlr,x =
molm OF!TaX

naturality of \)
definition of T,X)
compatibility of A with monad structure)

(
(
(
(

naturality of 7)

The definition of T, F X now yields a map (A\,)x : FT,X — T,FX. The natu-
rality of the resulting maps and their compatibility with the monad structure
follow easily by diagram chasing.

For our two examples (T'= P and T' = G), assuming that F' is a shapely
polynomial functor, one can simply work with the canonical distributive laws.
An easy induction proof (not given here) shows that these coincide with the
distributive laws given by the previous result. However, Proposition 3.2 shows
how to obtain a distributive law of the affine submonad over an arbitrary
endofunctor.

To motivate our definition of the infinite trace map of a T" o F-coalgebra
(X,7), let us examine the case T'= P*. Since the map =, takes a state of the
coalgebra to a set of i-depth approximations of its possibly infinite traces, it
seems natural to define the infinite trace map as a function tr, : X — PTZ

95

CIRSTEA

sending a state s of the coalgebra to the set of possibly infinite traces whose
i-depth approximation belongs to 7;(s). Such a trace map can be defined
by exploiting the weak preservation of limits of w™-chains by J (which, in
turn, follows from the weak preservation of such limits by P*). However, this
property only guarantees the existence of a mediating map tr, : X — JZ
in KI(T"). As shown in [10] for the case T = P, a canonical choice for the
infinite trace map is provided by the largest mediating map. Its existence is
here guaranteed by the DCpo-structure of KI(PT)(X, Z), together with the
observation that in this particular case the mediating maps form a directed
set. This justifies the following general definition of the infinite trace map.

Definition 3.3 Assume that the monad 7' is affine and that the functor
J weakly preserves the limit (Z,(7;)ic,) of the w™-chain (F);c,. For a
T o F-coalgebra (X,7), let (X,(y; : X — JF'l);e,) be the induced cone
over (JF");c,, and assume further that the corresponding mediating maps
form a directed set. The possibly infinite trace map is the largest ® mediating
map tr, : X — JZ arising from the weak limiting property of (JZ, (J7;)icw)
(regarded as a map in C).

In particular, Definition 3.3 can be applied to the non-empty power-
set monad Pt : Set — Set, as well as to the probability measure monad
G1 : Meas — Meas. The resulting notions of infinite trace are discussed in
Sections 3.3 and 3.4. We also note that the affine submonad of the lift monad
1 +Id on Set (as considered in [8]) is the identity monad, to which Defini-
tion 3.3 applies trivially. A treatment of monads that are not affine is outside
the scope of this paper.

We conclude this section by proving some properties of the infinite trace
map, similar to the defining properties of the infinite trace map in [10].

Proposition 3.4 Under the assumptions of Definition 3.3, the trace map
tr, + X — JZ defines an op-lax F-coalgebra morphism from (X,v) to
(JZ,JC), that is, Ftr, o~y C JC otr.,. Under the additional assumptions that
(JZ,(J7)icw) is a limit of (JF")ic,, tr, defines an F-coalgebra morphism,
that is, FtnY oy =J(Cotr,.

Proof. We begin by noting that the final F-coalgebra ¢ : Z — FZ satisfies
Frio (¢ = myq for all i € w, and hence, in KI(T) we have JFm; o J(=
Jrmiyq for all i € w. Now recall that (JFZ,(JFm;)ie,) is a weak limit of
(JE"™1);c,. Moreover, since J(is an isomorphism in KI(T') (and hence admits
an inverse), and since arrow composition in Kl(7") preserves directed joins, it
follows that the map J{otr, : X — JFZ is the largest mediating map for
the cone (X, (Vit1)iew) over the w™-chain (JF™!),c,,. On the other hand,
we have: JF'm; o th oy = FJmo Ftn/ oy = Fv; 05 = 741. Hence, since

6 w.r.t. the order on KI(T)(X, Z)
96

CIRSTEA

JCotr, : X — JFZ is the largest mediating map for (X, (7,41)icw), We obtain
Ftn, oy C J(otr, Thatis, tr, defines an op-lax F-coalgebra morphism
from (X,v) to (JZ,J(¢). Under the stronger assumption that (JZ, (J7;)ic.)
is a limit of (JF");c.,, uniqueness of a mediating arrow induced by the cone
(X, (Vit1)iew) over (JEm;)ie, yields th oy = J(otr,, that is, tr, defines an

F-coalgebra morphism.

In the case of the non-empty powerset monad, the above result only implies
that the infinite trace map is an op-lax coalgebra morphism. This is weaker
than the defining property of the infinite trace map in [10], which asks for a
proper coalgebra morphism. The study of sufficient conditions for the infinite
trace map to define a proper coalgebra morphism for an arbitrary (affine)
monad 7" remains an open question, but we conjecture that the local continuity
of the functor F'7 will be at least a necessary condition.

On the other hand, we will see later that the additional assumption of
Proposition 3.4 which ensures that the trace map is a coalgebra morphism
holds for the probability measure functor G; on Meas, when taking certain
shapely polynomial functors on Meas as instances of F'.

3.2 Possibly infinite executions

To obtain a notion of possibly infinite execution of a state in a 7o F-coalgebra,
we use the approach in the previous section with a different choice of functor
F'. Similarly to Definition 2.3, given a T"o F-coalgebra (X,), we consider the
endofunctor Fy : C — C given by Fx(Y) = X x FY and the distributive law
Ax : Fx oT = T o Fx given by (Ax)y = stxpy o (idx X Ay). We call an
element of the carrier of the final Fx-coalgebra (Zx,(x) a potential infinite
execution, or computation path.

Definition 3.5 Assume that 7T is affine and that J weakly preserves the
limit (Zx, (7;)ico) of the w™-chain (Fx");c,. For a T o F-coalgebra (X,),
let (X,(y : X — JFx'1)icy) be the cone over (JFx'!);c, induced by the
T o Fx-coalgebra (X,stx px o (idx,7)), and assume that the correspond-
ing mediating maps form a directed set. The possibly infinite execution map
exec, : X — JZx of (X,~) is the possibly infinite trace map of the T"o Fx-
coalgebra (X, stx px o (idx,")).

3.3 (Labelled) transition systems

These are modelled as P* o F-coalgebras, with F' = Id (respectively F' = AxId
for a fixed set A of labels). Our use of the non-empty powerset monad agrees

7 A functor F' : C — D between DCpo-enriched categories is locally continuous if it pre-
serves suprema of directed joins in C(X,Y") for each X,Y. In enriched categorical terms, F'
is a DCpo-enriched functor.

97

CIRSTEA

with the standard constraint put on transition systems when defining compu-
tation paths. The next result ensures that the hypotheses of Definitions 3.3
and 3.5 are satisfied.

Lemma 3.6 The (non-empty) powerset functor weakly preserves limits of
W’ -chains; hence, by Lemma 2.1, so does J. Moreover, the resulting me-
diating maps, regarded as arrows in KI(P) (resp. KI(P1)) form a directed set.

Proof. Let (Z,(m;)ic,) denote the limit of an w™-chain (fi : Zis1 — Zi)icw.
For a cone (v; : X — PZ;)ien, over (Pf; : PZiv1 — PZ;)icw, the map m :
X — PZ given by m(x) = {z € Z | mi(2) € vi(z) for i € w} for x € X is
a mediating map. (If X = (), the existence of a mediating map is trivial.)
The same applies when replacing P by P*. This time, one also has to show
that the set defining m(z) is non-empty. Using the axiom of choice one can
construct, for each x € X, a sequence (2;);e,, with z; € v;(z) and f;(zi41) = 2
for i € w; this, in turn, yields z € Z with m;(2) € v;(x) for i € w.

For the second statement, note that the mediating map m defined previ-
ously is above any other mediating map (under the inclusion order), and thus
the set of mediating maps is directed.

Remark 3.7 To see that neither P nor PT preserve limits of w™-chains,
consider the final sequence (f; : Z;11 — Z;)ie. of the endofunctor 1 + A x Id,
with Z; = Up<j<; A, and with limit object Z = A* U A“. Now define a cone
(vi : 1 = PZ;)iew by letting ;(x) consist only of the i-long sequence of a’s, for
some fixed a € A. Then, both m(x) = {a}* and m/(x) = {a}* U {a}* define
mediating maps. (A similar example is discussed in [8, Section 4.2].)

As a result of Lemma 3.6, Definition 3.5 yields, for each state in a transition
system, a set of infinite executions. As expected, this coincides with the
set of computation paths from that state, as considered in the semantics of
CTL*. For FF = A x Id, the infinite execution map gives, for each state
s, the set of labelled computation paths from s, as infinite sequences of the
form s = sga;si1a95, ... with si—%5Si+1 for i € w, whereas the infinite trace
map yields the sequences of labels that occur along such labelled computation
paths.

One can also vary the functor F' in order to model explicit termination.
This is achieved by taking FF =1+ Id or FF =1+ A x Id, as in [8]. In these
cases, the resulting possibly infinite trace (execution) maps capture both finite
and infinite traces (respectively computation paths).

3.4 Probabilistic models

A large variety of discrete probabilistic models have been studied, see e.g. [17]
for a coalgebraic account of such models. Among these, probabilistic transition
systems (also called Markov chains) appear as coalgebras of the endofunctor

98

CIRSTEA

D = Dold and are used to interpret the logic PCTL [7], while generative
probabilistic systems coincide with Do (A xId)-coalgebras. Here, D : Set — Set
denotes the probability distribution monad, a submonad of the subprobability
distribution monad defined on objects by DX = { € SX | >° _ p(x) = 1}.

Unfortunately, although affine, the monad D does not satisfy the require-
ment of Definition 3.3 concerning the weak preservation of limits by the in-
duced functor J. To see this, let F' : Set — Set be given by F'X = {a,b} x X,
and p; € DF'1 be given by p1;(z) = 5 for 2 € {a,b}’, with i € w. Thus, each y;
defines a finite probability distribution over F'1, and we have (D) (1) = p
for « € w. However, there is no probability distribution p on the final F-
coalgebra (whose carrier, {a,b}, is uncountable) such that (Dm;)(n) = u;
for i € w — any such p could only take non-zero values on countably-many
elements of Z. Indeed, a state of a D o F-coalgebra will in general have un-
countably many infinite traces, and the emphasis when defining an infinite
trace map should be on measuring sets of traces rather than individual traces.

A satisfactory treatment of infinite traces for discrete probabilistic models
turns out to be possible by regarding such models as coalgebras of the prob-
ability measure monad G;. For technical reasons that will soon become clear,
we will work in a subcategory of Meas, namely the full subcategory SB of
Meas whose objects are standard Borel spaces (spaces whose measurable sets
arise as the Borel sets induced by a complete, separable metric, see e.g. [4]).
A notable property of this category is that it is closed under countable co-
products and countable limits in Meas (see e.g. [16, Fact 1]). We also note
that a discrete measurable space (X, PX) is standard Borel if and only if X
is countable. As a result, we will only be able to define notions of infinite
trace and infinite execution for D o F-coalgebras with countable carrier. We
will do so by lifting the functor F to a functor F:SB — SB, and regarding a
D o F-coalgebra on Set as a G o F’—coalgebra on SB.

We now proceed to define a restricted version of shapely polynomial func-
tors on Meas. The restriction is driven by the need to work in the subcategory
SB of Meas. Specifically, we call an endofunctor on Meas a restricted shapely
polynomial functor if it is built from identity and constant functors Cx s)
with (X, X x) a standard Borel space, using finite products and countable co-
products. Then, given a restricted shapely polynomial functor F' on Set, that
is, a functor built from identity and countable constant functors using finite
products and countable coproducts, we write F': Meas — Meas for its coun-
terpart on measurable spaces, defined by structural induction on F:

e Id is the identity functor on Meas,
. C/;';(is the constant functor Cx px), for each countable set X,

° FﬁQZEXﬁa

99

CIRSTEA

° HiEUJ ‘FZ - HiEw FZ
Lemma 3.8 If F': Set — Set is a restricted shapely polynomial functor, then
so is F': Meas — Meas. Moreover, F' preserves (discrete) SB-spaces.

Proof. The first statement is immediate. Preservation of SB-spaces by F
follows from results in [16], whereas preservation of discrete spaces follows by
induction on the structure of F'

e For F = Cx with X countable, F(Y,PY) = (X,PX) = (FX, PFX) for all
Y.

e For F =1Id, 1d(X,PX) = (X,PX) = (FX,PFX) for all X.

e« For F = [y, x Iy, F(X,PX) = Fi(X,PX) x F5(X,PX) = (X, PF,X) x
(X, PF,X) = (F1X x F2X,P(F1X x F3X)), where the last equality fol-
lows from finite products of discrete SB-spaces being themselves discrete
SB-spaces.

* The case F' = [[,., F; is treated similarly.
As a result, we immediately obtain

Proposition 3.9 A D o F-coalgebra (X,v) with countable carrier yields a
Gy o F-coalgebra ((X,PX),7), such that the cone (7;)icw in KI(D):

X

| m

JUGr JF L4 JF2 oy

with the ~y;s being as in Section 3.1, defines a cone in KI(Gy):

(X,PX)

~

J (L P JE(L P = J F2(1, PL)

where J : Set — KI(D) and J' : Meas — KI(G;) are as in Section 2.

~

The coalgebra map 7 : (X, PX) — G F(X,PX) = Gi(FX,PFX) yields,
for each state x € X, the probability measure on (F'X,PFX) induced by the
probability distribution (z) on FX. Since (1,P1) is final in Meas, the latter
of the above cones is over the image under J’ of the final sequence of F. As
a result, we can use the existence of trace maps of G; o F\—coalgebras to define
trace maps for D o F-coalgebras.

The next lemma ensures that £ and f’;(preserve the limit of the initial

w”’-segment of their respective final sequences, as required by Definitions 3.3
and 3.5.

100

CIRSTEA

Lemma 3.10 ([16]) Restricted shapely polynomial functors on Meas preserve
surjective SB-morphisms and limits of w™ -chains of surjective SB-morphisms.

Proof. It was proved in [16, Proposition 3| that the class of endofunctors
on Meas that preserve surjective SB-morphisms and limits of w™-chains of
surjective SB-morphisms is closed under countable coproducts and countable
limits. The conclusion then follows after noting that the identity functor and
constant functors Cx x) with (X, Xx) a standard Borel space belong to this
class.

The required property of F now follows, since ! : F (1,P1) — (1,P1) is
a surjective SB-morphism (assuming that F' is non-trivial, i.e. F'1 # (). As
a result, for every restricted shapely polynomial functor F' on Set, the final
sequence of F' belongs to SB, stabilises at w, and its limit is the carrier of a
final F-coalgebra, itself in SB. Moreover, if X is a countable set, the above
also applies to the functor Fy : Set — Set defined by FxY = X x FY.
The restriction to countable carriers is necessary to ensure applicability of
Definition 3.5. This is the reason for working with the category SB.

Recall from Section 2 that commutative monads on any category with
products and coproducts admit canonical distributive laws over shapely poly-
nomial functors. This applies in particular to the monad G; and any restricted
shapely polynomial functor on Meas. Then, to be able to apply Definition 3.1
to the functors F' and Fly, with F': Set — Set a restricted shapely polynomial
functor and X a countable set, all that remains to verify is that the functor
G, weakly preserves the limits of the final sequences of F and Fy 'v. In fact, a
stronger result holds:

Lemma 3.11 ([16]) The functor G, : Meas — Meas preserves limits of w™ -
chains of surjective SB-morphisms.

We note that the result in [16] refers to the subprobability measure functor
G, but a similar proof can be given for the probability measure functor.

As a consequence, we obtain probabilistic trace and execution maps for
D o F-coalgebras with countable carrier, with F': Set — Set as above.

Definition 3.12 Let F' : Set — Set be a restricted shapely polynomial
functor, let (X,v) be a D o F-coalgebra with countable carrier, and let
(vi : (X,PX) — JF(1,P1))ice denote the cone over (J'F")ie., induced
by the G; o F-coalgebra 7 : (X,PX) — GiF(X,PX). The probabilistic trace
map try : X — JZ is defined as the underlying function of the unique mea-
surable map arising from the limiting property of J'(Z,), where (Z,%y) is
the carrier of a final F' -coalgebra.

Since limits in Meas are constructed from the underlying limits in Set (see
e.g. [15]), the state space Z of the final F-coalgebra is the carrier of a final

101

CIRSTEA

F-coalgebra, and thus the probabilistic trace map yields, as expected, for each
state of a D o F-coalgebra, a probability measure over (7, ¥y).

Returning to the example of Markov chains (F' = Id), the resulting notion
of probabilistic execution gives, for each state in a Markov chain, a probability
measure over its computation paths. Similarly, in the case of generative prob-
abilistic systems (F' = A x Id), the notion of probabilistic execution gives, for
each state, a probability measure over its labelled computation paths. Finally,
explicit termination can be modelled by taking F' = 1+Id or F' =1+ A xId, as
in [8], and the resulting notions of possibly infinite execution also incorporate
finite (labelled) computation paths.

4 Path-Based Coalgebraic Temporal Logics

We now introduce CTL*-like coalgebraic temporal logics whose semantics is
defined in terms of possibly infinite executions. Throughout this section, we
fix a monad T : C — C, a functor F' : C — C, and a T o F-coalgebra
(X,) together with a map exec, : X — T'Zy obtained using the approach
in Section 3, where (Zx,(x) is a final Fx-coalgebra. We note in passing that
the temporal languages defined in this section can also be interpreted by using
the finite execution map fexec, : X — T'Ix with (Iy,t¢x) an initial (X x F)-
algebra, as given by Definition 2.3, instead of the infinite execution map — the
forthcoming definitions do not rely on the finality of (Zx, (x). However, this is
only useful when F0 # 0, with 0 an initial object in C, as otherwise the initial
F'x-algebra has empty carrier. In particular, modelling explicit termination
via functors such as F' = 1+ 1Id or FF = 1+ A x Id yields non-trivial finite
execution maps to which the definitions in this section can be applied.

The temporal logics that we define are parameterised by sets Ap and A
of monotone predicate liftings for the functors F' and respectively T'. The
category C will be instantiated to Set and Meas.

We recall that the definition of predicate liftings requires functors U : C —
Set and P : C — Set” such that P is a subfunctor of P o U. In addition,
defining the semantics of path-based temporal logics will at least require that

PX is closed under countable (including finite) unions and intersections, for
each C-object X.

4.1 Path-based fixrpoint logics

We first consider the case when PX is a complete lattice for each X. Under
this assumption, which holds e.g. when C = Set and P = 75, we are able to
define path-based coalgebraic fizpoint logics. These logics are two-sorted, with
path formulas denoted by o' ¥, ... expressing properties of possibly infinite
executions, and state formulas denoted by @, 1, ... expressing properties of

102

CIRSTEA

states of T" o F-coalgebras.

The language pl ::= pl)\" (Vg, V) over a 2-sorted set (Vg, V) of proposi-
tional variables (with sorts for paths and respectively states) is defined by the
grammar

plp 3 " u=tt [p" | o] " A" | " Vel | [Arle™ | mpt "
pL o=t [ffp|Ne" [eAp|oVe

where p" € Vp, p € V, n € {u,v}, \p € Ap and A € A. Thus, path formulas
are constructed from propositional variables and state formulas using positive
boolean operators, modal operators [Ar] and fixpoint operators, whereas state
formulas are constructed from atomic propositions and modal formulas [A]pp
with ¢r a path formula, using positive boolean operators. The modal oper-
ators [Ap| and [A] with A\p € Ap and A € A are thus both applied to path
formulas, to obtain new path formulas and respectively state formulas. They
are, however, of very different natures: while the operators [Ar] quantify over
the one-step behaviour of computation paths, the operators [A] quantify over
the (suitably structured) long-term computation paths from particular states.
This is made precise in the formal semantics of £LA\" (Vg, V), as defined below.

Given a T o F-coalgebra (X,~) and a 2-sorted valuation V : (Vg, V) —
(PZx, PX) (interpreting path and state variables as sets of computation paths
and respectively of states), the semantics (o) v € PZx of path formulas
o' € puly and [¢] v € PX of state formulas ¢ € L is defined inductively
on the structure of o and ¢ by:

"), = V)

(), = P(mio¢x)([e],)
(el = (P(me 0 Cx) 0 (Ar)zy) (7))
(p" "), = Lfp((P")1)

(7l gfp((wF)Z’FV)

[[p]]%v = V(p)
[N], = (Pexecy 0 Az) ("D, v)

and the usual clauses for the boolean operators, where, for pI" € Vg, (o);’FV :

PX — PX denotes the monotone map defined by (@F);gV(Y) = (¢"), - with

V'(p") =Y and V'(q) = V/(q) for ¢ # p", whereas [fp(_) and gfp(_) construct
least and respectively greatest fixpoints. We note that the monotonicity of
the predicate liftings in A and A together with the absence of negation in
either path or state formulas ensure that the maps (¢*);;V : PX — PX are
monotone, and hence, by the Knaster-Tarski theorem, admit least and greatest
fixpoints. Let us now examine the definition of the semantics of pL3" (Vi V)

103

CIRSTEA

in more detail:

* To define (¢)., ,, € PZx from [¢],, € PX, one uses the inverse image of
the map m o (x which extracts the first state of a computation path in Zx:

Ty —X3X x FZyx M5 X

This formalises the idea that a state formula ¢ (regarded as a path formula)
holds in a path precisely when it holds in the first state of that path.

* To define ([Ar]e™),, € PZx from (p"), , € PZx, one first applies the
relevant component of the predicate lifting Ar to obtain a set of one-step
F-observations of computation paths, and then uses the inverse image of
the map my o (x

ZX XXFZX*LFZX

(which extracts the one-step F-observation of a computation path in Zx) to
obtain a set of computation paths again. This is the standard interpretation
of the modal operator [Ar] in the F-coalgebra s o (.

* Finally, to define [[A¢"],, € PX from (¢")., € PZx, one first ap-
plies the relevant component of the predicate lifting A to obtain a set of
suitably-structured computation paths, and then uses the inverse image of
the execution map to obtain a set of states:

P27y N2, prg., P,

PexecA, PX
Example 4.1 We are now able to recover the negation-free fragment of the
logic CTL*® as a fragment of the path-based fixpoint logic obtained by taking
T =7P" F=Id A ={0,0} and Ap = {O}, where the predicate liftings
Ao, Ao - P="Po P* and Ao : P = P old associated to these modalities are
given by:

(ZeP*X|ZCY),
Ae)x(Y) ={Z e P"X | ZNY # 0},

The choice of A\g and Ao as predicate liftings for P* captures precisely the
path quantifiers A and E of CTL*, whereas the O modality captures the X
operator on paths. The remaining path operators of CTL* (F, G and U) can
be encoded as fixpoint formulas. For example, the CTL* path formula ¢ U
can be encoded as pX.(¢¥ V (p A OX)).

8 The entire language can also be obtained, using an approach similar to that of Section 4.2.

104

CIRSTEA

Moreover, by varying the functor F' to A x |d, we obtain an interesting
variant of CTL* interpreted over labelled transition systems. For this, we
take Ap = {a | a € AYU{O}, where the predicate liftings A, : 1 = Po (A x Id)
with a € A and Ao : P = P o (A x Id) are given by:

(Aa)x (¥) = {a} x X,
(Ao)x(Y) = AxY.

The resulting temporal language can easily express the property “a occurs
along every computation path”, namely as OuX.(aV OX). The reader should
compare this to the formulation of the same property in the language ob-
tained by adding fixpoints to the negation-free variant of Hennessy-Milner
logic, namely as pX.((_)ttA[—a]X). Here, the formulas (_)¢ and [—a]e should
be read as “there exists a successor state (reachable by some label) satisfying
" and respectively ”all states reachable by labels other than a satisfy ¢”. It is
easy to see that, as the required nesting depth of fixpoint operators increases,
the encodings of path properties in the latter language become complex very
quickly, making the path-based language a better alternative.

4.2 Path-based temporal logics with Until operators

We now return to the more general situation when PX is only closed un-
der countable unions and intersections. This is for instance the case when
C = Meas and P(X,Yx) = Xx. In this case, least or greatest fixpoints of
monotone maps on PX do not necessarily exist, and we must restrict our-
selves to temporal operators for which we are able to provide a well-defined
semantics. In what follows we only consider Until operators similar to the ones
of CTL* and PCTL, however, our approach supports more general temporal
operators. In particular, a suitable choice of temporal operators can be used
to obtain the full language of CTL* without resorting to arbitrary fixpoints.

Before defining the general syntax of path-based temporal logics with Until
operators, we observe that the structure of the functor F' may result in the
associated notions of trace and execution involving some branching (as is for
instance the case when FX = A x X x X). In such cases, Until operators
must take into account the branching. Due to space limitations, here we only
consider existential versions of branching Until operators, and refer the reader
to [2] for their universal counterparts.

Path-based temporal logics with Until operators are obtained by discard-
ing propositional variables Vp from the path formulas of uLr, and replacing
fixpoint formulas np.¢" with n € {u, v} by formulas " Upy?', with L C Ap
a subset of (typically disjunction-preserving) predicate liftings. Furthermore,
one can add negation to the syntax of both path and state formulas, and
discard the requirement that only monotone predicate liftings should be con-

105

CIRSTEA

sidered in A and A, since no appeal to the Knaster-Tarski theorem is needed
to interpret Until operators. Instead, the semantics of Until operators is de-
fined by

" U™, = " U "),

tew

where the formulas ¢*'U LStQ/JF with ¢ € w are defined inductively by:

goFULSO?ﬂF = o
PTUE T =0 v (" A\ V(" UE)

AeL
The semantics of state formulas remains as before.

Example 4.2 One can recover the logic PCTL [7] as a fragment of the tem-
poral logic obtained by taking 7" = G; and F' = Id on Meas. Predicate
liftings for endofunctors F' : Meas — Meas were considered in [15], as nat-
ural transformations of type P = P o F with P : Meas — Set given by
P(X,¥Yx) = Xx. In particular, the identity natural transformation defines
a predicate lifting for F' = Id, and we write O for the associated modality.
Also, for ¢ € QN [0, 1], the natural transformation A, : P = P o Gy given by
A)xsn(Y) = {n € My(X,3x) | p(Y) > ¢} for Y € ¥y defines a pred-
icate lifting for 7' = G, and we write L, for the associated modality. The
logic PCTL (interpreted over measurable spaces) is now obtained by letting
Ap={0} and A ={L, | ¢ € QN 0, 1]}, and further simplifying the syntax of
path formulas to

p" n=0p | pUop

Its interpretation over Markov chains with countable state spaces is then ob-
tained by regarding each such Markov chain as a discrete measurable space.
For example, the path formula ¢ US> of PCTL is encoded as goU{o}l/z.

Moreover, by varying the transition type to ' = Id or FF = 1+ A X
Id, one automatically obtains variants of PCTL interpreted over generative
probabilistic systems, possibly with explicit termination.

We conclude this section by noting that the full language of CTL* can be
recovered using a similar approach, i.e. by defining the CTL* path operators
directly rather than through fixpoint operators.

5 Concluding Remarks

We have provided a general account of possibly infinite traces and execu-
tions in systems modelled as coalgebras. The notion of infinite execution has

106

CIRSTEA

subsequently been used to give semantics to generic path-based coalgebraic
temporal logics, instances of which subsume known path-based logics such
as CTL* and PCTL. Moreover, we have shown that by simply varying the
transition type, interesting variants of known logics can be obtained with very
little effort.

Future work will generalise these results to arbitrary (non-affine) monads.
Apart from the powerset, lift and subprobability measure monads, a non-
affine monad of interest is the multiset monad, due to its relevance to graded
temporal logic. The study of the relationship between finite and possibly
infinite traces constitutes another direction for future work.

References

[1] C. Cirstea and D. Pattinson. Modular construction of complete coalgebraic logics. Theoretical
Computer Science, 388:83—-108, 2007.

[2] C. Cirstea and M. Sadrzadeh. Modular games for coalgebraic fixed point logics. In
Proc. CMCS 2008, volume 203 of ENTCS, 2008.

[3] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 1999.
[4] J. L. Doob. Measure Theory. Springer, 1994.

[5] E.A. Emerson and J. Halpern. ”sometimes” and ”not never” revisited: On branching versus
linear time. Journal of the ACM, 33:151-178, 1986.

[6] M. Giry. A categorical approach to probability theory. In Categorical Aspects of Topology and
Analysis, volume 915 of Lecture Notes in Mathematics, 1982.

[7] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects
of Computing, 6(5):512-535, 1994.

[8] 1. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via coinduction. Logical Methods
in Computer Science, 3:1-36, 2007.

[9] B. Jacobs. Semantics of weakening and contraction. Annals of Pure and Applied Logic, 69:73—
106, 1994.

[10] B. Jacobs. Trace semantics for coalgebras. In Proc. CMCS 2004, volume 106 of ENTCS, 2004.

[11] B. Jacobs and A. Sokolova. Traces, executions and schedulers, coalgebraically. In
Proc. CALCO’09, volume 5728 of LNCS, 2009.

[12] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and
Computation, 94:1-28, 1991.

[13] D. Pattinson. Expressive logics for coalgebras via terminal sequence induction. Notre Dame
Journal of Formal Logic, 45(1):19-33, 2004.

[14] J. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249:3-80,
2000.

[15] C. Schubert. Coalgebraic logic over measurable spaces: behavioural and logical equivalence.
Draft.

[16] C. Schubert. Final coalgebras for measure polynomial endofunctors. In Proceedings of
TAMC’09, 2009.

[17] A. Sokolova. Coalgebraic Analysis of Probabilistic Systems. PhD thesis, TU Eindhoven, 2005.

107

CMCS 2010

Applications of Algebra and Coalgebra in
Scientific Modelling

[ustrated with the Logistic Map

Michael Hauhs' Baltasar Trancén y Widemann?

FEcological Modelling
University of Bayreuth
Bayreuth, Germany

Abstract

In computer science, the algebra—coalgebra duality serves as a formal framework for connecting
the perspectives of state-based and behavior-based models. In other sciences such as ecology,
these perspectives are seemingly harder to reconcile. We explore modelling paradigms, in the
sense of philosophy of science, as an intermediate step in translating the (co)algebraic framework
from computer science into applications in ecology. We illustrate the application potential of this
approach with a simple model from theoretical ecology: the logistic map. Several versions of
algebraic models with progressively more sophisticated carriers and operations are introduced and
finally contrasted with a corresponding coalgebraic model. We illustrate two modelling paradigms
with these examples. Only one of these has traditionally been used in ecology. The second one,
which is based on a coalgebraic dualisation, offers new modelling perspectives in ecology and
environmental science.

Keywords: algebra, coalgebra, state, behavior, model, paradigm, scientific method, dynamic
system, ecology, logistic map

1 Introduction

Scientific modelling, the task of relating theories and data, is a multi-faceted
problem without a single universal solution. Besides the particular discipline of
science under study, it is necessarily connected to the polar areas of philosophy
and mathematics.

! Email: Michael.Hauhs@uni-bayreuth.de
2 Email: Baltasar.Trancon@uni-bayreuth.de
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

mailto:Michael.Hauhs@uni-bayreuth.de
mailto:Baltasar.Trancon@uni-bayreuth.de

HauHS, TRANCON Y WIDEMANN

A fundamental dichotomy from both the philosophic and the mathematical
viewpoint is the choice between state and behavior as the primary ontological
category of system properties. There are some scientific disciplines where one
is clearly dominant: Physical sciences tend to be state-based, whereas social
sciences tend to be behavior-based. But there is also a middle ground covered
by life-related sciences, in particular ecology as the science of living systems
in an open environment. These sciences pose especially interesting and hard
challenges to the modeller, because neither state nor behavior alone seem to
be sufficient for comprehensive system descriptions.

In most scientific fields, the primacy of either state or behavior is correlated
with the degree of formalization: State-based models tend to be given in
mathematical formulae, whereas behavior-based models tend to be given in
narrative prose. Computer science is rather distinguished by the fact that it
provides methods to render both perspectives with comparable formal rigor,
and to unify them in common frameworks. Of these frameworks, we regard
the duality of universal algebra and coalgebra as particularly promising for
scientific modelling, for several reasons:

(i) There are vast bodies of theoretical results on how to apply algebra and
coalgebra to state-based (e.g. [5]) and behavior-based (e.g. [9]) system
models, respectively.

(ii) The duality is a precise relationship within the meta-framework of cate-
gory theory, as opposed to a mere philosophical complementarity [16].

(iii) The usefulness of commuting diagrams similar to those underlying the
categorial formulation of (co)algebra for theoretical biology has already
been established [15].

Our present work should be understood as a small step towards leveraging
the tools of theoretical computer science for theoretical ecology. This over-
all goal is not easy to achieve; not least because the structural mathematics
of computer science remain obscure and inaccessible to the more classically
trained ecologist. As an intermediate, more modest goal, we aim at extend-
ing the repertoire of scientific ecological modelling with methods originally
designed for the description of systems of logic, control and computation. To-
wards this end, we shall presently discuss a system that is simple and idealized,
yet of some popularity in theoretical ecology. We shall illustrate that mod-
elling questions concerning this system fall into the two aforementioned dual
categories, and how they can be mapped to algebraic and coalgebraic formu-
lations, respectively. Our focus here shall be the systematic development of
modelling techniques from basic universal (co)algebra and their interpreta-
tion from the meta-viewpoint of philosophy of science; the connection to more
realistic and practical ecological problems is outside the scope of this article.

109

HauHS, TRANCON Y WIDEMANN

1.1 Scientific Modelling

Our modelling examples will be idealized. We use the notions proposed by
[6] in which modelling is composed of two steps: The first step replaces a
real-world phenomenon, the target system, with an idealised system described
in words, the model system (see Figure 1 ibid.). In the historical case of
astronomical models of planets, the physical objects were replaced by idealised,
homogenous spheres with point mass. Here we use a population of organisms
and its temporal variation by growth as the target system and replace it with
a spatially homogenous model system: The model system is then in the second
step described by the logistic map.

A modelling paradigm, as introduced by Kuhn, links an aspect of the
empirical world, the model system (in the sense above), with mathematics. It
has to include a recipe, how to fill/relate the description of the word model
with data on the one hand and how to symbolise the description and apply
mathematics on the other hand.

Several options for this task exist. They are vastly different with respect
to their reputation in science, to the extent that sometimes one paradigm,
the physical one, is identified with the scientific method as such. However,
empirics and management practice, at least for ecological problems, appear
determined to remain methodologically diverse. We do not take sides in this
dispute, and present two dual modelling paradigms without judging their rel-
ative applicability a priori.

Each of the two paradigms emphasizes one of the two ontological cate-
gories: The functional paradigm is based on observable states; behavior is
a secondary notion that arises of the change of states under a dynamic law.
The interactive paradigm focuses directly on behavior; state arises from the
history of choices of agents. The latter paradigm is uncommon in most “hard”
sciences. Again, computer science is an exception; cf. the famous Turing test.

It is here where we expect the impact of coalgebra. The new theoret-
ical approach may formalise a model paradigm which is already implicitly
used in ecological practice, but which has not been recognised in theoretical
ecology [17]. A corresponding problem in the philosophy of science is the
epistemological classification of computer simulations [8].

Using coalgebra to model natural phenomena is not (yet) a popular ap-
proach. This is no surprise, because few natural scientists are even aware of
the existence of such a theory. The gap between the research programs of
natural sciences on one hand and of theoretical computer science on the other
hand makes it difficult to exchange abstract notions and theoretical frame-
works. Rigorous study of scientific modelling and its integration of “mindset”
and “toolkit” can be beneficial to mutual understanding.

The logistic map has been chosen as an objct of study for its simplicity,

110

HauHS, TRANCON Y WIDEMANN

e {1-x) ——

e {1-x)

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

Fig. 1. The logistic map f, for r < 4 (left) and r > 4 (right)

not for its immediate practical relevance. For a more relevant example of
ecological behavior, consider the idealised case of a domesticated species in
which evolutionary change can be supressed deliberately. The complete space
of possible behavior under human management can then be derived from its
documented growth history. The scientific task is to comprehensively represent
patterns of this history along with proper goals and intervention norms, in
order to allow a sustained continuation of the past behavior, but without being
able to reconstruct the system after irreversible failure, such as extinction of
the species.

1.2 The Logistic Map

The so-called logistic map [10] is related to the logistic equation published by
Verhulst in 1838, which was one of founding concepts of theoretical population
biology [1]. It has been criticised for being oversimplified, but is still a reference
concept for more realistic models. It is used as the introductory example in a
standard textbook on theoretical biology [12].

Definition 1.1 For a real parameter » > 0, the logistic map is defined as
the real function

fr(z) =rz(l —x)
restricted in both domain and range to the unit interval I = [0, 1]; see Figure 1.
e For r <4, the function f, is totally defined on I.

e For r > 4, the function f, is only partially defined on I: f,.(z) ¢ I for some
rx el

The single parameter r is interpreted as the effective growth rate of the sys-
tem. The state of the system is interpreted as population density, normalised
by the carrying capacity of the system with respect to the given environment.

111

HauHS, TRANCON Y WIDEMANN

Any relation with the environment is encoded into the carrying capacity pa-
rameter, hence this gives rise to a discrete autonomous dynamic system.

Dynamic systems with the state space I and the step function f, exhibit
a variety of interesting modes of behavior, depending on the value of r: from
certain extinction through stable fixed points and periodic solutions of all
periods to deterministic chaos with strange attractors.

The logistic map has been investigated with the methods of symbolic dy-
namics as an important case of a complex, chaotic system. In this role it has
also been used as an application of coalgebra [16]. This, to our knowledge, has
been the first connection between coalgebra and models used in biology. Here
we use the well-known features of this map for reviewing the various roles in
which dynamic models can be used in ecological modelling.

Time is discrete in a system with the step function f,. This is not necessar-
ily an idealization for biological systems; e.g. generation times. But the state
space I is idealized as continuous. For the application of symbolic dynam-
ics and to accomodate the realistic assumption that measurements cannot be
made arbitrarily precise, we discretize observations as partitions of the state
space, specified by the assignment of symbols from a finite alphabet. It suffices
to consider the most coarse-grained case.

Definition 1.2 The binary unit partition is defined as a function ¢ : I —

2 ={0,1}
o) = {0 if o <

1 ifx>

N[N|=

Note that f, is not reversible (injective), but the tupling (c, f,) : I — 2 x [is.

 For r < 4, the function (c, f,)~! is only partially defined on 2 x I.
e For r > 4, the function (c, f,)~! is totally defined on 2 x T.

This binary partition of the logistic dynamic system has been used in [4]
to demonstrate that the apparent complexity of a system depends crucially
on the viewpoint.

2 Formal Prerequisites

The mathematical structures underlying not only our example model sys-
tem, but more or less directly every dynamic system, are the sequential data
structures: finite and infinite sequences over a fixed set of elements. These
structures and the usual ways of reasoning with them have well-understood
representations in terms of algebra and coalgebra.

112

HauHS, TRANCON Y WIDEMANN

2.1 Strings and Streams

Definition 2.1 The set A* is called the set of finite sequences or strings
over A. It is generated by the free constructors consy : A x A* — A* and
nily € A*. The destructors are the unique partial functions hdy : A* » A
and tly : A* - A* such that

hd 4(nil4) undefined

hd 4 (consa(a, w)) =a
w tl4(nil4) undefined

tl (consa(a, w)

SN—
I

e We omit all subscript annotations where no ambiguity arises.

* We define the subsets A™ C A* of strings of a fixed length n inductively as

A = P(consy)(A x A™) A% = {nily}
Then
A=A At = A" = A7\ {nila}
n=0 n=1
e We informally write a; ... a, for cons(ay,...,cons(a,,nil)...).

e In particular, we abbreviate a singleton string cons(a, nil) to a.
e For any function f : A — B, we write f* : A* — B* for the elementwise
mapping

f*(consa(a, w)) = consg(f(a), f*(w)) f*(nils) = nilp
This turns * into a functor.

The choice of cons and nil as the constructors of strings suggest that the
organization of data in a string obey the stack principle: data elements are
accumulated and removed at the left end of a string only. The following auxil-
iary function handles a special case of this principle, namely the accumulation
of data arising from the iterated application of a given function.

Definition 2.2 Let A be any set and f : A -» A a partial function. The
partial function push(f) : A* - A* is defined as

push(f)(w) = cons (f(hd(w)) , w)

e Strict application is implied: push(f) is undefined at w if hd(w) or f (hd(w))
is undefined. In particular, push(f)(nil) is never defined.

113

HauHS, TRANCON Y WIDEMANN

e Note that push(f)" : A™ — A™™™ for m > 0 and n > 0. In slight abuse of
notation we define push(f)™" : A™ — A™ " for m > n > 0 as the retraction

push(f)™" = tl"
Example 2.3 The expression push(succ)”(0) yields a countdown from n.

Definition 2.4 The set A = (N — A) is called the set of infinite se-
quences or streams over A. Its elements are of the form cons4(a, s) for any
a € A;s € A, with

a ifn=20
consa(a, s)(n) = s(n—1) ifn>0

We write
hd4(s) = s(0) tla(s) = s osucc

for the total destructors.
2.2 (Co)Algebras of Affine Type

Definition 2.5 The family of affine functors A3 : Set — Set is defined as
AMX)=Ax X +B AM(f) =idy x f +idp

We write
g0, : Ax X — AZ(X) stopg : B — A%(X)

for the left and right injection, respectively.

Lemma 2.6 Affine functors have initial algebras. The structure (A* X B,a =
a1, o)) with

i (a, (w,b)) = (cons(a, w),b) as(b) = (nil, b)

is an initial A4-algebra. The unique homomorphism or catamorphism h
into any A%-algebra (C, v = |mn, 72]) is defined recursively as

h(cons(a,w),b) = 1 (a, h(w,b)) h(nil, b) = ~5(b)

Lemma 2.7 Affine functors have final coalgebras. The structure ((A* x B)+
Aw’ §Z§ = [le, ¢2]) with

¢1(cons(a,w),b) = go(a,t1(w,b)) ¢2(s) = go(hd(s), t2(tl(s)))
¢1(nil, b) = stop(b)

114

HauHS, TRANCON Y WIDEMANN

where 1y, Ly are the injections into (A* x B) + A¥ is a final AA-coalgebra. The
unique homomorphism or anamorphism h from any A3-coalgebra (C,7) is
defined corecursively as

R CICDIERIC
stop(d) if1(¢)

go(a,)

qb(h(c stop(b)

Instantiating A or B with the empty set or the singleton set 1 = {x} yields
cases of special interest.

(i) The affine functor AL. The operations of AkL-algebras are of type 7 :
1 x C'+ B — C. They are in natural one-to-one correspondence to pairs
(f,g9) of type f: C — C and g : B — C, namely (f,g) « [f o m,g].
The carrier of the canonical initial AL-algebra (Lemma 2.6) simplifies to
N x B by reading 1* as a unary number system. Its operation is specified
by (fo, go) with fo(n,b) = (n+1,b) and go(b) = (0,b). The catamorphism
i into the AkL-algebra specified by (f,g) is the iteration operator

i(n,b) = f"(9(b))

(i) The affine functor AZ. The operations of Af-algebras are of type « :
A x (C+1— C. They are in natural one-to-one correspondence to pairs
(f,e) of type f: Ax C — C and e € C, namely (f,e) <> [f,é] where
é(¥) = e. The carrier of the canonical initial A7-algebra simplifies to A*.
Its operation is specified by (consg,nily). The catamorphism j into the
Aél-algebra specified by (f,e) is the fold operator

j(cons(a,w)) = f(a,j(w)) j(nil) = e

(iii) The affine functor A4. The initial A%-algebra is empty. The operations
of A4-coalgebras are of type 7 : C' — Ax C+@. They are in natural one-
to-one correspondence to pairs (h,t) of type h: C — Aand t : C' — C,
namely (h,t) <> t;0(h,t). The carrier of the canonical final AZ2-coalgebra
(Lemma 2.7) simplifies to A“. Its operation is specified by (hd4,tls). The
anamorphism £ from the AZ4-coalgebra specified by (h,t) is the unfold
operator

k(c) = cons <h(c), k (t(c)))

(iv) The affine functor A% is degenerate and equivalent to the constant functor

B.

We shall demonstrate that each nondegenerate case corresponds to a scientific
modelling scenario. We use the pair notation of the preceding paragraphs to
specify operations, in order to avoid cluttering diagrams with uninformative
projections and injections.

115

HauHS, TRANCON Y WIDEMANN

abstraction

Real ———— Abstract

A

causality[1\ computation time

Real ————— Abstract

abstraction

Fig. 2. Functional modelling, conceptually

3 Modelling Paradigms and (Co)Algebra

The trajectories (time-indexed sets of contiguous states) of a dynamic system
have been termed recursive by Rosen [15], but not in the rigorous sense of the-
oretical computer science. For discrete-time systems, where trajectories are se-
quences, the metaphor can be made precise by connecting finite/infinite trajec-
tories with iteration/coiteration in the form of catamorphisms/anamorphisms,
respectively. In this section, we discuss the transition from a philosophical
view on modelling paradigms to formal systems that employ initial algebras
and catamorphisms or final coalgebras and anamorphisms, respectively.

3.1 From Functional Modelling to Algebra

Our proposed mapping of the two modelling paradigms to (co)algebra is in-
spired by [15], where the functional paradigm is discussed in great philosoph-
ical detail and organized in the form of the commuting diagram depicted in
Figure 2. We have adapted the original discussion to ecological problems in
[8]. Note that the real side refers to the model system, not the target system.
We identify the situation in this diagram with a pair of algebras, namely the
real and the abstract one, with states as their elements, and the abstraction
with a homomorphism. A model consists of

(i) the abstraction mapping that separates essential from accidental proper-
ties of real objects, and

(ii) alogical theory (system of equations) that specifies the valid progressions
of abstract states.

The abstract algebra is merely a mathematical implementation of the specifica-
tion. A scientific hypothesis is posed by claiming that the diagram commutes.
Unlike in pure mathematics, and in the face of uncertainty about the model
system, this is not a logical property to be decied, but rather an empirical
property to be judged by testing and evidence, as prescribed by the Scientific
Method. If the correspondence between the two sides actually holds, it gives
clauses of the specification the special status of laws of nature. Reverting
the top horizontal arrow results in the standard test situation for functional
models, the prediction.

116

HauHS, TRANCON Y WIDEMANN

assessment

Actual —— Virtual

empirics T W control time

Actual ——— Virtual

assessment

Fig. 3. Interactive modelling, conceptually

These philosophical interpretations need to be both formalized and general-
ized in order to adequately capture the tasks and capabilities of the functional
modelling paradigm. We call algebraic modelling in the above, narow sense
direct and distinguish it from inverse problems where not future states, but
past or boundary conditions are investigated.

The basic tenet of algebraic modelling of both directions is to employ
an initial algebra of a suitable functor as a formal query language, arbitrary
algebras of the same functor (models) as implementations of query constructs
and the catamorphisms as the recursive evaluation of queries.

3.2 From Interactive Modelling to Coalgebra

Changing the perspective from state to behavior affects all parts of the mod-
elling situation. States are no longer required to be observable, but may
be largely hidden behind an interface; all relevant information is taken from
behavior at the interface. Metaphysically, objects and their properties are
replaced by subjects and their actions. We reflect this shift of perspective,
as common in the field of philosophy of science, by distinguishing the terms
real (literally: of the things) and actual (literally: of the actions). Laws are
replaced by their subjective counterparts, such as strategies and norms. Fig-
ure 3 shows the resulting commuting diagram. The standard test situation
for interactive models is obtained by reversing the right vertical arrow; it de-
scribes planning. See Section 4.3 for a derivation of this model paradigm from
formal representations.

The claim that coalgebraic modelling departs from the state-based per-
spective may be surprising. This issue arises from a fundamental difference
between the notions of state in physics and in computer science. The ob-
served state of a physical system is objective reality. The state of a formal
automaton, as opposed to its physical implementation, merely refers to its
actual behavior, in the sense that semantics are given in terms of observed
transitions not states; for instance as the regular language accepted by a fi-
nite automaton. The reference character of state is expressed formally by the
notion of bisimulation between alternative virtual systems or by final coalge-
braic semantics. We conjecture that this reflects the empirical phenomenon
of equifinality [18,2]: The observed behavior of a complex system at a simpler
interface can often be reconstructed by many different processes within the

117

HauHS, TRANCON Y WIDEMANN

NxI — 1

(foﬂo)[T(f“id)

1 1
Ap(N x I) ——— Ap(I)
Ap (4)
Fig. 4. Direct functional modelling (perfect information) with initial algebra

functional paradigm.

The basic tenet of coalgebraic modelling, in our sense, is to employ a
final coalgebra as a formal semantic domain, arbitrary coalgebras of the same
functor (models) as representatives of behavior and the anamorphisms as the
recursive assessment of the represented behavior. The distinction between
direct and inverse problems of coalgebraic modelling is less pronounced than
in the algebraic case, at least for the example of the logistic map.

4 Formal Modelling Scenarios

4.1 Direct Functional Modelling

Direct functional modelling is a scenario where the “true” dynamics of a sys-
tem are known. It solves the problem of prediction: From the observation
of a current system state, future states are derived by formal (automatic)
reasoning.

Claim 4.1 The initial algebra of the functor Ak, where B is the representa-
tion of system states, is paradigmatic for direct functional modelling.

4.1.1 Perfect Information

The simplest case of direct functional modelling assumes perfect information
about the precise current system state. Its application to the logistic map is
shown in Figure 4. (Recall that the labels of vertical arrows are shorthands as
defined in section 2.2.) The state space I is represented one-to-one. The left
hand side is the simplified canonical initial Af-algebra. The right hand side
is a Al-algebra that encodes the known dynamics of the system: Its carrier is
the state space I and its operation is specified by the step function f, (with
idy as the trivial base case).

Theorem 4.2 The catamorphism i for the operation specified by (f,,idy) solves
the problem of predicting a state n steps in the future, for r < 4.

i(n, x) = f(x)

The preceding scenario is a straightforward reconstruction of the iterated

118

HauHS, TRANCON Y WIDEMANN

step function f'. The graph of the function consists of pairs of initial and
final states, n steps apart; the intermediate states are forgotten. This can be
remediated by a simple refinement that replaces single states with stack-based
representations of trajectories.

Definition 4.3 We define the set of partial trajectories as the set of stacks
(strings constructed right-to-left) arising by iterated action of f, on any initial
state (P is the image functor).

o0

T, = | J P(push(f,))"(I') cT*

n=0
e This is the smallest set such that I' C T, and push(f,) : T, — T,.

The refined model is shown in Figure 5. The carrier of the right hand side
algebra is changed to T}, and the operations f, and id; have been replaced by
push(f,) and iny, respectively, where in4 : A — Al is the injection of singleton
strings.

Theorem 4.4 The catamorphism i for the operation specified by (push(f,,), inﬂ)
solves the problem of predicting all states up to n steps in the future, forr < 4.

i(n, x) = push(f,)"(z)

The following three cases refine the representation of state and dynamics
by replacing the state space I with progressively more complicated, derived
spaces and replacing the step function f, with an appropriate lifting to the
respective space. Note that the requirement r < 4 is lifted.

4.1.2 Imperfect Information: Nondeterminism

A moderately simple case of direct functional modelling with imperfect in-
formation assumes nondeterminism. Note that the term “nondeterminism”
is used in the usual sense of computer science, replacing the single precise
current system state by a set of potential current system states. It is not used
in the sense of philosophy, namely that a hidden variable, external source of

Nx] —" T,
(foﬁgoﬁ /{(push(fr)in)
AN xT) —— A{(T})
A]I (Z)

Fig. 5. Direct functional modelling (partial trajectories) with initial algebra

119

HauHS, TRANCON Y WIDEMANN

N x P(I) ———— P(I)

(fo:go)])[(P(fr),id)

Apay (N x P(I)) yrows Apay (P(D))

Fig. 6. Direct functional modelling (nondeterministic) with initial algebra

randomness or decision-making entity is involved in the transition from one
state to another.

The application of nondeterminstic direct functional modelling to the logis-
tic map is shown in Figure 6. The state space I is represented by its powerset
P(I). The left hand side is the simplified canonical initial A%;(H)—algebra. The
right hand side is an A%,(H)—algebra that encodes the nondeterministic dynam-
ics of the system: Its carrier is the set P(II) of sets of potential states and
its operation is specified by P(f,), the image of state sets under f,; a state
is a potential post-state of a step if and only if it is the image of a potential
pre-state under f,.

Theorem 4.5 The catamorphism i for the operation specified by (P(fr), id’[)(]l))
solves the problem of predicting a nondeterministic state n steps in the future.

i(n,Y) =P(f)"(Y)

The nondeterministic case can be extended to more sophisticated imperfect
information such as fuzzy sets of potential states.

4.1.3 Imperfect Information: Probabilism

Definition 4.6 Each continuous probability distribution on I is specified uniquely
by a cumulative distribution function (cdf), that is a continuous, weakly
mononotic function F : I — I with F(0) =0 and F(1) = 1.

e An [-valued random variable X is said to be distributed according to F,
written X ~ F if and only if F(y) = P(X <y) = P(X <vy).

 We write I for the set of cdfs on L.
Definition 4.7 The function f; : T — T is defined as

@) =FE—a@)+1-F}+a®) qr(y):{\/i—% ify <

0 ify >

IR

It is easy to verify that f,(F) is in fact a cdf on I. Note that + £ ¢.(y) is the
position of the vertical markers in Figure 1, right hand side.

120

HauHS, TRANCON Y WIDEMANN
—>
N x I I

(fo,90) (frid)

AN x T) TM A (I)

Fig. 7. Direct functional modelling (probabilistic) with initial algebra
Lemma 4.8 The function f, lifts a distribution over the function f,.
X~F = f.(X)~ fr(F)

Proof.

I (| I
p s> I e B v B o B« B

ﬁjwh—‘& 8 R
|
(=)
S
s
+
—_
|

~—
—~
<

~—

|

The application of probabilistic direct functional modelling to the logistic
map is shown in Figure 7. The state space I is represented by the set of
cdfs I. The left hand side is the simplified canonical initial Aﬁl«—algebra. The

right hand side is a Ail—algebra that encodes the probabilistic dynamics of

the system: Its carrier is the set T of state distributions and its operation is
specified by f,, the action of f, on the distribution of its argument.

Theorem 4.9 The catamorphism i for the operation specified by (f,,idy) solves
the problem of predicting a probabilistic state n steps in the future.

X~F = fH{(X)~in,F)

The probabilistic case can be extended to more complex, not purely con-
tinuous distributions.

121

HauHS, TRANCON Y WIDEMANN

4.2 Inverse Functional Modelling

Inverse functional modelling is a scenario where inferences about the dynam-
ics of a system (parameters, initial or boundary conditions) are drawn from
data recorded by external observation. It solves the problem of reconstruc-
tion: Empirical observations are reduced to possible causes (parameters and
conditions not directly observable, but consistent with the data).

Claim 4.10 The initial algebra of the functor Af, where A is the range of the
observable system property of interest, is paradigmatic for inverse functional
modelling.

We choose the binary partition ¢ as observable property. Its range is the
binary alphabet 2, hence the carrier of the canonical initial algebra is the
language of binary strings 2*.

Definition 4.11 The function w, : N x I — 2* is defined as

w,(n,z) = ¢*(push(f,)" ()

It maps the pair (n,z) to the stack of observed binary symbols for n consec-
utive system states starting with x. Informally,

wi(n,x) = c(f (@) - e(f (@)

e The range of w, for n > 0 is the set of partitioned partial trajectories

P(e)(T).

The inverse modelling task, given data w € 2* of length n and a parameter
value r, is to find some or all solutions of the equation w = w,(n,z). A
concise representation of the inferred information is given by a partial function
on I that is defined only for initial states consistent with the observed data,
and maps those to the final states after the observation. The solution is
straightforwardly constructed, dealing with one observed symbol at a time.

%
Definition 4.12_>We Wrii>e I = (I - I) for the space of partial functions on
I. The function f, : 2 x T — T is defined as

) if o(x) =
Flah)=filooh where fl,= {ﬁn(iﬁned if 28 %Z

_>
The operation f, refines and extends a given partial function h by excluding
initial states that are mapped by h to intermediate states inconsistent with a
given data symbol a, and taking all others one f,-step further.

The application of inverse functional modelling to the logistic map is shown
in Figure 8. The observation range is the binary alphabet 2. The left hand

122

HauHS, TRANCON Y WIDEMANN

Fig. 8. Inverse functional modelling with initial algebra

side is the simplified canonical A%-algebra. The right hand side is a A2-algebra
that encodes the elementwise refinement of inferglce: Its carrier, the “state
space” of inference, is the set of partial functions I . Its operation is specified
by f,, the action of f,. on the inference for its argument.

_>
Theorem 4.13 The catamorphism j for the operation specified by (f.,idy)
solves the problem of inferring initial conditions from finite data.

_ f(z) if w=w(n,x)
Jj(w)(z) = .
undefined otherwise
Corollary 4.14 The domain of j(w) is a sound and monotonic approximate
reconstruction of the initial state from finite data w, analogous to the method

of nested intervals: Let Y, (n,z) = dom (j (w,(n, x))) Then for all m,n >0

z €Y. (n,x) m<n = Y,(m,x) D Y. (n,z)

Here in the context of algebraic modelling, chronicles of events (observa-
tions of behavior) are used as means for identifying the initial and final state
or the dynamics of the system under study. In the equation

jlar...an) = felay 0 -0 frlan

however, an alternative view becomes apparent: The standard technique of
category theory is to study objects without reference to their internal structure
by studying the external structure of morphisms around them. Applied to
the model above, this means studying the set of chronicles without reasoning
about points of the transition functions they describe via j. This allows us
to consider the limit n — oo, and represent complete, infinite behavior, for
which the interpretation as end-to-end transition functions breaks down. This
step takes us to the interactive paradigm on the philosophical level, and to
coalgebra on the mathematical level.

123

HauHS, TRANCON Y WIDEMANN

Fig. 9. Direct interactive modelling with final coalgebra

4.8 Interactive Modelling

Interactive modelling is a scenario where the observable properties of a system
are represented without referring to any particular process as their cause.
It solves the problem of assessment: System states are no longer observed
directly but classified according to their potential (future) behavior.

Claim 4.15 The final coalgebra of the functor A2, where A is the range of
the observable system property of interest, is paradigmatic for interactive mod-
elling.

For r» > 4, the logistic map is not bounded by the interval I; we treat the
case that the interval is exceeded as undefined. The set dom(f,) of points
for which a single step is defined is easily characterized, but the set of points
for which unboundedly many steps are defined is nontrivial. The following
characterization and model are derived from [16].

Definition 4.16 The set J, such that f/'(z) € [for all z € J, and n > 0 is
(P is the preimage functor)

Js=NPUrmcr

e This is the largest set such that J. C 1 and f, : J. — J,.
o If r <4 then J, =I; otherwise J, is a complicated (fractal) subset of 1.
e Note the duality to 7T, in Definition 4.3.

Lemma 4.17 Forr > 4, the structure (J,,~y) where 7 is specified by (c, f.) is
a final A%-coalgebra.

Proof. Section 18 of [16] gives an isomorphism ¢ between certain coalgebras
over the category of complete metric spaces. Forgetting the metric structure,
the following equations remain.

hdoc=c¢ tloc=co f,

:idQOC

124

HauHS, TRANCON Y WIDEMANN

Fig. 10. Inverse interactive modelling with final coalgebra

Simple calculation yields

110 (hd,t1) 0 & = ((idy x &) +idy) 011 0 {c, f,)

——
(hd,t1)
=A% (&)ouole fr)
(e.fr)

That is, ¢ is a homomorphism, and hence isomorphism, between the coalgebras
depicted in Figure 9. Since the right hand side is final, the left hand side is
also final, and the isomorphism is the anamorphism k.]

Theorem 4.18 The anamorphism k for the operation specified by (c, f,) solves
the problem of representing the complete future behavior at the interface de-
fined by c. Representations of the form k(x) do not contain any reference to
the parameter r or the initial value x.

o(f()) = hd (11" (k(@))) = k(@) (n)

This representation allows complete, infinite trajectories to be specified in
the form k7'(s), in terms of a binary stream s € 2*. Empirical, finite data
of behavior at the interface, formally collected using w,(n,z), is generally
not sufficient to specify a trajectory uniquely in this way—an instance of the
epistemological problem of induction; there is no logically safe procedure for
obtaining nontrivial universal empirical truths [7,14]. This leads to a dual of
the problem of measurement precision in state-based modelling, namely the
problem of complete chronicles of behavior. A collection of data is complete
in this sense if extrapolation from the observed strings to the possible streams
is safe under given boundary conditions.

We have noted in Definition 1.2 that the operation (c, f,) is bijective on
both I and the subset J,. for » > 4. Incidentally, the latter is the operation
of the A2-coalgebra depicted on the left hand side of Figure 9. Since the
operation of the final A3-coalgebra is also bijective (by Lambek’s Lemma), we
may reverse the vertical arrows to arrive at the diagram shown in Figure 10.
Note that the distinction between algebra and coalgebra is rather blurred in
this scenario.

125

HauHS, TRANCON Y WIDEMANN

The operation {c, f,)~' : 2 x J, — J, models a non-autonomous dynamic
system with binary input in each step. This input may be interpreted as the
nondeterministic choice of an agent, either internal or external to the system.
Under this interpretation, prediction is no longer a valid problem. But this
apparent restriction is actually a trade-off: On the upside, it becomes possible
to investigate actually observed, contingent behavior in virtualized form in
terms of subcoalgebras of the final coalgebra. Laws regarding the presence or
absence of certain patterns in these subsystems, described by a theory in modal
logic, reflect strategies in the actual system, the dual of natural laws. Examples
of the relevance of strategies, both literally and figuratively, abound in ecology:
Organisms prefer favourable and avoid hostile environments, natural selection
is most effectively described in strategic terms, ecosystem use is governed
by economic rationale and social norms; cf. the domestication example in
section 1.1.

5 Conclusion

We have demonstrated that for the simple logistic model, the relationship
between the functional and the interactive modelling paradigm can be made
formally precise as the algebra—coalgebra dualism. Since dualism is not equiv-
alence, the key issue for further research is where the two approaches deviate,
both on the empirical level regarding the role of data and on the theoretical
level regarding the role of formalisms. The keywords of both paradigms are
given in Table 1 in synopsis.

In ecology and environmental sciences, the functional paradigm is prevalent
but not unconditionally successful [13]. Therefore, the added value of interac-
tive models is of particular interest. Many essential features of living systems
are naturally characterized in terms of behavior, e.g. feeding, reproducing,
growing, evolving. Being alive is not a state property in the functional sense,
as the development towards artificial life has shown [3]. Coalgebraic modelling
facilitates the formal organization of chronicles, as opposed to measurements;
this may prove an important extension in this context.

Interactive theories formulated in coalgebra not only have a different for-
mal presentation, they encode different pragmatics. On the functional side,
problems of prediction and reconstruction are solved by searching for laws
that govern the dynamic mechanism. On the interactive side, problems of
assessment and management are solved by searching for strategies, norms or
intentions that govern the behavior of agents. The transition from the for-
mer to the latter paradigm will not solve the notoriously difficult problems
about explaining ecosystems, but offers the opportunity to formalize models
of sustaining ecosystems.

126

HauHS, TRANCON Y WIDEMANN

Table 1
Modelling paradigms and keywords
Paradigm Functional Interactive
Ontological Basis state behavior
Origin of
Formalisms/Metaphors physics computer science
simple complete
Empirical Reference building blocks behavior history
w. invariants w. utilization record
Tests prediction assessment
reconstruction planning
Mathematic Structure algebra coalgebra
Logic equational modal
Theory Example energy conservation sustainable use
Application Domains geosciences simulation, games
weather forecast ecosystem management

5.1 Related Work

The inspiration to use the logistic map to demonstrate the potential of the
algebra—coalgebra duality for scientific modelling has been taken from [16],
where the result that forms the foundation of our interactive modelling sce-
nario is given rather in passing.

The characterization of functional and interactive modelling as commuta-
tive diagrams has been given in [17], where we have criticised the situation of
theoretical ecology from the perspective of software science.

The technique of realizing (co)recursive operations as cata-/anamorphisms
of simpler operations has been adapted from the Squiggol approach to con-
structive functional programming; confer the famous banana notation from [11].

References

[1] Berryman, A., The origins and evolution of predator—prey theory, Ecology 73 (1992), pp. 1530—
1535.

[2] Beven, K. J., A manifesto for the equifinality thesis, Journal of Hydrology 320 (2006), pp. 18—
36.

127

HauHS, TRANCON Y WIDEMANN

[3] Brooks, R., The relationship between matter and life, Nature 409 (2001), pp. 409-411.

[4] Crutchfield, J. P., Observing complexity and the complexity of observation, in: H. A.
Atmanspacher and G. J. Dalenoort, editors, Inside wversus Qutside, Springer Series in
Synergetics, Springer-Verlag, Berlin, 1994 pp. 235-272.

[5] Ehrig, H. and B. Mahr, “Fundamentals of Algebraic Specification I. Equations and Initial
Semantics,” Springer-Verlag, Berlin, 1985.

[6] Frigg, R., Fiction and scientific representation, in: R. Frigg and M. Hunter, editors, Beyond
Mimesis and Nominalism: Representation in Art and Science, Springer-Verlag, Berlin, 2009 .

[7] Goodman, N., “Fact, Fiction, & Forecast,” Harvard University Press, 1955.

[8] Hauhs, M. and H. Lange, Foundations for the simulation of ecosystems, in: J. Lenhard,
G. Kiippers and T. Shinn, editors, Simulation: Pragmatic Constructions of Reality, number 25
in Sociology of the Sciences Yearbook, Kluwer Academic Publishers, Dordrecht, 2006 pp. 57-77.

[9] Jacobs, B., Ezercises in coalgebraic specification, in: Algebraic and coalgebraic methods in the
mathematics of program construction, Springer-Verlag, New York, 2002 pp. 237-280.

[10] May, R. M., Simple mathematical models with very complicated dynamics, Nature 261 (1976),
pp. 459-467.

[11] Meijer, E., M. Fokkinga and R. Paterson, Functional programming with bananas, lenses,
envelopes and barbed wire, in: Proceedings of the 5th ACM conference on Functional
programming languages and computer architecture (1991), pp. 124-144.

[12] Murray, J. D., “Mathematical Biology,” Springer-Verlag, Heidelberg, 1989.

[13] Peters, R. H., “A Critique for Ecology,” Cambridge University Press, 1991.

[14] Popper, K. R. and D. W. Miller, A proof of the impossibility of inductive probability, Nature
302 (1983), pp. 637-688.

[15] Rosen, R., “Life Itself: A Comprehensive Inquiry into the Nature, Origin, and Fabrication of
Life,” Columbia University Press, New York, 1991.

[16] Rutten, J. J. M. M., Universal coalgebra: a theory of systems, Theor. Comput. Sci. 249 (2000),
pp. 3-80.

[17] Trancén y Widemann, B. and M. Hauhs, Programming as a model for the theory of ecosystems,
in: J. Knoop and A. Prantl, editors, Post-Proceedings of 15. Kolloquium Programmiersprachen
und Grundlagen der Programmierung, Technische Universitdt Wien, 2009, to appear.

[18] von Bertalanfly, L., “General Systems Theory: Foundations, Development, Applications,” 1968.

128

CMCS 2010

From Coalgebraic to Monoidal Traces

Bart Jacobs

Institute for Computing and Information Sciences,
Radboud University of Nijmegen
P.O. Bozx 9010, 6500 GL Nijmegen, The Netherlands
Email: bart@cs. ru. nl URL: wuww. cs. ru. nl/ ~bart

Abstract

The main result of this paper shows how coalgebraic traces, in suitable Kleisli categories, give rise to
traced monoidal structure in those Kleisli categories, with finite coproducts as monoidal structure.
At the heart of the matter lie partially additive monads inducing partially additive structure in
their Kleisli categories. By applying the standard “Int” construction one obtains compact closed
categories for “bidirectional monadic computation”.

Keywords: Coalgebra, execution trace, monoidal trace, iteration, Kleisli category

1 Introduction

The notion of trace occurs prominently in the (classical) categorical work on
traced monoidal categories [13]. It generalises the trace operator in linear
algebra and captures fixed points for operations with feedback. Recently,
also a coalgebraic approach to traces emerged [12], where traces are maps in
Kleisli categories induced by monads that capture the observable behaviour
in for instance sequences of (monadic) computations. Such traces are often
described by removing states from execution traces. Naturally one wonders
if there is a connection between these monoidal and coalgebraic traces. This
paper addresses this question and shows how coalgebraic traces give rise to
monoidal traces. The word ‘trace’ thus different meanings in this context, but
hopefully without generating too much confusion.

The way this result is obtained is via the work of Haghverdi [9], where it
is shown that partially additive categories (see also [5]) are traced monoidal,

* ENTCS Proceedings of Coalgebraic Methods in Computer Science (CMCS 2010).

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

bart@cs.ru.nl
www.cs.ru.nl/~bart

JACOBS

via what is called the execution (or trace) formula. Thus the paper proceeds
by proving that under certain assumptions on a monad 7', firstly the Kleisli
category of T' is such a partially additive category, and secondly the execution
formula coincides with the coalgebraic trace. The technical core of the paper
involves the identification of the notion of a “partially additive monad”, see
Definition 4.3, and the proof that the Kleisli categories of such monads are
partially additive.

We describe the organisation of this paper and at the same time the flow of
developments. The paper starts with an elementary initial algebra in Section 2
that gives rise to a final coalgebra in suitably order-enriched Kleisli categories
in Section 3, and thus to coalgebraic trace semantics, following [12]. For this
particular coalgebra it also yields an iteration operation as in [8,6]. Section 4
then shows that what we call partially additive monads in such a setting ad-
ditionally yields partially additive structure II on Kleisli homsets, as studied
earlier in [5]. They enable us to obtain the main result in Section 5, namely
that Kleisli categories of suitable monads, with finite coproducts, are traced
monoidal, via [9]. The “Int” construction from [13] can then be applied and
yields in Section 6 new categories Bd(T") of “bidirectional monadic computa-
tions”, with connections to game semantics and quantum computation. This
forms a topic of its own that will be further investigated elsewhere. Through-
out the paper there is a series of running examples, consisting of powerset,
lift, distribution and quantale monads. The latter eventually yields examples
of strongly compact closed categories.

2 A basic initial algebra

Assume C is a category with countable coproducts, written as [[,.; X; with
coprojections k;: X; — Hie ; X;. In order to further fix the notation, we shall
write [|x:0 — X or simply []: 0 — X (without subscript) for the unique arrow
(the empty cotuple) out of an initial object 0. The two coprojections for a
binary coproduct are written as X —=» X +Y < Y, with cotupling of
f:X = Zand ¢:Y — Z denoted by [f,g]: X +Y — Z. Hence on morphisms,
h+k=keoh,k, okl

This C with its finite coproducts (0,+) yields a symmetric monoidal cat-
egory (SMC). In general, for an SMC (A, I, ®) we write the familiar isomor-
phisms as:

(1) XoYeZ2)-2-XeY)oZ Xol-L-X XoY-2-YoX

A copower I - X = [[,.; X comes with coprojections x;: X — I - X and
cotupling [fi]ies: I - X — Y for an I-indexed collection of maps f;: X — Y.

Proposition 2.1 Let C have countable coproducts, as above. For a fixed ob-

130

JACOBS

gect Y € C, the functor Y + (—):C — C has the copower N-Y =[], .Y as
matial algebra, with structure map:

Y +N-Y = N.Y

Proof For an arbitrary algebra [a,b]: Y + X — X we define f:N-Y — X as
f =[b" o a]pen. It forms the unique algebra homomorphism from & to [a, b].
0

The copower object N-Y may be understood in the standard way (see [16])
as the colimit of repeated application of the functor Y +(—) to the initial object
0€C, as in:

Y +] Y+(Y+[]%.Y

0 2-Y

1-Y

We write 0-Y =0 and (n+1)-Y =Y +n-Y. The resulting colimit cone
A:n - Y — N-Y is then defined as:

(2) M =[:0—N-Y and N1 = [k, \]:Y+n Y —N-Y

The “twist” in this definition of A, is needed to ensure that the “oldest”
element in n - Y is put at the first position in N - Y. Indeed, in this way we
get A\p11 0 k. = A, for the chain maps k,:Y,, = Y,.1.

3 A final coalgebra in a Kleisli category: trace seman-
tics

We now assume that our category C (with coproducts) carries a monad 7: C —
C, with unit and multiplication . We shall write /(T for the resulting
Kleisli category, with forgetful functor K¢(T') — C and left adjoint J:C —
KO(T). Trivially, (T inherits coproducts from C. They behave like in C
on objects, but have slightly different coprojections and coproducts of maps.
In order to disambiguate them we shall write a dot for operations in a Kleisli
category, as in:

gef=poTgof
/%Jg:J(Hg) — 1 0 Ry
h+k = [T(k¢) o h,T(k,) o k], sothat J(a+0b) = J(a)+ J(b).

This dot-notation is meant to prevent confusion. We shall use it with prudence
and shall write for instance identity maps in Kleisli categories simply as idx

131

JACOBS

and not as idy = 7x. The (obvious) identities g © J(f) = g o f and J(g) o
f=T(g) o f are often used.

For an object Y € C we thus also get a functor Y + (—): KU(T') — KU(T).
Its initial algebra is the copower N - Y| by Proposition 2.1, but in K¢(T'). Its
final coalgebra will be of more interest here.

In [12] a general framework is developed for generic trace semantics, which
works for coalgebras of the form X — TF X, where T is a monad and F an
endofunctor. The main result in [12] says that, under suitable order-theoretic
assumptions, the initial algebra in C yields a final coalgebra in IC¢(T). Here
we shall only be interested in the special case where the functor F' is of the
form Y + (—).

Proposition 3.1 (From [12]) Let T be a monad on a category C with co-
products. Assume that the Kleisli category KU(T') is depo-enriched, that (Kleisli)
homsets have bottom elements L which are left strict (i.e. satisfy L o f = 1)
and that cotupling is monotone (i.e. [—, —| preserves the order in both coordi-
nates).

The initial algebra &Y + N-Y =+ N-Y in C from Proposition 2.1
then yields a final coalgebra J(67V):N-Y =5 T(Y + N-Y) of the functor
Y + (=):KUT) — KUT). Concretely, this means that for every coalgebra
c: X — T(Y +X) there is a unique map tr(c): X — T(N-Y') forming a unique
coalgebra homomorphism in the Kleisli category KU(T) as in:

(3) y o x i)y oy
c | J(e1
TR

Intuitively, this trace map tr(c) sends an element z € X to the “set” of
those (n,y) € N-Y for which ¢ reaches y € Y from z in n cycles through X,
see the examples below.

We shall write ¢# = V o tr(c): X — Y in KA(T) for the “iterate” of c, like
in [8,5]1, where V = [id]en: N+ Y — Y is the codiagonal in K/(T). It yields
an operator between Kleisli homsets of the form:

KOT)(X,Y + X) =) Ke(T)(X,Y)

Clearly, such an iterate ¢ does not keep track of the number of rounds that
are made to reach a result in Y—Ilike tr(c) does.

Here we omit the proof and refer to [12] for details but we shall explicitly
describe the definition of the trace map tr(c) so that we can use it later on. It

! In [8,5] the notation ' is used, instead of ¢, but we prefer to reserve the dagger t for
involutions, see Lemma 5.4.

132

JACOBS

uses the fact that the initial object 0 € C is final in Kleisli categories as in the
proposition, with L: X — 0 in /C/(T") as unique map (see also Lemma 4.1 (1)
below). This allows us to define a sequence of maps ¢,: X — n-Y in K¢(T)
as:

() co=1: X—0=0-Y
Cop1 = (id+c)oc: X —Y+X —Y+n-Y=Mn+1)Y

Then we can define the trace map as join:
(5) tr(c) = \/HENJ(A,,) © Cn

in the Kleisli homset of maps X — N .Y with A, as defined in (2).

Example 3.2 We shall consider what the above result amounts to for our
four main examples for the monad 7', namely P, D, £ and Q) on Sets.

(1) The Kleisli category IC/(P) of the powerset monad P:Sets — Sets
is the category of sets with relations as arrows between them. Homsets are
ordered by pointwise inclusion, and form complete lattices. Commutation of
diagram (3) means that for a coalgebra c: X — P(Y + X)) the resulting trace
map tr(c): X — P(N-Y) satisfies:

(n,y) € tr(c)(zo) & Fz1, ..., 2, € Xoxy € () A oo ATy € c(xn) Ny € c(z4)
& dwy,.o,x, € XN, Tig € c(m) Ny € c(y,)

where we have left out the coprojections kg, k, for simplicity.

(2) For the lift monad £ = 1+ (—) we write L € 1+ X for the bottom
element L € 1 and up(z) € 1+ X for an element z € X. These sets 1 + X
are “flat” depos. For ¢: X — 1+ (Y 4+ X) we then get a trace map tr(c): X —
1+ N-Y with:

tr(c)(xo) = up(n,y) & Jry,..., 2, € X. A\, c(xi) = up(@iy1) A c(x,) = up(y)

(3) We shall write D for the (sub)distribution monad on Sets given by:

D(X) ={e: X = [0,1] | Xpex plz) < 1}.

Notice that we do not require that such ¢ € D(X) have finite support (i.e. have
finitely many elements = € X that are not mapped to 0). The sets D(X) are
dcpos with pointwise order and bottom element 1 = Az.0. The Kleisli maps
X — D(Y) can then also be ordered, pointwise.

For a coalgebra c: X — D(Y + X)) we obtain a trace map tr(c): X — D(N-

133

JACOBS

Y') as in diagram (3), given explicitly by the following probability formula.

() @wo)(ny) = Y elwo)(en) - elwam)(2a) - elan)(y)

L1y €X

= Z H c(x:)(iv1) - c(xn)(y)

T1,..., rpn€X 1<n

(4) Let @ be a quantale, i.e. a complete lattice with a monoid structure
(1,-) where multiplication - preserves suprema \/ in both arguments (see [14]).
The mapping X — Q¥ is then a monad on Sets with unit and multiplication
given by:

1 ifa' ==
r—s\7'. O—— 1. \/ D(p) - p(7)
1 otherwise peQX

A function f: X — Y yields QF: Q%X — QY by ¢ — \y. Vaei-1(y (). The
powerset monad P from (1) is a special case for () = 2.

For a coalgebra c: X — QY diagram (3) now yields a trace map tr(c): X —
Q™Y that formally resembles the previous one:

tr(c)(zo)(n, Tni1) = \/ HC(%)(%‘H)

T1,.Zn€X <N

We collect some basic results about coalgebraic traces tr(c) and iterates
.

Lemma 3.3 In the situation of the previous proposition:

(i) Uniformity: if f is a homomorphism of coalgebras ¢ — d in K¢(T),
tr(c) = tr(d)o f and so ¢ =d* o f.
(i) Naturdlity in Y: for g:Y — T(V),
tr((g+id)oc) =N-gotr(c) and ((g+ id)oc)? =goct.
(iii) Dinaturdlity in X: for f:U — T(X),
tr(co f) =tr((id+ f)eoc)of and (co f)# = ((id+ f) o c)# o f.

Proof Everything follows from (the uniqueness part of) finality. For instance

134

JACOBS

the second point involves the diagram:

ydENgy Ny
+
Y

Il

o

N-g

N-V
((g +id) © c)

The diagram on the right commutes by definition of N - g. U

4 Additive structure on Kleisli homsets

We start this section by some preparatory observations about the structure
induced by order on Kleisli homsets, making coproducts behave a bit like
products (i.e. biproducts). It will lead to a description of additive structure
(certain sums) in such homsets, which we shall write with a separate symbol
IT in order to prevent confusion with the sum f + g = [k; o f, K, 0 g] induced
by coproducts +. The main contribution of this section lies in the notion of
partially additive monad, see Definition 4.2, and in the result that the Kleisli
categories of such monads form partially additive categories.

The first point of the next lemma has already been used, but will be
repeated here for completeness.

Lemma 4.1 Assume C is a category with countable coproducts. LetT:C — C
be a monad whose Kleisli homsets KUT)(X,Y) = C(X,T(Y)) are partially
ordered.

(i) If each Kleisli homset has a bottom element 1: X — T(Y') which is left
strict (i.e. satisfies L o f = 1), then 0 is a final object in KU(T). Since
0 is obviously initial in KU(T'), it becomes a zero object (or “nullary”
biproduct).

(ii) If L is “bi-strict”, i.e. is preserved by both pre- and post-composition in
IC((T'), then there are natural “projection” maps pj:[[,c; Xi — T(X;)
satisfying:

el

pjek; =14d and pjok, =L forj#m.

In the binary case we shall write py, p,, just like for coprojections kg, K.

Proof (1) There is only L: X — 0 in K/(T') because each f: X — 0 satisfies:
f=feidy=foe L= _1, by left strictness.

135

JACOBS

(2) One takes p; = [p;jlier:]_LEI X; = T(X;) where p; ; = nx; and p;; = L
for i # j. Then clearly p; © k; = p; o k; = p;; = 1, which is the identity in
ICU(T'), and p; © &y, = L for j # m. Naturality follows from (right) strictness.

O

For the formulation of the following notion it is convenient to assume that
our category C has set-indexed products. The definition can be given without
such products, using “jointly monic families”. But that only makes it harder
to understand the matter.

Definition 4.2 Assume projections p; as in the previous lemma, for a monad
T on a category C with countable coproducts and products. By be, for ‘bi-
cartesian’, we denote the following map.

b\ .
6 be= (T X)~PEL L, T(x)) where 1 = o T(p)

The monad T is called partially additive if these bc’s form cartesian natu-
ral transformations with monic components. This means that all naturality

Squares:
(1, x) el gy vy

bCI Ibc
1, 7 ATV 7y

are pullbacks in C, for collections of maps f;: X; — Y; in C.

The monad 7" may be called additive if these bc’s are isomorphisms. Such
monads are investigated further in [7]. The next definition of sums on Kleisli
homsets is based on [5].

Definition 4.3 Let T be a partially additive monad on C, as in the previous
definition. For countably many f;: X — Y in KU(T) write ;e f; = Vi ©
b: X — Y in KU(T) if there is a “bound” map b: X — T(1-Y) =T(]],.;Y)
with p; © b= f;.

This bound property can be expressed as: bc o b= (fi)icr: X = [[,c; T(Y)
T(Y)!. By the mono requirement on be there is at most one such bound b.

We may observe that certain joins always exist: for a map f: X — T(Y +
Z), one has f = (kg © pp o f) 1 (k, © p, © f), via the bound (4, + #,) ©
[X=>T(Y+2)+ (Y +2)).

Before further investigation of this sum II we check what it means in the
examples.

Example 4.4 We shall consider the powerset monad as special case of the
quantale monad Q7). namely for) = 2. For convenience, we consider the
binary sum II only.

136

JACOBS

(1) For the lift monad L, recall that Kleisli homsets are flat orders, in
which very few joins (or sums) exist. The projections Y; + Y, — 1+ Y; are
given by p;(w) = up(y) iff w = k;(y), for i € {¢,r}. For b X — 1+ (Y +Y)
one has:

up(y) if b(x) = up(ky)
(pi @ b)(z) = .
1 otherwise.
Hence b is completely determined by these p; © b, so that projections are
jointly monic—and be from (6) is monic. The pullback property for bc is left
to the reader.

Now if fi: X — 14 Y are given, and we have a bound b: X — 1+ (Y +Y)
with p; @ b = f;, then we know:
o if fy(x) = up(y), then (p, @ b)(x) = up(y) so that b(z) = up(key) and thus

(pr @ b)(x) = L, so that f.(z) = L.

o if f.(z) = up(y), then similarly f,(z) = L.
The existence of this bound b thus guarantees that both fy(z) # L and f,.(z) #
1 does not happen. Hence their join exists, namely the non-bottom value, if
any. This value is given by V o b.

(2) The Kleisli category K¢(D) of the subdistribution monad D inherits
its pointwise order from the unit interval [0, 1]. This interval has joins, but it

turns out that II describes the partially defined + on [0, 1]. The projections
Y, +Y, = D(Y;) are given by p;(w)(y) = if w = k;y then 1 else 0. Thus for

bX = DY+ Y) we have (p; © D)(@)(5) = ey sy pilt)(y) - bla)(w) —
b(x)(kiy). And be:D(Y, +Y,) — D(Y;) x D(Y,) is given by be(p) = (¢ o
K¢, © Ky). It is thus clearly monic.

For the pullback property for be, assume a collection f;: X; — Y; together
with maps (ay, a,.): A = D(X,) x D(X,) and 8: A — D(Y; +Y,) satisfying
D(f;) o a; = p} o . The only possible mediating map v: A — D(X, + X,)
is defined as v(a)(ker) = ap(a)(z) and vy(a)(k,z) = a,(a)(x). We have to
check that 7(a) is a subdistribution. This follows from because ((a) is a
subdistribution:

1= 2. 8(a)(2) = Xyey, Bla)(key) + 2 ey, Bla)(kry)
=Y yev, 07 0 B)(a)(y) + 2, ey, (97 0 B)(a)(y)
= > yey, (P(fe) e ar)(a)(y) + >3- ey, (D(fr) © ar)(a)(y)
= 2yevs 2uaes;) 4@ (@) T 2yey, 2aesy) 4r(0)(@)
= Dex, e(a)(x) + 2 e x, on(a)()
= ZweXHXT (a)(w).
137

JACOBS

Further, if f;: X — D(Y") are given with f; = p; © b, then:

(Lo f)(@)(y) = (Veob)(@)(y) = Xpeyry V(W)(y) - b(x)(w)
= b(x)(key) + b(x)(K,y)
= fo(z)(y) + fr(z)(y).

(3) For the quantale monad Q) we have projections Y, + Y, — QY
given by p;(w)(y) = if w = Ky then 1 else L, so that for b: X — QY'Y we
get (pi © b)(@)(y) = Vueysy Pi(w)(y) - b(x)(w) = b(z)(xiy). The map be
is in this case an isomorphism QY =5 QY x Q¥, so that Q) is an
additive monad. And if the f; have a bound, then their sum is given by union:

(feIL fi)(x)(y) = fe(x)(y) V fr(2)(y).

These examples illustrate that the sum operation II is determined by
(Kleisli) composition, and hence ultimately by the monad involved.
We continue with some basic properties of II.

Lemma 4.5 In the situation of the previous definition, one has:
(i) II is preserved by both pre- and post-composition;
(ii) The sum of the singleton family {f} if f itself; the sum over the empty
family is L;
(iii) If cotupling [—,—] is monotone, then f; < Ilc; fi;
(iv) Assume the Kleisli category is Depo-enriched. Let I be a countable set
such that ;e f; exists for each finite subset J C I. Then Ic;f; exists.

Proof (1) Suppose 11, f; exists for f;: X — T(Y), say with bound b: X —
T(I-Y). For g:U — T(X) the composite b o g:U — T(I -Y') is obviously a
bound for f; ® g and yields IL;(f; o g) =V ebo g= (II;f;) © g.

Similarly, for h:Y — T(U) the map [- h @ b is a bound for h © f;, by
naturality of projections, so that Il;(he f;) =V el -heb=hoVoeb=ho
(i f3)-

(2) The map f is a bound for {f} and L is a bound for the empty family.

(3) If cotupling is monotone we get p; < V and thus for a bound b,

Ji=pieb<Vob=IIf;.

(4) Assume for convenience that our index set is N. Let f,,: X — T(Y),
for n € N, be a collection such that the sum II exists for each finite subset.
There are sums fo I f; IT--- I f,,_4, say via bound b,: X — T'(n-Y). It is
not hard to see that the collection &; @ fi: X — T (N-Y), for ¢ < n, also has a

138

JACOBS
bound, namely b, = (fg + -+ + fp_1) @ b,: X — T(n-N-Y). We then define
gn =V ol = (fge fo) I+ I (fipr© fo1): X — N.Y.

This yields a monotone collection g, < g,+1 by the previous point. Hence we
get amap f =\, ¢,: X = N-Y as directed join, which is the intended sum.
O

One further property of II is required, which is sometimes called “partition
associativity”. It is non-trivial and depends on the pullback requirement from
Definition 4.2.

Lemma 4.6 If a (countable) collection I can be written as disjoint union
I = Upe Ik, then icr fi exists if and only each sum fi, = Wcy, fi exists and
Wicr fi = Uper fr-

As a result, 11 is commutative and associative.

Proof If I = |J, o Ii is a disjoint union, then I -Y =[], _, I - Y. Hence
it is more convenient to consider a collection of maps f;;: X — Y for k € K
and ¢ € I.

In one direction, suppose b: X — [[, .5 Ix - Y is bound for the collection
(fri), sothat fr; = p; @ pp @ b. Write by, = py, © b: X — I;.-Y. It forms a bound
for the collection (fx;)ier,, since p; © by, = p; © pr, © b = f;, for each i € I,. The
sums fy = ey, fi = Vi, © by have a bound a = ([[,cx Vi) o 0: X — K- Y,
since for each k € K,

Pe©a = pp© (e Vi) ©b =V opob by naturality of projections
= Vlk o by = Hielkfi = fr

Hence Hyeg fi, exists as Vg © a = Vg © ([{iex Vi) ©0= Vo b= f;.

For the other direction assume that the sums f, = Lies, fr; and ek fr
exist; we need to show that also Iyeserfr, exists—and is equal to Hyex fi.
So let by: X — I - Y be a bound for the collection (fy;)ics, and a: X —
K -Y be a bound for these f, = Hielk fi = Vi o by. We need a bound
c: X = [lex Ik - Y, which we obtain via the following naturality pullback, as
required in Definition 4.3.

X \
LLHI L Vi3 g
(br) ker bCI o Ibc
Moo 71 vy TV oy

139

JACOBS

Hence the mediating map c is a bound for these b, and thus for the f;;. The
resulting sum is: Hyegier, fri = Vi © [iex Vi, © ¢ = Vi © a = ek fr. O

We are now ready to collect the requirements that we need in this paper.

Requirements 4.7 The category C is assumed to have countable coproducts
and the monad T:C — C satisfies:

(i) its Kleisli category KU(T') is Depo | -enriched, so that Kleisli homsets have
(countable) directed joins and a bottom element, which are preserved by
composition;

(i) this Kleisli category also has monotone cotupling;

(iii) the monad T is partially additive, as in Definition 4.3.
 From Lemma 4.5 we may now conclude a basic result.

Proposition 4.8 Let category C with monad T satisfy Requirement 4.7. The
Kleisli category ICU(T') is then partially additive. Further, it is additive (has
all countable sums 11) iff it has countable strict biproducts. O

For what it precisely means to be partially additive we refer to the liter-
ature [5]. Here we shall simply use that Kleisli homsets have certain sums
IO, with properties as described in Lemma 4.5. The projections p; make the
Kleisli categories into what are called ‘unique decomposition categories’, see
also [10]. The “further” part of the proposition is [9, Theorem 3.0.17]. It
applies to the Kleisli category of quantale monads.

5 Kileisli categories are traced monoidal

Now that we have seen additive structure on Kleisli homsets we can conclude
from [9] that we have traced monoidal structure in these Kleisli categories.
But before we do so we return to Section 3 and re-describe the iterate ¢ of
a coalgebra ¢ in terms of the newly discovered sums. This will be used (in
the proof of Theorem 5.2) to show that the induced traced monoidal structure
coincides with the coalgebraic trace.

Lemma 5.1 For C, T satisfying Requirements 4.7 the iterate ¢ of a coalgebra
c: X = T(Y + X), from Proposition 3.1, can be described as sum:

c =cpollenc® = cpoc,

where cp =ppoc: X = T(Y) and ¢, =p. o c: X = T(X), and h* = I1,,en h".

Proof Recall that the iterate is defined as ¢ = V o tr(c): X - N Y — Y.
Hence it is a sum II by construction. So we only have to check that p; ©
tr(c) = ¢y © ci, for i € N. But before we can do so we need a better handle on

140

JACOBS

the projections p;:n - Y — Y in KU(T), for i < n. They are given inductively
by:

(Mpo=[n, L]: Y +n-Y —T(Y) and pi=[L,p:Y+n-Y —T)

Then it is not hard to see that p; o A\, = p,__1:n-Y — T(Y), for i < n, and
pi o\, = L, for i >n.
Next we use the explicit description of tr(c) as directed join from (5):

piotr(c) =p; o (\/neN J(An) © cn>
- \/nENpi © J(/\n) ©Cp

o Pric ©Cp as we have just seen, where i < n
€
S .
The equation (x) is obtained by induction on n, using (4). O

The main result of this paper now shows how coalgebraic traces in Kleisli
categories yield a traced monoidal structure with respect to this monoidal
structure (0, +). The result is actually a direct consequence of Proposition 4.8,
using [9, Theorem 3.1.4] (which dualises Hasegawa’s result that uniform fixed
point operators are uniform traces [11]). We should point out that the induced
trace structure is of a very special kind, since the monoidal structure consists
of coproducts, and the obtained trace operators are uniform. Hence it can
equivalently be presented in terms of iteration operators a la Bloom—Esik,
i.e. as the duals of uniform fixed point operators, see [6]. So we are basically
looking at an instance of Elgot iterative theories, see [4].

Theorem 5.2 For C and T satisfying Requirements 4.7, the Kleisli category
KU(T) with (0,+) is traced monoidal (see [13]). For a map f: X +U — Y +U
in KU(T) we define Tr(f): X — Y as the composite ¥V © tr(f) © ky = f# o 1y
at the bottom in:

Y4+ (X+U)-=---= =Y +N.Y
~ A
f = (Zdy “i‘ I%r) 0] f R %J(ﬁl)
X K X+U___—t£(z)__—>N-Y v .
\\\ f#\:/
130 I ——

This monoidal trace operation Tr then satisfies standard requirements from [13],
and also the following special properties.

Identity Tr(idx.y) = idx;
141

JACOBS

Uniformaity Tr(f) = Tr(g), of (id+ h) o f=go (id + h),
for X+U—-Y+U, g X+V =>Y+Vand h:U =V (see [11]).

Proof The result follows from the properties of iteration (—)#, see [9]2,
once we know that the definition of trace in [9] coincides with the coalgebraic
one described in the theorem. This follows from Lemma 5.1 using a matrix
description of f: X +U — Y 4+ U. Write fi; =mj o f o &y, for i,5 € {{,r}, so
that:

xteryy pdepm
X——T(U U——=T((U
frf () frr ()
We have to show that Tr(f) = f# © kg as defined above can be written as the
(regular) expression fy I1 fo. f. fre that is used in [9], and called the execution

(or trace) formula. This follows from the description of iteration (—)# in
Lemma 5.1:

f=

Te(f) = f# ek =peofe Hn(pr@f)n)mﬁ
=profo (I (i opeo) ok
= peo fo (I, (o py o)7 o
:(pZQfo%e)H(pe@f@<Hn ("%/T'GpT@f)n—i_l)@k/f)
@feeﬂ(pwf@(Hnf-'@re(pmf@f-'@r)”>®pr®f®fée)
= full (peo foiee (o (profoi)) o f)
= Ju T fur 7y for

The marked equation holds because

)n+1QI.{E:’.{TQ(pTQfQ/.{T)nG)pr@f@’{b

(hropref
which is obtained by induction.
The identity and uniformity properties are a consequence of Lemma 3.3.

U

Example 5.3 We shall quickly review what this monoidal trace amounts to
for a map f: X + U — T(Y + U) where T is one of the monads P, £, D, Q")
from Example 3.2.

2 which, in dual form for products and a fixed point operator, should also be attributed to
Masahito Hasegawa [11] and to Martin Hyland, see also [15].

142

JACOBS
(i) For the powerset monad P we get Tr(f): X — P(Y) given by:

y € Tr(f)(x) <= In € N. (n,y) € tr(f)(x)
< Juy, ..., u, €U ug € f(x) Nug € fug) A+
Aty € f(up_1) Ny € f(uy).

(ii) The lift monad yields Tr(f): X — 14+ Y as

Tr(f)(x) = up(y) <= In € N. f(x) = up(ur) A f(ur) = up(uz) A--- A
f(un—1) = up(un) A f(un) = up(y).

(iii) The subdistribution monad yields Tr(f): X — D(Y") with:

=S S F@)) - Fun)wa) e fun) () - Fua)(9).

(iv) Similarly, the quantale monad yields Tr(f): X — QY with:

Tr(f)(2)(y)
=V V f@)) flu)ug) - fluna)(un) - f(ua)(y).

neNwuy,..., un €U

We have already seen that Kleisli categories of quantale monads are special,
because they have biproducts. But there is more.

Lemma 5.4 The Kleisli category K{(Q)) of the monad Q') for a commuta-
tive quantale Q has an involution (=) K(Q))P = KU(Q7)) that preserves
biproducts and (monoidal) traces.

Proof On objects one has X = X and on a morphism f: X — QY one gets
Y — QX by fi(y)(z) = f(x)(y). Clearly, (=) = id. Commutativity
of @’s monoid (1,-) is needed to show that (—)" preserves composition and
traces. U

6 A category for bidirectional monadic computation

In this section we continue to work with a monad T on a category C as in
Requirements 4.7 for which we thus have both coalgebraic traces (as in Propo-
sition 3.1) and monoidal traces (by Theorem 5.2). Then we can apply the
standard “Int” construction from [13]. We shall write Bd(7T') for the resulting
category Int(Kl(T)) of “bidirectional computations of type 7.

143

JACOBS

This final section only contains an explicit description of this category
Bd(T) and a brief examination of our standard examples.

Definition 6.1 Let Bd(T') be the category with:

Objects A = (Ay, A,) consisting of pairs of objects Ay, A, € C;

Morphisms f: A — B are maps f: A+ B, — T(B;+ A,) in C. Of course
they may also be described as maps A, + B, — By + A, in the Kleisli
category KU(T);

Identities id4: A — A are (Kleisli) identities Ay + A, — T'(A; + A,);

Composition For f: A — B and g: B — C, that is for f: A, + B, — T(B, +
A,) and ¢g: By + C. — T(C; + B,), the composite g o f is the (monoidal)
trace of the following “obvious” map: (A,+C,)+ B, — T((C;+ A,) + B,),
given explicitly in KC(T') as:

|:|:[(R1+id)®g®/.€l,"%1®/.€2]@fQI.il, (/il—i-ld)@g@I{Q

[(/%1+id)®g®/'£1,/2;1®/'@2]@f@/'@.

We refer to [13] for the proof of the fact that this yields a compact closed
category, with a full and faithful functor K¢(T") — Bd(T") given by A — (A, 0).
Such proofs are non-trivial, and can best be done using a suitable graphical
notation.

In the remainder we briefly review our running examples. For the lift
monad £ the category Bd(L) contains the essence of the category of games G
as described in [3]. There, the objects can be described in terms of pairs of
sets (Ay, A,) of moves, of a player (left, say) and opponent (right), together
with additional structure, given by a set of plays, as suitable subset of the set
of (As + A,)* sequences of moves. Morphisms A — B in G are “strategies”,
that can be described as certain partial functions A, + B, — B,+ A,, that is?,
as Kleisli maps Ay+ B, — 14 (B,+ A,). Composition of these strategies takes
place via Girard’s “execution formula”, which corresponds to composition as
described in Definition 6.1.

The category Bd(D) for the distribution monad D does not seem to have
been studied yet. The other example involving quantale monads gives rise
to a separate result, yielding a setting for quantum computation, see [2]. Tt
includes the familiar situation of relations.

Proposition 6.2 The category Bd(Q7)) obtained from the quantale monad
Q) for a commutative quantale Q is strongly compact closed.

Proof The involution (=)' from Lemma 5.4 is preserved by the “Int” con-
struction, as claimed in [1]. O

3 These strategies are maps f: MY + MY — M9 + MZE in the notation of [3, Section 2.4].
144

JACOBS

Acknowledgement

Thanks to are due to Masahito Hasegawa for helpful comments, and to referees
of (earlier versions of) this paper.

References

[1] S. Abramsky. Abstract scalars, loops, and free traced and strongly compact closed categories.
In J.L. Fiadeiro, N. Harman, M. Roggenbach, and J. Rutten, editors, Conference on Algebra
and Coalgebra in Computer Science (CALCO 2005), number 3629 in Lect. Notes Comp. Sci.,
pages 1-31. Springer, Berlin, 2005.

[2] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In Logic in
Computer Science, pages 415-425. IEEE, Computer Science Press, 2004.

[3] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Inf. & Comp.,
163:409-470, 2000.

[4] J. Addmek, S. Milius, and J. Velebil. Elgot theories: A new perspective of iteration theories
(extended abstract). In S. Abramsky, M. Mislove, and C. Palamidessi, editors, Mathematical
Foundations of Programming Semantics, number 249 in Elect. Notes in Theor. Comp. Sci.,
pages 407-427. Elsevier, Amsterdam, 2009.

[5] M.A. Arbib and E.G. Manes. Algebraic Approaches to Program Semantics. Texts and Monogr.
in Comp. Sci. Springer, Berlin, 1986.

[6] S.L. Bloom and Z. Esik. Iteration Theories: The Equational Logic of Iterative Processes.
EATCS Monographs. Springer, Berlin, 1993.

[7] D. Coumans and B. Jacobs. Scalars, monads and categories, 2010. Manuscript.

[8] C.C. Elgot. Monadic computation and iterative algebraic theories. In H.E. Rose and J.C.
Shepherson, editors, Logic Colloquium 73, pages 175-230, Amsterdam, 1975. North-Holland.

[9] E. Haghverdi. A categorical approach to linear logic, geometry of proofs and full completeness.
PhD thesis, Univ. of Ottawa, Canada, 2000.

[10] E. Haghverdi. Unique decomposition categories, geometry of interaction and combinatory
logic. Math. Struct. in Comp. Sci., 10:205-231, 2000.

[11] M. Hasegawa. The uniformity principle on traced monoidal categories. In Category Theory
and Computer Science, number 69 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam,
2003.

[12] 1. Hasuo, B. Jacobs, and A. Sokolova. Generic trace theory. Logical Methods in Comp. Sci.,
3(4:11), 2007.

[13] A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Math. Proc. Cambridge Phil.
Soc., 119(3):425-446, 1996.

[14] K.I. Rosenthal. Quantales and their applications. Number 234 in Pitman Research Notes in
Math. Longman Scientific & Technical, 1990.

[15] A. Simpson and G. Plotkin. Complete axioms for categorical fixed-point operators. In Logic
in Computer Science, pages 30—41. IEEE, Computer Science Press, 2000.

[16] M.B. Smyth and G.D. Plotkin. The category theoretic solution of recursive domain equations.
SIAM Journ. Comput., 11:761-783, 1982.

145

CMCS 2010

Higher-order Algebras and Coalgebras from
Parameterized Endofunctors

Jiho Kim!

Department of Mathematics
Indiana University
Bloomington, Indiana, USA

Abstract

The study of algebras and coalgebras involve parametric description of a family of endofunctors.
Such descriptions can often be packaged as parameterized endofunctors. A parameterized endofunc-
tor generates a higher-order endofunctor on a functor category. We characterize initial algebras and
final coalgebras for these higher-order endofunctors, generalizing several results in the literature.

Keywords: higher-order, algebras, coalgebras, parametric endofunctor

1 Introduction

Often, families of endofunctors with interesting algebras and coalgebras are
defined by first fixing some parameters. More specifically, the definitions of
endofunctors are usually related by having the same (multi-ary) functorial
form. For instance, stream coalgebras arise from the bifunctor x: Set x Set —
Set, where the first coordinate is fixed to be a particular set. This paper
follows the lead of Kurz and Pattinson [7] and unify these definitions in the
notion of a parameterized endofunctor.

A parameterized endofunctor generates a higher-order endofunctor on a
functor category. For two categories C and D, the functor category [C, D]
consists of functors from C to D as objects and natural transformation among
them as morphisms. While we treat the most general case, the two cases of
particular interest in this paper are the category of endofunctors End(C) =
[C,C] and the arrow category C— = [2,C].

! Email: jihokim@indiana.edu

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

mailto:jihokim@indiana.edu

Kim

The main result of this paper is to characterize when such a construction
will yield higher-order initial algebras and final coalgebras. The result is in-
spired by work done with initial algebras on arrow categories by Chuang and
Lin [5], and also by another restricted case pertaining to iteratable functors
given by Aczel, Addmek, Milius, and Velebil [1]. More constrained notions
of parameterized endofunctors are presented in the literature, e.g. actions [4]
and parameterized monads [9,2]. The work here, however, follows a relatively
unconstrained approach. Initial algebras for higher-order endofunctors have
been used to model the semantics of dependent types [5] and generalized al-
gebraic data types (GADT’s) [6]. Coalgebraically, higher-order endofunctors
can be used to define higher-order, generic functions such as map on streams
and other coinductive data-types.

The rest of the paper is organized in the following manner. Section 2 intro-
duces the notion of parameterized endofunctors, making observations about
some examples. Section 3 sets the stage for the main result by defining a
certain completeness (and co-completeness) conditions on parameterized end-
ofunctors which we call suitability. Section 4 states the main results and
provides a detailed proof for the algebraic case. We also provide a sampling
of how the theorems may applied in several disparate situations. We end with
Section 5, providing some summarizing conclusions.

2 Functor categories and parameterized endofunctors

We begin with the definition of a parameterized endofunctor.

Definition 2.1 A B-parameterized endofunctor on C is a bifunctor F': B x
C—C.

Alternatively, by the usual adjunction, the definition could be given as a
functor from the parameter category B to the category of endofunctors End(C).
While the description B-parameterized becomes explicit in this modified form,
the given definition will suffice for the sake of notational simplicity.

Given a parameterized endofunctor F': B x C — C, every object z € B
restricts F' to a C-endofunctor which can be denoted as F(z,1): C — C.

Moreover, for any morphism =z ER y in the parameter category, there is

a natural transformation F'(z,1) LUD (y,1) given component-wise as

F(f,1). = F(f,c) for an object ¢ € C.
There are many concrete examples of parameterized endofunctors, few of
which are examined briefly here.

Example 2.2 For a non-empty set A, consider the Set-endofunctor 1+ A x 1.
The initial (1+A x 1)-algebra is A*, the set of words on A. This endofunctor is
“parameterized” by making A an argument to the bifunctor F': SetxSet — Set

147

Kim

given by F(A, X) =1+ A x X for A, X € Set.

Example 2.3 For non-empty sets A and B, consider the Set-functor (B x

1)#. The (B x 1)"-coalgebra X ER (B x X)# corresponds to an automaton
(X, A, B, f) where

e X is the state space,

e A and B are the sets of input and output symbols, respectively, and

e f determines the automaton’s output and transition functions.

For a given state € X and an input symbol a € A, the output symbol b € B
and the next state y € X is given by the pair (b,y) = f(z)(a). Automata of
this type are often called Mealy machines.

Let B = Set® x Set and C = Set. The parameterized endofunctor for this
example is F': (Set®® x Set) x Set — Set, given by

F({4,B),C) = (B x O)*,
for sets A, B, and C. F' is contravariant in A and covariant in B (and C).

Example 2.4 Let 2 = {0 & 1} be the 2-object category with a single non-
identity morphism. For two endofunctors Gy, G;: C — C and a natural trans-
formation G £ Gy, let F: 2 x C — C be the parameterized endofunctor
given by

F(i,x) =G F(l,z) =10,
for i € 2 and x € C. In short, F'is the natural transformation 6.
Example 2.5 For a C-endofunctor H and an object ¢ € C consider the C-

endofunctor Fy . given by Fiy .(z) = c+Hz. The corresponding parameterized
endofunctor is F': (End(C) x C) x C — C given by

F((H,c),x) =c+ Hzx.

3 Suitability

Ultimately, the interest in parameterized endofunctors here is to consider their
relationship to the theory of algebras and coalgebras. In this vein, we introduce
the notion of suitability.

Definition 3.1 A B-parameterized endofunctor F': B x C — C is initially
suitable if for every object x € B, the endofunctor F(z,1): C — C admits
an initial algebra. Dually, F' is finally suitable if for every object z € B, the
endofunctor F'(z, 1) admits a final coalgebra.

Suppose F': BxC — C is initially suitable. For each z € B, let F(z, Rpx) =
Rpx be the initial F(z, 1)-algebra. Rp extends to a functor Rp: B — C by

148

Kim

mapping a B-morphism x ER y to the unique algebra morphism, denoted R f,
induced by initiality in the following commutative diagram:

F(x,nml P RiP=F(LR RS ivw
RN

F(a, Rey) —5immm F W Rey) ——Rry

Dually, suppose F'is finally suitable. Then for z € B, let Spx 2% F(x, Spx)
be the final F'(z, 1)-coalgebra. Sg extends to a functor Sg: B — C by mapping

a B-morphism x ER y to the unique coalgebra morphism, denoted Sg f, induced
by finality in the following commuting diagram:

Spr——"—F(z,Spr) L F(y, Spx) (2)
stl PSR f=F(£.5r1) iF(y,st)
SFy Sy F(yaSFy)

The structure morphisms from the initial algebras and final coalgebras
above collectively form two natural transformations:

F(L,Rr) : Rp Sr > F(L,SF) (3)

The naturality condition is evidently satisfied through the dotted arrows in (1)
and (2). Furthermore, both of these natural transformations are isomorphisms
by Lambek’s Lemma applied to each component.

The definition of initial and final suitability generalizes a collection of com-
mon concepts in the theory of algebras and coalgebras. Free monads, com-
pletely iterative monads, and their duals are in fact based on initial or final
suitability conditions for certain parameterized endofunctors. The following
examples clarify the nature of how initial and final suitability generalizes and
unifies these notions.

Example 3.2 Given an endofunctor H on a category C with binary coprod-
ucts, we have the parameterized endofunctor F': C x C — C given by

F(c,x)=c+ Hx. (4)
If F' is initially suitable, then Ry is called the free monad generated by H

[3]. If F is finally suitable, then H is called iteratable, and S is called the
completely iterative monad generated by H [1].

149

Kim

Example 3.3 Given an endofunctor H on a category C with binary products,
we have the parameterized endofunctor F': C x C — C given by

F(c,z) =c¢x Hzx. (5)

If F'is initially suitable, Rp is called cofree recursive comonad generated by
H. If F is finally suitable, Sp is called the cofree comonad generated by H
[10].

The monadic and comonadic structures in Examples 3.2 and 3.3 are arti-
facts of the particular shapes the parameterized endofunctors take in (4) and
(5). Rr and Sp will not have an obvious monad or comonad structure in
general.

For further examples, we elaborate on Examples 2.3 and 2.4.

Example 3.4 A stream function A“ Iy B is causal if it is non-expanding in
the usual metric on streams given by

d(o,7) 0 ifo=r1
0,T) = .
27 ifo#T

where 7 is the length of the longest common prefix of o and 7. Intuitively, two
streams are close together if they share a long prefix. If two streams share
a common prefix, then their images under a non-expansive function share a
prefix of the same (or greater) length. For this reason, if f is non-expansive,
hd(f(a:0)) = hd(f(a:7)), regardless of the choice of o and 7.

The final (B x 1)%-coalgebra is carried by the set I'4 p of causal stream
functions from A“ to B [8]. The structure map of the final (B x 1)“-coalgebra

Tap =2 (B xT4p)*is given by

WA,B(f)(a) = (hd o focytlofo Ca>

Here ¢, is the mapping o +— a:0. (Recall also that for a set A, the pairing

of the head and tail maps on streams, i.e. A¥ M A x A¥, is the final

(A x 1)-coalgebra.) Per the observation in the previous paragraph, hdo foc,
is constant to B since f is causal. By abusing notation, the first coordinate
of vap(f)(a) is written as a function A — B for the sake of symmetry.

Example 3.5 The parameterized endofunctor F' from Example 2.4 is ini-
tial suitable (resp. finally suitable) if both Gy and G; admit initial algebras
(resp. final coalgebras). If F' is initially suitable, then let G;a; — a; be the
initial G;-algebra carried by a; = Rgt for ¢ € 2. By initiality of Gyay s oa,

150

Kim

there is a unique GG1-algebra morphism (so that

G16L1 & ay (6)
F(l,()zGlCl l(
0q
G1a0 F(!,Zo) Goao 70 ap

commutes. In this case, the functor Rr: 2 — C can be identified with the
C-morphism (.

4 Higher-order algebras and coalgebras

The study of algebras and coalgebras often depend heavily on the choice of
the base category. Generally speaking, it is often fruitful to fix a category
and consider interesting families of endofunctors, which either admit algebras
or coalgebras or both. The proposal in this research is to consider functor
categories as an appealing option for the fixed category.

In sequel, we refer to algebras and coalgebras defined via endofunctors on
functor categories as higher-order algebras and coalgebras.

Any study of higher-order algebras and coalgebras are inevitably subsumed
in the general theory since we are only fixing some particular class of categories
to focus on. However the higher-order approach also extends the general
theory in the following sense. Given any category C, an endofunctor F': C — C
can be embedded as an endofunctor on the functor category [1,C], where 1 is
the terminal category. By allowing different categories in the place of 1, richer
structures may be discerned and utilized.

4.1 Higher-order endofunctor generated by a parameterized endofunctor

There is no doubt that characterizing higher-order endofunctors and their al-
gebras and coalgebras in full generality is an insurmountably difficult task.
We take a much more modest approach of investigating a particular class of
higher-order endofunctors which arise naturally from parameterized endofunc-
tors.

Definition 4.1 Let F': BxC — C be a parameterized endofunctor. Define an
higher-order endofunctor F': [B,C] — [B,C| by FX = F(1g,X) for a functor
X: B — C. For a natural transformation X 2 Y, the natural transformation
F\ is given component-wise by F(1,\), = F(b, \;) for b € B.

We say F is the higher-order endofunctor generated by the parameterized
endofunctor F.

Example 4.2 Given an endofunctor H: C — C, we can produce a higher-
order endofunctor H o 1: [B,C] — [B,C] by post-composition. H o 1 can be

151

Kim

generated by parameterized endofunctor F': BxC — C given by F(x,y) = Hy.
In this case, F' is initially (resp. finally) suitable if and only if H admits an
initial algebra (resp. a final coalgebra).

Example 4.3 Given an endofunctor G: B — B, we can produce a higher-
order endofunctor 1oG: [B,C] — [B,C] by pre-composition. This higher-order
endofunctor cannot be generated by a parameterized endofunctor in general.

Example 4.4 We continue here with Example 3.5. The parameterized endo-
functor F': 2 x C — C generates an endofunctor F' on the arrow category
C~ = [2,C]. Objects of C~ are C-morphisms. A C~-morphism from - y to

2" L5 4 is a pair of C-morphisms m = (z =% 2',y RN y') so that the square

commutes.
The image of a C7-object © — y under F is the composition

93/
F(Ly)

Gz — 1 Gy

Goa
F(1,a) G(]Q: 9 Goy

Goy or Glﬂf F(0,0)

0
F(l,z)
which are equal by the naturality of §. For a C~-morphism m = (z =% ',y UL
we have F'm = (Gim,, Gom,).

4.2 Algebra and coalgebra of higher-order endofunctors

In this section we discuss the necessary and sufficient conditions for higher-
order endofunctors generated by parameterized endofunctors to admit initial
algebras or final coalgebras.

As noted earlier, for a parameterized endofunctor F': B x C — C, which is
initially (resp. finally) suitable, there is a natural transformation F'(1, Ry) =
Rr (resp. Sp = F(1,8r)). In the context of the higher-order endofunctor
E generated by F', the natural transformation r is an F -algebra and s is a
F-coalgebra:

F\RF - 7zF SF = ﬁSF

When F is initially suitable, (Rg,7) will be the initial I -algebra, and dually
when F' is finally suitable, (Sg, s) will be the final F-coalgebra.
Theorem 4.5 Let C be a locally small category with powers. For a higher-

order endofunctor Ik [B,C] — [B,C] generated by a parameterized endofunctor
F: B xC — C, the following are equivalent:

152

Kim

(i) F is initially suitable.
(i) F admits an initial algebra.
In fact, given an initially suitable F', the initial algebra of F is FRF = Rp.

Conversely, given an object x € B and an mztzal F- algebra FA 2 A, the
initial F(z,1)-algebra is just (FA)x = F(z, Az) 2% Ax.

Proof. For (i)==(ii), suppose F' is initially suitable. We will show that
(Rp,r)is an initial ﬁ—algebra. To that end, let FG 2 G bean ﬁ—algebra. For
every x € B, there exists a unique F'(z, 1)-algebra morphism, Rz £ Gz,
making the square

F(x,Rpx) Rrx (7)
F(z,p0z) Px
F(z,Gx) Gz

commute because 7, is the initial F'(x, 1)-algebra. We need to show that ¢ is

natural. For a morphism = ER y, consider the following diagrams:

T

F(xv‘pz)l l@x
F(z,Gx) 0 Gz
| |
F(z,Gf) F(f,G1) Gf
\

F(z,Gy) —57ay = F Y, Gy) —5,~ Gy

Feren| FUReS iRFf
F(f, RF}\ Ty
F(z,Rry) F(y,Rry) —=TRry
F(xvﬂoy)l \F(f#’y) F(y‘a@y) l%@y
N ¥

Fw,Gy) —5ga v, Gy) —5,>Gy

The triangles all commute trivially. The squares commute by definition of ¢
(7), and the trapezoids commute because both ¢ and r are natural. These
diagrams above show that Gf o ¢, and ¢, o Rpf are both F(z,1)-algebra
morphisms from an initial algebra 7, to the algebra g, o F'(f, Gy). By initial-
ity these morphisms must be equal, showing that ¢ is indeed natural. The
uniqueness of ¢ as an F-algebra morphism follow directly from the uniqueness
of each component of ¢ as an F(x, 1)-algebra morphism.

Conversely, for (ii)==(i), suppose F' admits an initial algebra. Then there
153

Kim

is a functor A: B — C and a natural transformation

F(1,A)=FA o A

so that (A, «) is initial among all F -algebras. We will demonstrate that
F(z,Ar) %% Ax is an initial F(z, 1)-algebra.
For x € B and y € C, we define a functor J,,: B — C given by J, ,a =

J'L‘ 1
HB (a.) Y for a € C. Given a B-morphism a ER b, the C-morphism [[5, Y Jand,

sy 18 given by Jo, f = (w40 f>g€6(b’x), or equivalently,
Tg © Joy [= Tgos (8)

for g € B(b, x). For any functor S: B — C parallel to J,,, there is a bijective
correspondence
_\b
/(_)\
Nat (S, Juy) Hom(Sz,y) (9)

o
(—)*

(From a broader perspective, this bijective correspondence is the consequence

of J;, being the right Kan extension RanxY of the functor Y: 1 — C along

X:1 — B which are constant on y € C and x € B respectively.) For a

b
natural transformation S = Jzy, the C-morphism Sz E y is given by the
composition

Sl’+> zyl = HBJ:w %y (10)
Conversely, given a morphism Sz — v, the components of the natural trans-

t
formation S = J,, is given by

u,ﬁ) = (uo Sg>g€8(b,x) (11)
Tg0ul =uoSg (12)
for g € B(b, z). We can see that
(u*)’ 19 Tig, © U b Tid, © (U0 SG) ycppey = w0 S(idz) = u (13)
and for b € B,
11 (1

()} =

0)
=" (g, 0 Az © Sg)geB(b,r)

= <7Tidz o Jx,yg ©)\b>g€B(b,l‘)

(®)
= (mg0 >\b>g€B(b,x) <7Tg>gezs (bz) © Ab = Ab.

154

Kim

The equality marked (x) is due to the naturality of A.
Let F(x,y) < y be an arbitrary F(z, 1)-algebra. Composing with F(z, T,),
we have

F(x,m; - u
F(1, Jpy)(2) = F(, Joyz) = F(@, [T ¥) —) P, y)—2sy

which is of the form Sz — y, for the functor S = F(1, J,,). By the bijective
correspondence (9), we obtain an F-algebra

(uoF (x,mid,,))7i

F(1,J,,) = FJ,, Jay

Then, we have an F -algebra morphism A =N Jzy O that the diagram

F(1, A) o A (14)
F(idﬂb)ﬂ ﬂw
F(1,J,,) Ty

(uoF(x,mq,,))ﬁ

commutes by the initiality of (A, «). Note that the natural transformation
here depends on u. Recalling that 1> = w4, 0 1, (10), consider the following
commutative diagram:

F(z, Ax) S Ax
lF(fmﬁz) wzl
Fe’)| F(z, Jp 1) (uoF (2,70; Dk JoyT |y
lF(:p,mdz) 7ridml
F(z,y) 7 Y

The top square commutes due to the initiality of « (14), and the bottom
square is the identity f = mgq, o f# (13), where f = uo F(z,mq4,). Therefore,
¢’ is an F(z,1)-algebra morphism.

Next, suppose Az % y is an F(z, 1)-algebra morphism from F(x, Az) 2%
Az to F(z,y) % y. For uniqueness, we must verify that ¢" = p. To that end,

155

Kim

consider the following diagram.

F (b, Ab) = Ab
\F(g,Ag) Ag/
N rd
F(z,Ar) —"= Ax
F(ac,p)l p
F(bph) F(z,y)—%—=vy v

=
<
-
<

yb) ==F(b, Jzyb)

(uoF(z,mid,))jy

Here g is an arbitrary morphism in B(b,z). The center square commutes by
assumption that p is an algebra morphism. The region above it commutes by
naturality of a; the region to the right is an instance of (12); the region to
the left consequently commutes by bifunctoriality of F. The triangle below
the center square commutes trivially. The region below the triangle is another
instance of (12), because the arrow

F(b, Jy b)— @S99 p(g], x)

is just Sb 9 Sy for S = F(1,J,,). Finally, the region to the left of the
triangle commutes by the definition of J,, on morphisms (8). Therefore, for
any b € B and g € B(b, z):
Ty0 (pPoa), =m, o0 [pg o ab]
— 740 |(wo F(z,ma,))} 0 F(b,p})
=7y 0 ((uo F(z,mg,))" o F(id, p*))s.

These calculations show that (p*oa), = ((uo F(x,mg,))* o F(id, p*))s, and con-
sequently, that the following diagram of natural transformations commutes.

F(1,A) = A
F(id,p“)ﬂ ﬂp“
F(1,J,,) oy

(uoF (z,mig,,))*

That is to say, p* is an F -algebra morphism. By initiality, we conclude that
156

Kim

p* = 1. Therefore, ¥’ = (p)’ 13 p, as required for uniqueness of the F(z, 1)-
algebra morphism from (Az, o) to any other F(z,1)-algebra. O

Theorem 4.6 Let C be a locally small category with copowers. For a higher-
order endofunctor F': [B,C| — [B,C] generated by a parameterized endofunctor
F: B xC—C, the following are equivalent:

(i) F is finally suitable.
(i) F admits a final coalgebra.

Proof. Dualize the proof to the previous theorem. The bijective correspon-
dence in this case

—TT T
Nat(Kyy. Q) Hom(y, Qx) (15)
_/
will come from the left Kan extension LanxY = K,, which is formed by
COPOWErS:
K, a= H Y.
B(z,b)
The details can be gleaned from proof of Corollary 4.7 first proven in Aczel,
Adamek, Milius, and Velebil [1]. O

Corollary 4.7 For an endofunctor H: C — C on a locally small category C
with copowers, the following are equivalent:

(i) H is iteratable.
(1) The higher-order endofunctor H : [C,C] — [C,C] given by HX =1+HX

admits a final coalgebra.

Proof. Invoke Theorem 4.6 on the parameterized endofunctor F': C xC — C
given by F(x,y) =x + Hy. a

4.3 map as a higher-order coalgebra morphism

In this section, we continue Examples 2.3 and 3.4. Let F': (Set®® x Set) x Set —
Set be the parameterized endofunctor given by F({A, B),C) = (B x O)4. It

generates a higher-order endofunctor F' on [Set®® x Set, Set| so that
(FX)(A, B) = (B x X(4, B))"

for a functor X : Set®® x Set — Set.

As noted in Example 3.4, F' is finally suitable, and produces a functor
I' = Sp: Set® x Set — Set which is given by I'(A4, B) = I'4 5, the set of causal
functions from A¥ to B“. Theorem 4.6 yields a final F -coalgebra

T . FT' = F(1,T)
157

Kim

given by va,B) = 74,8
Fix a functor H: Set®® x Set — Set, given by H(A, B) = Hom(A, B) =
BA. We define a higher-order F-coalgebra H = F(1,H) by specifying its
components
en) : BY— (B x BYHYA

with e 5y(f)(a) = (f(a), f). Finality of the higher-order F-coalgebra (T,)

produces an F -coalgebra morphism (i.e. a natural transformation) H =T
so that

vyom = F(1,m)oe.

The function m 4 p): BA - I'4 p can be given as

m<A7B>(f)(oz0, 1,09, ..) = (f(Oéo), f(Oél), f(OéQ), ..)

for f: A— B and a = (ag, 1, a2, ...) € A”. More succinctly, m 4 py is more
commonly known as map, the morphism mapping of the Set-endofunctor 1v.
Here we have derived map as a higher-order coalgebra morphism induced by
the finality of (', 7).

4.4 Algebras in arrow categories

In this section, we conclude the discussion of arrow categories from Examples
2.4, 3.5, and 4.4.
An F-algebra u = (u,,u,) and F-coalgebra v = (v,, v,) make the diagrams

Oy

Glx G Gly Goy € = Y (16)
uacl Uy Vg Vy
T — Y Gz o Gox Go Goy

commute. For the sake of brevity, we will only continue with the algebraic
aspect; the coalgebraic perspective is completely parallel. Consider the dia-
grams for F-algebras (16). From another perspective, an F-algebra F'z = 2
can be viewed as a Gi-algebra morphism f from wu, to u, o 0,:

Ghz kel T (17)
Glzi z

Gy —5>Goy —,~ Y

An F -algebra morphism from (z,u) to (z/,v) is a pair of C-morphisms m =

158

Kim

(my, my) so that

G1I/ Yo q;’ (18)
%1m< /ﬂ’Lz/
Gll‘ e T
G172 Glzl z o
Gly 0 GOy Uy Y
Glm{ Go"rny xl
/ V / x /
Gy s Goy Ty Y

commutes. This diagram can be characterized by the following facts:
(i) (z,u) and (z',v) are F-algebras.

(ii) The pair m = (m,, m,) is a C~-morphism from z to 2’.

(iii) m, is a Gy-algebra morphism from u, to v,.

(iv) m, is a Gp-algebra morphism from wu, to v,,.

(v) 6 is natural.

It is natural to ask how the initial ﬁ—algebra might be characterized. Due
to the fact that F-algebra morphisms consist of G-algebra morphisms, it is
reasonable to assume that the initial F-algebra is related closely to the initial
G-algebras. In fact, the F-algebra (¢, r) from (6) is initial.

Corollary 4.8 Let G4 2 Go be a natural transformation between two C-
endofunctors which admit initial algebras. Let F': 2 x C — C be the parame-
terized endofunctor given by F(i,1) = G; and F(!,1) = 6, and let F be the
C~-endofunctor generated by F. Let Gia; — a; be the initial G;-algebra, and
let ¢ be the Gi-algebra morphism given in (6). Then the initial F\—algebm 18
(€,7)-

This result follows as an application of Theorem 4.5. It is the simplest case
where the parameter category B is not discrete. The direct proof is given by
Chuang and Lin and applied to give inductive semantics to dependent types

[5]-

5 Conclusions and future work

For a higher-order endofunctor F that is generated from a parameterized endo-
functor F', the existence of an initial F-algebra (resp. coalgebra) coincides
exactly with F' being initially (resp. finally) suitable. With the weakest of
assumptions, this result generalizes and synthesizes several disparate obser-
vations made in the literature. It leads to the conclusion that effort should

159

Kim

be focused on systematically studying algebraic and coalgebraic properties
of higher-order endofunctors. Future work includes identifying other useful
instances of higher-order algebras and coalgebras.

Acknowledgement

The author gratefully acknowledges the helpful discussions with Jan-Li Lin
who made him aware of the work on the arrow category [5]. Comments from
the anonymous referees also improved this paper.

References

[1] Peter Aczel, Jir{ Addmek, Stefan Milius, and Jiri Velebil. Infinite trees and completely iterative
theories: a coalgebraic view. Theor. Comput. Sci., 300(1-3):1-45, 2003.

[2] Robert Atkey. Parameterized notions of computation. In MSFP 2006, July 2006.
[3] Michael Barr and Charles Wells. Toposes, Triples and Theories. Springer-Verlag, 1985.

[4] Richard Blute, J. R. B. Cockett, and R. A. G. Seely. Categories for computation in context
and unified logic. Journal of Pure and Applied Algebra, 116:49-98, 1997.

[5] Tyng-Ruey Chuang and Jan-Li Lin. An algebra of dependent data types. Technical Report
TR-IIS-06-012, Institute of Information Science, Academia Sinica, 2006.

[6] Patricia Johann and Neil Ghani. Foundations for structured programming with gadts. In
POPL, pages 297-308, 2008.

[7] Alexander Kurz and Dirk Pattison. Coalgebras and modal logic for parameterised
endofunctors. Technical report, CWI (Centre for Mathematics and Computer Science),
Amsterdam, The Netherlands, The Netherlands, 2000.

[8] J. J. M. M. Rutten. Algebraic specification and coalgebraic synthesis of mealy machines.
Technical report, In: Proceedings of FACS 2005. ENTCS, 2006.

[9] Tarmo Uustalu. Generalizing substitution. ITA, 37(4):315-336, 2003.

[10] Tarmo Uustalu and Varmo Vene. Comonadic notions of computation. Electron. Notes Theor.
Comput. Sci., 203(5):263-284, 2008.

160

CMCS 2010

Structural Operational Semantics
and Modal Logic, Revisited

Bartek Klin'

University of Cambridge, Warsaw University

Abstract

A previously introduced combination of the bialgebraic approach to structural operational seman-
tics with coalgebraic modal logic is re-examined and improved in some aspects. Firstly, a more
abstract, conceptual proof of the main compositionality theorem is given, based on an understand-
ing of modal logic as a study of coalgebras in slice categories of adjunctions. Secondly, a more
concrete understanding of the assumptions of the theorem is provided, where proving composition-
ality amounts to finding a syntactic distributive law between two collections of predicate liftings.

Keywords: structural operational semantics, modal logic, coalgebra

1 Introduction

Compositionality of process equivalences is an important issue in the theory
of Structural Operational Semantics (SOS; see e.g. [1,7]). Compositionality
proofs for specific languages are often tedious, therefore plenty of meta-results
have been proved that guarantee the compositionality of various equivalences
by subjecting operational specifications to certain syntactic restrictions, called
formats.

The process of inducing well-behaved transition systems from SOS spec-
ifications has been explained at the abstraction level of coalgebras, in the
bialgebraic framework of [28]. There, a well-known SOS format called GSOS
was understood as a type of distributive laws between behaviour and syntax
endofunctors. The fact that LTS bisimilarity on GSOS-induced specifications
is compositional, was explained at that level of generality.

! This work was supported by EPSRC grant EP/F042337/1. Email: k1inCmimuw.edu.pl

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

KLIN

One way to extend that approach to equivalences other than bisimilar-
ities is to understand them as logical equivalences for some modal logics,
and use a general coalgebraic approach to modal logic as developed, e.g.,
in [4,5,10,12,16,18,19,23,27]. In [15,17], such a combination of the bialge-
braic approach with coalgebraic modal logic was presented. To prove that
an equivalence defined by some logic on a transition system induced from an
SOS specification is a congruence, one needs to equip logical formulas with a
coalgebraic behaviour, and exhibit a “logical distributive law” of logical syn-
tax over that behaviour that reflects the distributive law modeling the SOS
specification.

Looking from some perspective, neither mathematical economy nor practi-
cal usability of [15,17] was entirely satisfactory. Firstly, the proof of the main
compositionality result, albeit elementary, involved plenty of diagram chasing
and inductive proofs, and in general was not very illuminating. Second, per-
haps more painful deficiency, was that no intuitive general understanding of
coalgebraic behaviour for logical formulas was provided. Although logical dis-
tributive laws for some specific kinds of logical behaviour were presented in an
appealing, SOS-like manner, no concrete understanding of such laws for other
types of behaviour was found. Also, no guidelines to finding behaviour func-
tors for logical formulas were given, other than wild guessing. Checking that
a candidate logical distributive law was correct involved heavy calculations of
complex natural transformations, far removed from common understanding of
formulas and processes.

This paper is an attempt to remove these two deficiencies to some degree.
First, a more abstract, conceptual proof of the main compositionality theo-
rem of [15] is provided (and the theorem is mildly generalized in the process).
To this end, the interpretation of modal logic in coalgebras is understood as
a functor from the category of coalgebras to a slice category of an adjunc-
tion. The compositionality theorem then follows from lifting that functor to
structures that involve process syntax, via an adjoint lifting theorem.

Secondly, a concrete understanding of the compositionality theorem is pro-
vided for the important example where both processes and formulas live in the
category of sets. Coalgebraic behaviour for formulas is explained in terms of
predicate liftings [22,27], and logical distributive laws are syntactic distribu-
tive laws between two collections of liftings. Proving compositionality of a
logical equivalence amounts to finding a suitable collection of liftings for pro-
cess syntax, together with a set of equations that involve those liftings. Since
the notion of predicate lifting is well studied and understood, this formulation
should hopefully aid the understanding of our bialgebraic approach to logical
compositionality.

The paper is structured as follows. In Sections 2 and 3, the bialgebraic
approach to SOS and coalgebraic modal logic are briefly recalled. Section 4

162

KLIN

studies endofunctors, algebras and coalgebras in slice categories of adjunctions,
and culminates in a proof of the main compositionality theorem. Section 5
provides a concrete interpretation of the theorem in terms of predicate liftings.
Finally, Sections 6 explains how both deficiencies mentioned above persist to
some degree in the present formulation. Some proofs, not essential for the
main line of reasoning, are relegated to Appendix.

Parts of the paper might be of interest also to those readers who do not
care much about compositionality or SOS. For an explanation of coalgebraic
modal logic in terms of (co)algebras in slice categories of adjunctions, without
any involvement of process syntax, it is enough to read Sections 3, 4.1 and 4.2.

The reader is expected to be acquainted with basic category theory ([21]
is a standard reference) and with the coalgebraic approach to theory of sys-
tems [26].

Acknowledgment. The author is grateful to Ichiro Hasuo for many inter-
esting discussions.

2 SOS and distributive laws

In the context of Structural Operational Semantics, transition systems of var-
ious kinds are defined by structural induction using inference rules, and have
closed terms over some signature as states. For example, given a fixed set A
of labels, the set of rules

r-=a yy
a0 TRy =Ry

(1)

(where a ranges over A) inductively defines a labeled transition system (LTS)
on the set of closed terms over the grammar:

t:=0|a|t®t (a € A). (2)

In [28], this situation was expressed in the coalgebraic setting with the use
of distributive laws and bialgebras for them. For example, rules (1) define
a natural transformation A\ : ¥B = BY. (see e.g. [17] for a gentle expla-
nation of this construction), where ¥ is the polynomial endofunctor on Set
corresponding to the grammar (2), and B = (P,—)*, where P, is the fi-
nite powerset endofunctor; B-coalgebras are image-finite A-labeled transition
systems (LTSs).

For any endofunctors X and B on a category C, a transformation as above,
called a distributive law of ¥ over B, induces an endofunctor ¥, on the cate-
gory B-coalg of B-coalgebras, and an endofunctor B) on the category Y-alg

163

KLIN

of Y-algebras, acting on objects as follows:

Sy X—L>BX)=nxZsyBX 22 BuX

B,\(ZX?X) = EBX?BZXWBX

and as X (resp. B) on morphisms. Clearly ¥, lifts ¥ and B, lifts B along the
respective forgetful functors Up : B-coalg — C and U* : ¥-alg — C.

It is easy to see that a Xy-algebra, or a Bjy-coalgebra, consists of a -
algebra ¢ and a B-coalgebra h with the same carrier, so that the diagram:

YX—L>Xx—"sBX

Ehi TBg (3)
YBX x BYX

commutes. Such structures are called A-bialgebras (with carrier X), and a
A-bialgebra morphism is a map in C between the respective carriers that is
simultaneously an algebra morphism and a coalgebra morphism; this defines
a category A-bialg of A-bialgebras. There is an isomorphism of categories and
a commuting square of forgetful functors:

A\-bialg "2 B-coalg
\-bialg = ¥,-alg = B,-coalg UBAi lUB (4)
.

Y-alg—5

If g is an initial »-algebra, then there is a unique B-coalgebra h such
that (3) commutes, defined as the unique 3-algebra morphism from g to By (g).
The result is an initial A-bialgebra, and if A corresponds to an SOS specifi-
cation as in (1), then h corresponds to the transition system induced by the
specification.

Dually, if a final B-coalgebra exists, it extends uniquely to a final A-
bialgebra. This immediately implies:

Proposition 2.1 For any \-bialgebra ¥ X —2—= X —"~ B X , the unique coal-
gebra morphism from h to the final B-coalgebra is a X-algebra morphism
from g.

When C = Set, two elements x,y € X for a given coalgebra h: X — BX
are called observationally equivalent if they are identified by some coalgebra
morphism. In particular, if final B-coalgebras exist, observational equivalence
on h is the kernel relation of the final coalgebra morphism from A. Thus Propo-
sition 2.1, applied to initial bialgebras, means that observational equivalence
on the transition system induced by a specification is a congruence, if the

164

KLIN

specification corresponds to a distributive law .2

The practical applicability of Proposition 2.1 as stated here is rather lim-
ited, since few interesting examples actually correspond to \ as above. Already
in [28] more general laws were studied, involving the free pointed endofunctor
Id + ¥ and the free monad >*, and the cofree copointed endofunctor Id x B
and cofree comonad B (assuming they exist). In particular, distributive
laws of ¥* over Id x B correspond bijectively [20] to natural transformations
A N(Id x B) = BY*, and for B = (P,—)%, these correspond [2] to SOS
specifications in the well-studied GSOS format [3]. Similarly, distributive laws
of Id + ¥ over B“ correspond to a format called safe-ntree in [28]. Proposi-
tion 2.1 is proved without much change for each of these more expressive laws;
in fact, one does not need to prove each case separately, as each type of laws
in question induces distributive laws of the monad >* over the comonad BY
along the lines of [20], and Proposition 2.1 works for such laws as well, with
essentially the same proof.

In this paper, only simple distributive laws A : X B = BY. are considered.
This is mainly to simplify the presentation and save space in the technical de-
velopment in Section 4. The general case of distributive laws of monads over
comonads is dealt with in an entirely analogous manner, but with additional
checks to ensure the existence of certain (co)free (co)monads and the compat-
ibility of (co)units and (co)multiplications, and is better left to an extended
version of this paper.

3 Coalgebraic modal logic

An abstract approach to modal logics for coalgebras, based on adjunctions of
contravariant functors, has attracted considerable attention (e.g., [4,5,10,12,16,18,27]).
Assume an adjunction S°° 4T : C°® — D, with the intuition that objects of
D are sets (or structures) of formulas, and objects of C are sets (or structures)
of processes or states. For an endofunctor B on C, a coalgebraic modal logic
for B-coalgebras is given by an endofunctor L on D (the logical syntax), and
a natural transformation p : LT = T B (called a connection). Under the
assumption that an initial L-algebra a : L® — & exists (intuitively, it is an
algebra of logical formulas), the interpretation of logic (L, p) on a given coal-
gebra h : X — BX is obtained by transposing along the adjunction S°° 47T

2 In [28], the congruence result is proved for coalgebraic bisimilarity [26] rather than ob-

servational equivalence; for that, the additional assumption of B preserving weak pullbacks
was needed.

165

KLIN

the unique L-algebra morphism s from a to Th o px, as in the diagram:

ILTX 1o
-
BX TBX ~(a (5)
Th Thi
XT)S(D TX~=< i -o

where the left part is drawn in C and the right part in D.

Take for example C =D = Set and S =T = 2~ (where 2 = {tt, ff}), and
B = (P,—)". The trace fragment of Hennessy-Milner logic for B-coalgebras
(i.e. LTSs) has syntax described by the grammar ¢ = T | (a)¢ that cor-
responds to the endofunctor L® = 1 4+ A x &, and its standard semantics
corresponds to py : L2% — 28X defined by:

px(T)(b) = tt always (6)
px({a)p)(b) = tt <= Jy € b(a). d(y) =

for any X. It is straightforward to check that (the kernel relation of) the
interpretation of this (L, p) on a B-coalgebra is the trace equivalence on it.
When searching for a logic for a given B, one may often restrict attention
to endofunctors of a certain shape, without losing any generality. We now
briefly recall an analysis from [16]. Connections p : LT = TB°P are in
bijective correspondence with natural transformations p : L = T'B°?S°P by
p = pS°%PoLn, where n : Idp — T'SP is the unit of S°® 4 T". If one insists on L
being finitary, then p factors through the finitary restriction of T'B°?S°P. The
latter is defined by a coend formula; without losing generality one may replace
the coend with a coproduct and, for D = Set, require a natural transformation

p: L= [[TBSnx ()"

neN

For S =T =2~ and n € N, elements of TBSn are functions 3 : B(2") — 2,
which we call n-ary B-modalities. (By Yoneda Lemma, these bijectively corre-
spond to natural transformations 3¥ : (27)* = 28~ i.e., polyadic predicate
liftings of [27].) As a result, a finitary L with p can be presented as a collection
of B-modalities: a family (L,),en of sets L,, C 252" represents the polynomial

endofunctor
L=]]Lnx (=), (7)

neN
with p : L(27) == 2B~ defined by copairing all predicate liftings 3% :
(27)" = 2B~ for each n € N and 3 € L,.

166

KLIN

For example, the trace logic for B = (P,,—)* is represented by the following
collection of modalities: Ly = {T}, Ly = {(a) | a € A}, L,, = 0 for n > 1,
where T : Bl — 2 and (a) : B2 — 2 are defined by:

T(b) = tt always, (a)(b) =tt < tt € b(a). (8)

We mention in passing that this approach to logics suffers from practical
expressivity problems similar to those mentioned in Section 2. For example,
although a version of finitary Hennessy-Milner logic [8] for bisimilarity can
be defined this way, it is rather unwieldy, with infinitely many modalities of
arbitrary arities (see [16]). This is because logics based on S = T = 2~ lack
in-built support for propositional connectives, which must then be encoded as
parts of complex modalities.

One way to avoid this problem is to change the adjunction S°® 4 T in
question (see [12] for examples). Another way is to consider, by analogy to
distributive laws and SOS, more general types of connections. For example,
one can allow ones like p : LT = T'(Id x B)°, whereby propositional con-
nectives such as A can easily be defined as simple modalities. One can even
consider connections such as p : LT = T'(B“)°? to describe e.g. Hennessy-
Milner logic for weak bisimilarity.

Again, in this paper only simple connections p : LT = T' B are considered;
the issue of coalgebraic modal logics based on more complex connections is
left for a separate study.

4 Compositionality for logical equivalences

Our main technical goal is to modify Proposition 2.1 to deal with logical equiv-
alences rather than with observational equivalence. We shall prove (in Theo-

rem 4.6) that under certain assumptions, for any A-bialgebra ¥ X 4= X —"~Bx ,
the interpretation of logic (L, p) on h is a ¥-algebra morphism from g. To for-
mulate the theorem and its proof, we introduce some basic notions and results
regarding (co)algebras on slice categories of adjunctions. To structure the de-
velopment to some degree, we shall begin with slice categories of functors, and
later see what additional structure the adjunction S°® 4 T introduces.

4.1 Slice categories

For a functor T': C°? — D, the slice category (D] T) has:

o as objects, triples (¢, X, s) with ® €e D, X € Cand s: & — TX in D,

e as maps from (&, X, s) to (V,Y,r), pairs (g, f) with g : & — ¥ in D and
167

KLIN

f:Y — X in C such that
d—>TX
I
V——=TY
commutes.
There are obvious projection functors, denoted Il : (D | T) — D and I, :
(D]T) — C.
If an initial object 0 in D exists, it determines a full embedding 07 : C? —
(D] T) defined on objects by 07(X) = (0,X,0: 0 — TX), where the arrow 0

is unique by initiality, and on arrows by 07 (g) = (idy, g). It is easy to verify
that:

Proposition 4.1 07 is left adjoint to Il : (D] T) — C°P, and the unit of the
adjunction is the identity natural transformation. O

Sliced endofunctors. Assume endofunctors B : C — C and L : D — D, and
a natural transformation p : LT = T'B°P.
These ingredients define an endofunctor on (D] T), denoted p, as follows:

e on objects, p(®, X,r) = (L®, BX, px o Lr)

« on maps, 5{g, f) = (Lg, Bf).

It is easy to check that this is well-defined and functorial. Clearly p lifts L

along I1;, in the sense that II; o p = L o Il;. Similarly, p lifts B°P along Il,.
Endofunctors on (D] T) that arise in this way will be called sliced (by p).

Not every endofunctor on (D T) is sliced in general, even if 7" is well-behaved
(for a counterexample, see the Appendix). However:

Proposition 4.2 Consider an endofunctor K : (D|T) — (D] T) such that
for some L : D — D and B : C — C, K lifts L along 11; and B°? along I1,.
Then K s sliced in a unique way.

Proof. See the Appendix. O

It immediately follows that sliced endofunctors are closed under compo-
sition. However, a more direct proof is possible: for p : LT =— T'B° and
p: I'T = T(B')P, it is easy to check that the composite endofunctor ,5;’ is
sliced by:

p(B")Po Ly : LL'T = T(BB')°". (10)

Sliced natural transformations. Assume connections p : LT = T B

and p' : L'T' = TB"P. Any two natural transformations « : L = L’ and
168

KLIN

f: B' = B such that
LTS=L=TDB
aTﬂ ﬂmw (11)
L'T==>TB"

commutes, give rise to a natural transformation a ® §: p = ,3’ defined by:

a® B xs) = (s, Bx) - (12)

Not every transformation between sliced endofunctors is of this form (for a
counterexample, see the Appendix). However, in Section 4.2 we shall show
that this is the case if T" has a left adjoint.

Algebras. Given a connection p : LT = T'B°P, a p-algebra is, equivalently,
an L-algebra g : L® — ® in D, a B-coalgebra h : X — BX in C, and a map
s: P — TX, such that the diagram

L5 17X - TBX
gl iTh (13)
P . TX

commutes in D. Moreover, p-algebra morphisms are easily seen to be pairs of
an L-algebra morphism and a B-coalgebra morphisms. In particular, there
are evident projection functors Il; : p-alg — L-alg and Il : p-alg —
(B-coalg)°P.

Let us pause for a moment to reflect on the meaning of p-algebras: they
are B-coalgebras h (systems) together with L-algebras g (logical theories)
interpreted in them (via s). For example, if C = D = Set and S =T = 27,
the function s : ® — TX in the carrier of a p-algebra is just a relation
between ® and X. For B = (P,—)* and (L, p) as in (6), the equivalence
relation on X defined by this relation is always contained in trace equivalence
on h, and coincides with it if ¢ is initial. Morphisms of p-algebras reflect
these equivalence relations, implicitly present in their carriers. This suggests
that when one wants to study coalgebras “up to” some logical equivalence,
and when the task of finding an explicit coalgebraic presentation of these
“up to” structures (such as in [11]) seems difficult or simply not worthwhile,
one may try to resort to implicit modeling of logical equivalences by theories
interpreted in coalgebras; this view is advocated e.g. in [23], and the present
paper may be considered as an example application of it. One may argue that,
just as structural operational semantics is a study of coalgebra in categories of
algebras, coalgebraic modal logic is a study of (co)algebra in slice categories.

Back to the formal development: an alternative reading of (13) is that
s is a L-algebra morphism. In other words, p-algebras are morphisms be-

169

KLIN

tween L-algebras of a certain shape. To formalize this, observe that p in-
duces a functor T : (B-coalg)®® — L-alg defined by T(X —"~BX) =
LTX 2> TBX -Th~TX on B-coalgebras, and as T on B-coalgebra mor-
phisms.

Proposition 4.3 p-alg = (L-alg|T).

Proof. We have already essentially noticed the correspondence on objects;
morphisms are equally easy. O

Corollary 4.4 If an initial L-algebra exists, then the projection functor Iy :
p-alg — (B-coalg)®® has a left adjoint, and the unit of the adjunction is the
wdentity natural transformation.

Proof. Use Proposition 4.3 and apply Proposition 4.1. Given an initial L-
algebra a, the left adjoint will be denoted a™. O

Note that the composition of ™ with the forgetful functor from p-alg:

a/*)

(B-coalg)® L~ p-alg—"> (D7)
Iy
corresponds almost entirely to the interpretation of coalgebraic modal logic
in B-coalgebras, as constructed in (5). Indeed, the only step missing in this
functorial presentation is the transposition of the semantic map s from the
initial L-algebra. For this final step, obviously, it is crucial that the functor
T has a left adjoint; we shall now proceed to develop our theory further with

this additional assumption.

4.2 Slice categories of adjunctions

In this section, we shall assume that 7" : C°®* — D has a left adjoint S°? : D —
C°P. The unit and counit of the adjunction S°° 47" will be denoted 7 : Id =
TSP and € : S°PT" = 1d respectively. Obviously then T°P : C — D is left
adjoint to S : D — C, and n°P : T°PS = Id and €°? : Id = ST°P are the
counit and the unit of the adjunction 7°P 4 S. This adjoint situation means
that there is a bijection

C(X,58) = D(P,TX)

natural in X € C and ® € D; we shall abuse notation and denote both sides of
this bijection by —”. A defining property of adjunctions is the isomorphism of
slice categories: (D] T) = (CJS) (the isomorphism maps an object (®, X s)
to <X,<I>,sb>).

Coalgebraic modal logic as a functor. One immediate consequence of
the adjunction assumption is that one can represent the entire modal logic

170

KLIN

interpretation construction (5) as a functor from the category of B-coalgebras:
9

(B-coalg)? L
T

> pralg -~ (D] T) = (C|.S)™ (14)

S

However, the most useful consequences of that assumption appear when one
decides to study coalgebras for sliced endofunctors on (D] T).

Coalgebras. In the situation considered in Section 4.1, categories of coalge-
bras for sliced endofunctors have, in general, considerably less structure than
those of algebras.

Consider endofunctors ¥ on C and I' on D, and a connection ¢ : I'T" =
TY°P as in Section 4.1. A (-coalgebra is a I'-coalgebra h : & — I'd in D, a
Y-algebra g : XX — X in C, and a map s : ® — T X, such that the diagram

LT x —X-TyX
hT TgT (15)
D _ TX

commutes in D, and a Z—coalgebra morphisms is a pair of a ['-coalgebra
morphism and a ¥-algebra morphism. This gives projection functors II; :
(-coalg — T'-coalg and TI, : (-coalg — (3-alg)°P.

In general, contrary to the situation of sliced algebras, the diagram (15)
cannot be read as a coalgebra morphism (in [23], it was called a “twisted
coalgebra morphism”). As a result, no property analogous to Proposition 4.3
holds for E—coalgebras in general. However, additional structure appears when
we assume a left adjoint S°P 4 T'. Indeed, then connections ¢ : I'T' = T3P
are in bijective correspondence with their adjoint mates [14] (* : .5 = ST°P,
defined by transposing (S o I'n : I' = TXPSP. Tt is straightforward to
check that ¢* coincides with (¢)°" along the isomorphism (C|S) = (D] T)°P.
In particular, this implies an isomorphism

(-coalg = ((*-alg)®. (16)

Natural transformations are sliced. Finally, the fact that T" has a left
adjoint implies that all natural transformations between sliced endofunctors
are sliced. Indeed, consider any p: I'T' = T3P and p' : I'T' = T'Y/°P.

Proposition 4.5 [f S°® - T then natural transformations k : p =—> E’ are
in one-to-one correspondence with pairs (o : ' = T", 5 : ¥ = %) such that
TBPop=ypoal asin (11).

Proof. (12) shows how to define x from « and 5. For the other direction, see
the Appendix. O

171

KLIN

4.8 Sliced distributive laws and compositionality

We now proceed to the study of bialgebras for distributive laws between sliced
endofunctors.

Sliced distributive laws. For an adjunction S°® 4 T : C°® — D, consider
endofunctors B, on C and L,T" on D, together with connections p : LT —
TB° and ¢ : I'T = TX°P that define sliced endofunctors p, on (D T).

__Now assume a distributive law of p over ¢, i.e., a natural transformation & :
p¢ = (p. By (10), both p¢ and (p are sliced, and further by Proposition 4.5,
k is of the form k = x ® A (see (12)) for some distributive laws x : LI' =
'L and A : ¥B = BY such that the hexagon of natural transformations
commutes (cf. (11)):

LIT 2 [7300 22 7 (BX)op
T ﬂm (17)

ILT==TTB> CﬁT(EB)Op.

Sliced bialgebras. As in Section 2, the law defines endofunctors p, on
(-coalg and (, on p-alg, with an isomorphism of categories and a commuting
square of forgetful functors (cf. (4)):

k-bialg RN (-coalg
k-bialg = p,.-alg = Zﬁ—coalg U&l iUE (18)
pralg——=>(D1T).

To convey some intuition, it might be useful to provide a more concrete de-
scriptions of k-bialgebras. Each of these consists of a y-bialgebra L& —*—>d —>T'd,

a A-bialgebra ©.X —2= X —"~ BX and an arrow s : ® — TX in D, such that
the diagram:

L® k) L o
le ls if‘s (19)
LTX 5= TBX = TX —7 TEX <~ TTX

commutes. Morphisms of k-bialgebras are pairs of a x- and a A-bialgebra
morphisms; in particular, there is an evident projection functor, which we will
denote II, : k-bialg — (A-bialg)°P.

Lifting coalgebraic modal logic. Our immediate goal now is to exhibit a
left adjoint to II;. Note that the bottom row of (19) is not a y-bialgebra, so

172

KLIN

k-bialg is not easily a slice category and the simple tactic of using Proposi-
tion 4.1 cannot be used. Instead, adjoint lifting can be used in the following
way.

Since k acts as A on C-components (see (12)), it is straightforward to
check that ZK acts as X, on the B-coalgebra components of p-algebras and
their morphisms; formally, I15 o (,, = (X,)°P o Il : p-alg — (B-coalg)°P. This
defines a lifting of II, to a functor from Eﬁ-coalg to (X -alg)°? as in (A.1);
it is straightforward to check that this lifted functor coincides with II,, which
justifies its name. We can now apply Proposition A.1 to

(\-bialg)? 22 k-bialg
(Uznopl l%@

(B-coalg)” 5—— p-alg

and obtain a left adjoint @~ II,. Combined with (18) and (16), this com-
pletes a lifting of the coalgebraic modal logic semantics (14) as in the diagram:

(A-bialg)? I~ k-bialg-U"~_coalg = ((*-alg)®

Il _
<UEA>°pl lU& le lw“)op (20)
(B-coalg)® L “p-alg— ~(DIT) = (ClS)
112

Note that, by Corollary 4.4 and by the remark after Proposition A.1, the
monad II; o a7 is (naturally isomorphic to) identity. This, together with the
evident commuting square of forgetful and projection functors:

(A-bialg)* 2 ($-alg)o

_ 5P
H2 H2

m-bialgTacoalg = (CA* -alg)°P

means that the top row of (20) commutes with (the opposites of) forgetful
functors from A-bialg and (*-alg to ¥-alg. Thus we arrive at the conclusion
that for any A-bialgebra X -4 X —"> B X, the interpretation of logic p

on h is a carrier of a é*-algebra and a Y-algebra morphism from ¢g. Note that
neither ¢ nor y is mentioned in this conclusion, so the most useful way to
state this is:

Theorem 4.6 For any S°® 4T, ¥, B, \, L and p as above, if a I, { and
k=X®\ as above exist, then for any A-bialgebra ©.X —2—= X —"~BX , the
interpretation of logic p on h is a ¥-algebra morphism from g. O

173

KLIN

When applied to initial A-bialgebras, Theorem 2 of [15] is obtained.

5 Logical distributive laws over Set

Theorem 4.6 can be used to prove that a logical equivalence (defined by syntax
L and semantics p) on a transition system (B-coalgebra) induced by a struc-
tural operational specification (defined by \) is a congruence (with respect to
syntax). To use the theorem, one needs to find three additional ingredi-
ents: an endofunctor I" and natural transformations ¢ and y such that (17)
commutes. So far we have provided no intuitive meaning of these ingredients.
This is the purpose of this section, where we restrict attention to the dual
adjunction C=D =Set, S=T =2".

5.1 Distributive laws and predicate liftings

The search for I' and ¢ for a given ¥ is entirely analogous to the search for
modal logics L and p for a given B, as described in Section 3. One may
therefore restrict attention to functors of the form

T=]]T.x (=) (21)

neN

where I, C 2¥%". Recall that we may safely assume that L is of a similar
form (7). This means that, once I' with ¢ were chosen, the last missing ingre-
dient y for Theorem 4.6 is a distributive law y between polynomial functors.
Such laws can be presented as systems of equations, as follows.

Suppose I' and L are as in (21) and (7), presented by families of - and
B-modalities (I',)nen and (Ly)nen respectively. Then a distributive law y :
LT' = TI'L is equivalent to a family of equations of the form:

6(0-1('T117 C 71"17711)7 LI ao-n(xnla s ,Z’nmn))
- (22)

J(/Bl(yllﬂ s 7y1l1)7 e aﬁk(ykla cee ayklk))a

where:

e Bely, 0,€ly,,o0el'yand §; € Ly,

e all variables x;; are distinct,

e every variable y;; occurs on the left side.

The latter two conditions determine a function v : [— m, where m = """ | m;
and [= Zle [; are arities of both sides of the equation.

To define a distributive law yx, the family must contain exactly one equation
for each combination f,04,...,0, of a B-modality (of arity, say, n) and a

174

KLIN

sequence of Y-modalities (of length n).

We shall now formulate the condition (17), necessary for the application
of Theorem 4.6, in terms of modalities and equations. To this end, first note
that each ,04,...,0, as on the left hand side of (22), defines a BY.-modality
of arity m = > | m;, (where 0; € I',,,,), which, following [27], will be denoted
B o (01,...,0,) 1 BX(2™) — 2. Moreover, the composite polynomial endo-
functor LI" is represented by the collection of all such composite modalities,
and the connection p3°?o L as in (17) (see also (10)) is obtained by copairing
all the corresponding predicate liftings (8 ® (o1,...,0,))Y. Similarly one can
define a lifting 0 © (B, ..., Bx) : LB(2') — 2, from the right hand side of (22).

Since LI" is a polynomial functor, the condition (17) can be checked by
cases, for each (left hand side of) equation (22). Each case amounts to checking
that the following square of natural transformations commutes:

—\! SB—
) ey

By Yoneda lemma, this amounts to checking the equality of two > B-modalities
of arity m:

(B@ (01, ,00)) 0 Agm = (0@ (Br, ..., i) 0 BB(2Y) (23)

This condition can be intuitively explained as follows. For a fixed set X, if
predicates on X are substituted for variables x;1, ..., Z;n,,, then the expression
o(zi1,. .., Tim,) on the left hand side of (22) defines a predicate on X.X; simi-
larly, the entire left hand side defines a predicate on BX. X from a collection of
m predicates on X. Further, the right hand side (together with the function
v : I — m implicit in the equation) defines a predicate on ¥ BX. Now the
condition (23) means that the former predicate coincides with the latter when
precomposed with A.

5.2 A toy example

Consider ¥, B and A as in (2) and (1) in Section 2. Consider also, as L
and p, the trace equivalence defined in (6), represented by the collection of
modalities given in (8). To apply Theorem 4.6 to infer the compositionality of
trace equivalence for the language defined by (1), one needs to find a collection
(T'y)nen of Y-modalities, and an collection of equations (22), such that the
condition (23) holds for each equation.

As a first attempt, one might try the empty collection (T',, =) for n € N),
i.e., no ¥-modalities. There is only one left hand side of (22) to take care of:

175

KLIN

the 0-ary B-modality T. Unfortunately, however, there are no possible right
hand sides of (22) at all, therefore no equation for T can be written.

To amend this, one can include an “always true” X-modality T : X1 — 2
to Iy, formally defined by T(¢) = tt always. Then one can write an equation
for T:

T=T (24)
and the condition (23) holds. Unfortunately now there are more left hand
sides to take care of: no appropriate equation can be written for (a)(T).

The latter expression denotes a 0-ary BX-modality that, intuitively, checks
whether some a-successor of a process exists. To express a corresponding
(along \) ¥ B-modality, one may add, for each a € A, a new unary ¥-modality
aV([®] : X2 — 2 to I'y, formally defined by: aV [®|(t) = tt < t €
{a, tt ® tt}, and write an equation:

()T =aV[®]({a)T). (25)

Intuitively, a process has an a-successor if and only if it is the process a or it
is of the form p ® ¢ such that both p and ¢ have a-successors. Formally, the
condition (23) holds for this equation.

However, there is a slight problem here: formally, the right hand side of
this equation is not of the form allowed in (22), as (a)T is not a modality
used in L. A principled solution to this problem would be to allow composite
B-modalities on the right sides of equations; i.e., consider distributive laws
x : LI' = T'L*, just as complex types of distributive laws are considered
in the theory of SOS (see Section 2). Another solution is to simply add the
missing (0-ary) B-modalities (a) T to Ly and proceed to find further equations.
Changing a logic to prove its compositionality is an awkward step, but in this
case it does not cause any serious harm, as the logical equivalence of the
resulting logic is still trace equivalence. Formally, one then needs to provide
suitable equations with 0-ary modalities (a)T on the left hand side, but this
is now straightforward:

(a)T =aV[®]({a)T). (26)

To complete the picture, one still needs to come up with equations for left
hand sides such as (a)(b V [®]z). This is solved by adding yet another, unary
modality [®] to I'1, defined by [®](f) = tt <= ¢ = tt ® tt, with equations

(@)(bV [@]z)) = [@la)z, (a)[@]z = [®](a)z.

These, together with (24-26), form a complete family of equations for our
chosen YX-modalities:

Io={T} I ={}u{aVv®]|acA} T,=0forn>1
176

KLIN

and the condition (23) holds for each equation, hence we can use Theorem 4.6
to conclude that trace equivalence is compositional for (1). The same result
was used as an example in [15,17]; however, our crude understanding of I'
and y there resulted in unnecessarily rich logical behaviours and complicated
distributive laws.

5.3 Compositionality for expressive logics

An important question about the robustness of our approach to compositional-
ity is whether Theorem 4.6 is a generalization of Proposition 2.1, i.e., whether
it covers observational equivalence without any loss of generality. Under mild
conditions (such as finitarity of B) studied in [16], observational equivalence on
B-coalgebras is a logical equivalence for some logic (L, p) (such logic is called
expressive). If this is the case, then the conclusion of Proposition 2.1 is a
special case of the conclusion of Theorem 4.6. However, is there an expressive
logic that satisfies the assumptions of Theorem 4.67

We shall now give a partial positive answer to this question: we restrict
attention to C = D = Set and S = T = 27, polynomial process syntax
functors ¥, and finitary B that preserve finite sets. In the general case the
question is left open.

For our special case, observational equivalence for B-coalgebras is defined
by the expressive logic (L, p) presented by the collection of all finitary B-
modalities, i.e., by L, = 252" for n € N. We shall now show that this logic
satisfies the assumptions of Theorem 4.6 when one takes I' and (presented
by all ¥-modalities, i.e., I, = 22" for n € N.

To this end we need, for every B-modality f € L, and Y-modalities
O1,...,0n, to present the X B-modality (8 ® (o1,...,0,)) © Aam (where m is
the sum of arities of the o;) in the form

(0@ (Pr,y...,0k)) 0 2B2" (27)

for some o € I'y and f4,..., 5, B-modalities with sum of arities [, and v :
[— m a function between arities. Under our assumptions this can be done
without any analysis of 3, g; or A, by the following result:

Proposition 5.1 If ¥ is polynomial and B preserves finite sets then every
Y. B-modality of arity m can be decomposed as in (27).

Proof. Let ¥ = [[,.,(—)™. Consider any v : XB(2™) — 2. Put k = |B(2")]
(note that B(2™) is finite). For any b € B(2™), define 5, : B(2™) — 2 by

177

KLIN
By(b') =tt <= b=10" Then define o : £(2F) — 2 by:

o(ti(pry... pn;)) = tt
<~
Vbl, . ,bni € B2™, ((Vj =1.n;. p](b]) = tt) — ’}/(Li(bl, .. ,bm)) = tt),

where ¢; : (—)™ = X ranges over the coproduct injections into ¥. This gives
a composite modality o ® (p)pepam of arity m x k, and it turns out that

v = (0 © (By)repom) 0 BB2"

where 7 : m X k — m is the evident projection. O

6 Future work

Unfortunately, both deficiencies that this paper aims at removing, still persist
to some extent in the present formulation. On the abstract level, there clearly
is a 2-categorical treatment of coalgebraic modal logic waiting to be discovered
and combined with the one developed in [24] for bialgebras. Connections p and
¢ are simply morphisms of endofunctors, just as A and y are endomorphisms
on them; also sliced distributive laws x ® A are distributive law morphisms in
the sense of [24]. There is clearly more structure in the story than currently
explained.

On the concrete level, some more specific guidelines for finding suitable
collections of Y-modalities are much needed. Last but not least, more ex-
amples of logical distributive laws, and their relation to other work on SOS
compositionality such as [6], need to be shown.

References

[1] L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In J. A. Bergstra,
A. Ponse, and S. Smolka, editors, Handbook of Process Algebra, pages 197-292. Elsevier, 2002.

[2] F. Bartels. On Generalised Coinduction and Probabilistic Specification Formats. PhD
dissertation, CWI, Amsterdam, 2004.

[3] B. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be traced. Journal of the ACM, 42:232—
268, 1995.

[4] M. Bonsangue and A. Kurz. Duality for logics of transition systems. In Proc. FOSSACS’ 05,
volume 3441 of LNCS, pages 455-469, 2005.

[5] M. Bonsangue and A. Kurz. Presenting functors by operations and equations. In Proc.
FOSSACS’06, volume 3921 of LNCS, pages 172—186, 2006.

[6] W. J. Fokkink, R. J. van Glabbeek, and P. de Wind. Compositionality of Hennessy-Milner

logic through structural operational semantics. In Proc. FCT’03, volume 2751 of LNCS, pages
412-422. Springer, 2003.

178

KrLin
[7] J. F. Groote, M. Mousavi, and M. A. Reniers. A hierarchy of SOS rule formats. In Proc.
S0S5°05, 2005, pages 3—-25. Elsevier, 2005.

[8] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal of
the ACM, 32:137-161, 1985.

[9] C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting.
Information and Computation, 145(2):107-152, 1998.

[10] B. Jacobs. Towards a duality result in the modal logic for coalgebras. In Proc. CMCS 2000,
volume 33 of ENTCS, pages 160-195. Elsevier, 2000.

[11] B. Jacobs. Trace semantics for coalgebras. In Proc. CMCS 2004, volume 106 of ENTCS.
Elsevier, 2004.

[12] B. Jacobs and A. Sokolova. Exemplaric expressivity of modal logics. Journal of Logic and
Computation, 2009.

[13] P. T. Johnstone. Adjoint lifting theorems for categories of algebras. Bull. London Math. Soc.,
7:294-297, 1975.

[14] G. M. Kelly and R. Stret. Review of the elements of 2-categories. Lecture Notes in
Mathematics, 420:75-103, 1974.

[15] B. Klin. Bialgebraic semantics and modal logic. In Proc. LiCS’07, pages 336-345. IEEE
Computer Society Press, 2007.

[16] B. Klin. Coalgebraic modal logic beyond sets. In Proc. MFPS 2007, volume 173 of ENTCS,
pages 177-201, 2007.

[17] B. Klin. Bialgebraic methods and modal logic in structural operational semantics. Information
and Computation, 207:237-257, 2009.

[18] A. Kurz. Coalgebras and their logics. ACM SIGACT News, 37, 2006.

[19] A. Kurz and J. Rosicky. The Goldblatt-Thomason theorem for coalgebras. In Procs. CALCO
2007, volume 4624 of LNCS, pages 342-355, 2007.

[20] M. Lenisa, J. Power, and H. Watanabe. Category theory for operational semantics. Theoretical
Computer Science, 327(1-2):135-154, 2004.

[21] S. Mac Lane. Categories for the Working Mathematician. Springer, second edition, 1998.

[22] D. Pattinson. Semantical principles in the modal logic of coalgebras. In Proc. STACS 2001,
volume 2010 of LNCS. Springer, 2001.

[23] D. Pavlovic, M. Mislove, and J. B. Worrell. Testing semantics: connecting processes and process
logics. In Proc. AMAST’05, volume 4019 of LNCS, pages 308-322. Springer, 2005.

[24] J. Power and H. Watanabe. Combining a monad and a comonad. Theor. Comput. Sci.,
280:137-162, 2002.

[25] V. R. Pratt. Chu spaces from the representational viewpoint. Ann. Pure Appl. Logic, 96:319—
333, 1999.

[26] J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,
249:3-80, 2000.

[27] L. Schroder. Expressivity of coalgebraic modal logic: the limits and beyond. In Proc.
FOSSACS’05, volume 3441 of LNCS, pages 470-484, 2005.

[28] D. Turi and G. D. Plotkin. Towards a mathematical operational semantics. In Proc. LICS’97,
pages 280-291. IEEE Computer Society Press, 1997.

179

KrLin
A Adjoint lifting

The following theorem is standard; a proof of it (more precisely, its dual) can
be found in [9], see also [13].

Consider endofunctors B on C and B’ on C’, together with a functor R :
C — C'. A natural transformation o : RB = B'R induces a functor R :
B-coalg — B’-coalg defined by:

R(X—!-BX)= RX—"“RBX —"*~B'RX. (A.1)
Then, for the commuting diagram:

B’-coalgi B-coalg

UB,l |

]

the following holds:

Proposition A.1 If « is a natural isomorphism than a left adjoint L 4 R
imduces a left adjoint L 4 R.

Moreover, the adjunction L 4 R lifts L 4 R along the respective functors.
In particular, since Up/ reflects isomorphisms, this implies that if the unit of
L - R is a natural isomorphism then so is the unit of L 4 R.

B Proofs

B.1 Section 4.1: Not every endofunctor on (D]T) is sliced.

One important counterexample is the biextensional collapse construction on
Chu spaces [25], seen as an endofunctor on Chu(Set,2) = (Set | 27). For
a simpler counterexample, consider C = Set°”, D = Set and T' = Id. Then
(D]T) = Ar(Set), the arrow category of Set. Now consider an endofunctor
Q) : Ar(Set) — Ar(Set) defined by:

e on objects, Q(s : X = Y) =m:Z — Y, where X —5=7-">Y is the
epi-mono factorization of s,

e on arrows, a pair (f : X — X',¢g:Y — Y’) such that

X —=Y

i

X/ H/}/’/
180

KLIN

commutes, is mapped to (z, g) as in the diagram:

XA?(L)Y

'

X/T)Z/CL/)Y’7

where z exists uniquely by the epi-mono factorization system of Set.

Functoriality of @) is ensured by the factorization system as well.

However,) does not lift any functor on Set along Il,, since it might give
different results for different functions (objects in Ar(Set)) even if they have
the same domain.

B.2 Section 4.1: Proof of Prop. 4.2.
For any object X € C, consider the object (T'X, X,idx) € (D] T) and define
pPx = 7T3(K <TX, X, ldx>>

Then p : LT = T B is natural. Indeed, take any f : X — Y in C. The
square

TY —=TY
| Jrs
TX=—7=TX

trivially commutes, hence
(Tf,) :(TY,Y,idy) = (TX, X,idy)
is a valid morphism in (D|T). But then also
K(Tf,f): K(TY,Y,idy) - K (TX, X,idy)

must be a valid morphism. Since K lifts L and B, there is K (T'f, f) =
(LTf,Bf) and by (9) the naturality square

LTY 2~TBY
LTf TBf

LTX —~TBX

commutes.
Moreover, K = p. To see this, it is enough to show, for any object (®, X s),
that
K (9, X, s) = mK (TX, X,idy) o Ls.

181

KLIN

To this end, notice that the square

®—2>TX
Tidy

obviously commutes, hence
(s,idx) : (P, X, s) — (T'X, X,idx)
is a valid morphism in (D|T). But then also
K (s,idx) : K{(®,X,s) - K(TX, X,idy)

must be a valid morphism. Since K lifts L and B°P, there is K (s,idx) =
(Ls,idpx) and by definition of morphisms in (D7), the square

w3 K(®,X,s)
— s

Lo TBX

]

LTX waxxiad BX

commutes; but this is exactly the required equation. O

B.8 Section 4.1: Not every natural transformation between sliced endofunc-
tors is sliced.

For a counterexample, take C = 1, D = Set and T' = (5 (the constant functor
at a two-element set). Then (D | T) = Set/2 is the category of sets over a
two-element set 2. Now consider endofunctors K = Id (the identity functor)
and K’ = Ciq, (the constant functor at idy) on (D] T). It is easy to see that
both functors are sliced.

Define k : K = K’ by Kkex_2 = s. It is easy to see that this is well-
defined as a morphism in (D] T); to show naturality, assume any s : X — 2
and 7 : Y — 2 and some f : X — Y such that r o f = s. The naturality

square of k at f is:
f

S—=7T

HS:S\L J/HT =r

1d2T2>1d2
and this commutes immediately by the assumption on f.
However, the above k is not sliced. To see this, take any two distinct

functions s,r : X — 2 for some set X. Then obviously kg # k., therefore a
purported « : Id = 2 in Set cannot be defined on X.

182

KLIN

B.4 Section 4.2: Proof of Proposition 4.5.

(12) shows how to define s from « and . For the other direction, for any
K:p=>p, define

ag = I K(a,50 54) Bx = akrx X idry)

for any X € C and ® € D, where 1 : Id — T'S°? is the unit of S 4 T.

To check the naturality of o, for any f : & — ¥ in D consider the first com-
ponent of the naturality square of x at (f, SPf) : (P, 5P, ne) — (U, SV, ng),
which is a well-defined morphism in (D | T) by naturality of n. For the nat-
urality of 3, for any ¢ : X — Y in C consider the second component of the
naturality square of xk at (T'g,g) : (TY,Y,idry) — (T'X, X,idrx), which is
trivially a well-defined morphism in (D] T'). The equation T3 o p = p' o &/T
follows, for any given X € C, from the fact that the component of x at
(T'X, X,idry) is a well-defined morphism. Finally, it is straightforward to
check that the construction of o and f from & is mutually inverse with (12).

183

CMCS 2010

Coinduction in concurrent timed systems

Jan Komenda!

Institute of Mathematics, Czech Academy of Sciences, Brno, Czech Republic

Abstract

An important class of timed transition systems can be modeled by deterministic weighted automata,
which are essentially partial Mealy automata, and their extensions using synchronous compositions
defined over extended alphabets. From a coalgebraic viewpoint, behaviours of deterministic partial
Mealy automata are causal and length preserving partial functions between finite and infinite
sequences of inputs and outputs, called stream functionals. After a study of fundamental properties
of functional stream calculus an application to the definition by coinduction of the synchronous
product of stream functionals is proposed.

Keywords: deterministic weighted automata, Mealy automata, final coalgebra, synchronous
product, coinduction

1 Introduction

Universal coalgebra as a general theory of (dynamical) systems offers defini-
tions and proofs by coinduction [16], which are complementary to classical
approaches based on induction and turned out to be valuable in simplifying
the definitions and proofs of many concepts and properties that are hard or
even impossible to formulate within the algebraic framework. The techniques
borrowed from coalgebra have proven their usefullness in many areas of theo-
retical computer science (e.g. functional and object orienting programming),
but also in control theory, in particular of discrete state transition systems
that are called in control community discrete-event systems. The reference
model for discrete-event systems are partial automata, which are coalgebras
of a functor on the category of sets. They have been studied in [15] as the

I Email: komenda@math.cas.cz
2 This work was supported by the Academy of Sciences of the Czech Republic, Inst. Re-
search Plan No. AV0Z10190503 and by EU.ICT project DISC, N.224498.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

mailto:komenda@math.cas.cz

KOMENDA

model for control of discrete-event (dynamical) systems (DES) together with
the partial automaton of (partial) languages as the final coalgebra. Purely
logical DES in the form of partial automata have also been studied using
coalgebraic techniques in [10].

Deterministic weighted automata and more generally deterministic trans-
ducers are typical instances of state transition structures that can easily be
recasted as coalgebras of set functors. Actually, general nondeterministic
weighted automata may be viewed as coalgebras as well, but it is difficult
to put in use the corresponding final coalgebra [1], because the corresponding
set functor involves powerset (even though sometimes only finite powerset is
considered).

Deterministic (sequential) K-weighted automata with input alphabet A
and weights in a semiring K are essentially partial Mealy automata [7], where
the output alphabet is just replaced by a semiring K of weigths. The initial
and output functions of Weighted automata (WA) are neglected or viewed as
functions having values 0,1 € K defining initial and final states.

Mealy automata have been studied from a coalgebraic perspective in [18].
It has been shown that Mealy automata have final coalgebras, namely causal
functions between streams (infinite sequences) over the input alphabet and
streams over the output alphabet. This can be extended to the case of partial
Mealy automata, which are Mealy automata with transition function that is
only partially defined. Such a case is motivated by applications in control the-
ory, where state-transition functions are partial functions corresponding e.g.
to automata models of manufacturing systems. These are often represented by
(timed) Petri nets [19] and can be translated into deterministic (weighted) au-
tomata using reachability graphs of (labelled) Petri nets, which are naturally
partial automata.

It will be shown that the final coagebra of partial Mealy automata is formed
by causal partially defined and length preserving functions between finite or
infinite sequences over input alphabet and finite or infinite sequences over
output set (semiring K).

WA model state transition systems with a quantitative information en-
coded by output values of transitions that can be e.g. cost of a transition,
a timing information (like duration of executing a transition) or probability
of a transition between given states. The underlying semiring is then typi-
cally the (RU{oo}, min,+), (RU{—o0}, mazx,+) or the probability semiring
(< 0,1>,4,.), respectively.

As for timed transition systems, there are two basic ways of represent-
ing complex timed systems with concurrency (i.e. simultaneous occurrence of
events) by WA: use of nondeterminism and synchronous product constructs.
The first one relies on nondeterminism. Indeed, it is well known that unlike
logical automata, nondeterministic WA have significantly higher expressive

185

KOMENDA

power compared to deterministic ones. More specifically, it is known from [9]
that nondeterministic (max,+)-automata have a strong expressive power in
terms of timed Petri nets: every 1-safe timed Petri net can be represented by
a special (max,+) automaton, called heap model. The advantage of nondeter-
ministic WA is that these are typically much smaller than their deterministic
counterparts with the same behavior (if these happen to exist at all as finite
WA). However, this approach is not easy to apply, because of problems with
determinization and decidability issues [14].

The second way of modeling complex timed transition systems is using
explicit product constructs. Partial Mealy automata with a suitable (number
or interval based) semiring as an output set naturally model a simple class of
timed transition systems: deterministic one clock timed automata or equiva-
lently timed state graphs (machines). Timed state graphs are timed Petri nets,
where no synchronization is allowed: every transition has exactly one upstream
and one downstream place. The corresponding Mealy automata are simply
formed using reachability graphs, where duration of a transition in the timed
Petri net is exactly the output value of the associated transition in the Mealy
automaton. In fact, such a Mealy automaton may be viewed as a one clock
timed automaton [2], where the single clock is implicite and is replaced by the
corresponding (exact) duration or interval duration from the underlying semir-
ing (typically the so called (max,+) semiring R,,,, = (RU {—o00}, maz,+) or
the associated interval semiring). Such systems are intrinsically sequential,
because the duration of consecutive events are simply added (the classical ad-
dition is the multiplication of (R U {—o0}, maz, +) to compute the execution
times of event sequences (words). Therefore, explicit synchronous product is
needed to model more complex timed behaviors (corresponding to multi-clock
timed automata). Another reason why synchronous product of deterministic
weighted automata is needed comes from applications, e.g. in manufactur-
ing systems, where the underlying timed Petri nets models are formed by
elementary timed state graphs that are composed using shared synchroniza-
tion transitions. The overall system can then be modeled by the synchronous
product of elementary timed state graphs (components) as in [19].

We have proposed a (truly) synchronous composition of deterministic (max,+)-
automata based on tensor linear algebra and extended (multi-event set) al-
phabet in [12]. It turned out that there is no algebraic formula in terms of
local (algebraic) behaviors (formal power series), but only using linear (au-
tomata) representations. In this paper a coalgebraic definition is given using
coinductive definitions on stream functionals.

The paper is organized as follows. In Section 2 Mealy automata as coalge-
bras are recalled and partial Mealy automata are proposed. Final coalgebras
of partial Mealy automata are studied and two theorems of functional stream
calculus are stated. Section 3 is an introduction to deterministic (max,+) au-

186

KOMENDA

tomata and their algebraic and coalgebraic behaviors. The notion of a timed
language is recalled and compared to formal power series and causal stream
functions. In section 4 coinductive definition of synchronous product of causal
stream functions is proposed. An example is presented that illustrates the
coalgebraic approach to concurrent timed systems. Finally, section 5 proposes
a discussion and hints for future investigations.

2 Partial Mealy automata and deterministic weighted
automata

In this section we recall from [18] Mealy automata as coalgebras and ex-
tend them to the case of partially defined transition function. A fundamental
theorem of functional stream calculus is proposed that is the counterpart of
fundamental theorem of (ordinary) stream calculus presented in [17]. Other
properties of stream functions called stream functionals by analogy with math-
ematical analysis are stated.

Let A, K be arbitrary sets (typically finite and referred to as the set of
inputs or events). The empty string will be denoted by A. Further notation is
1 = {0} to denote a special one element set that will encode partiality of the
transition function (when no transition is defined).

Definition 2.1 A partial Mealy automaton with inputs in A and outputs
in K is the structure (S,t), where S is the set of states and the transition
function is ¢ : S — (1 + (K x S))4. This function maps any state s € S a
function t(s) : A — (1+ (K x S)) that associates to any input event A either
a pair (k,s’) consisting of the new state and the output & € K or the symbol
() € 1. The latter case means that there is no transition from s to s’ labeled
by a and this is donoted by s /.

Thus, Mealy automata with partially defined transition functions are coal-
gebras on the category Set of the functor F' : Set — Set given by F(S) =
(14 (K x S)4.

alk

The following notation, borrowed from [18], will be used: s — " iff
t(s)(a) = (k,s’). The fact that there is no transition labeled by a from s
to any state is denoted by s 4. Since we work with deterministic Mealy
machines this notation is justified and is equivalent to the absence transition
labeled by a from s to any s’ € S.

Remark 2.2 If K is a semiring, i.e. K is endowed with addition and multipli-
cation satisfying the semiring axioms, one may view partial Mealy automata
as deterministic weighted automata. Typically, weighted automata are non-
deterministic and have also quantitative initial and final functions that may
represent cost, probability or duration (time) and associate to any state the

187

KOMENDA

initial or final value in the corresponding semiring (i.e. (R U {oco}, min, +)-
semiring, probability semiring or (RU{—o00}, mazx, +)-semiring), respectively.
In other cases only logical initial and final functions are considered that de-
termine simply initial or final states. The initial state and final states play
no role in this study. It is implicitly assumed that any state is final and that
there is exactly one initial state. Note that unlike weighted automata, where
the fact that there is no transition from s to s’ labeled by a is expressed by
the zero value of the corresponding output from the semiring K, in our case
the absence of transitions is encoded using special symbol (). Only later we
will get rid of this symbol and represent partiality of transition functions by
(only) partially defined stream functionals.

The basic cornerstones of coalgebras of partial Mealy automata are stated:
homomorphisms and bisimulation relations. A homomorphism between two
partial Mealy automata S = (S5,t) and S’ = (5',¢) is a function f: S — 5’

such that for all s € S and a € A: if 5 28 & then f(s) ol f(s"), which can be
captured by the equality F/(f)ot =t o f corresponding to the commutative
diagram below:

1+ (K xS -5

F(f) f

/

(14 (K x S)A < 5

Definition 2.3 A bisimulation between two partial Mealy automata S =
(S,t) and S" = (5',t') is a relation R C S x S’ such that for all s € S and
s e S if (s,s') € R then

(i) Va € A : sa—>“)q = s’%q’ such that (¢,¢') € R, and b =¥/, and

(ii) Va € A : s’(ﬁ;q’ = sa—>|bq such that (¢,¢') € R, and b =V'.

(iii) Va € A: s A iff ' B
As usual, we write s ~ s whenever there exists a bisimulation R with

(s,s') € R. This relation is the union of all bisimulations, i.e. the greatest
bisimulation also called bisimilarity.

2.1 Final partial Mealy machine

First we consider causal functions between infinite sequences over A and infi-
nite sequences over 1 4+ K. Only later these will be formulated in a different
way, where partiality of the transition function on stream functions will be
expressed without using special symbol () € 1. Partial functions between fi-

188

KOMENDA

nite or infinite sequences over A and finite or infinite sequences over K will
be considered instead.

The set of all infinite sequences (streams) over a set A is denoted by A“.
Similarly, the set of finite or infinite sequences (streams) over a set A is denoted
by A® ie. A = AU A", where AT stands for A* \ {\}. The empty string
A is excluded from A%, because Mealy automata have no output on empty
input (unlike Moore automata).

The elements of stream calculus as coinductive study of infinite sequences
over a semiring K are first recalled from [17]. It relies on the fact that streams
from K“ together with the initial value (the initial output from K, also called
head of the stream) and the stream derivative (also known as tail of the
stream) form the final coalgebra (K“, (head, tail)) of the set functor F'(S) =
K x S. Formally, for s = (s(0),s(1),s(2),s(3),...) € K : head(s) = s(0)
and tail(s) = s' = (s(1),s(2),s(3),...).

The notion of stream derivative applies to both infinite and finite se-
quences. For a sequence s = (s(0),s(1),5(2),s(3),...,s(k)) € AT its stream
derivative, denoted s’ € A*, is defined by s = (s(1), s(2),s(3),. .., s(k)). Oth-
erwise stated, for k =0,1,2,... (k) = s(k 4+ 1). Obviously, s does not pre-
serve the length of finite sequences. Fora € Aand o = (¢(0),0(1),...,0(k),...) €
A the following notation is adopted: a : 0 = (a,0(0),0(1),...).

The notion of causality [18] applies to functions between both finite and
infinite sequences. f is causal means that for any ¢ € A* the n-th element
of the stream f(o) € K* depends only on the first n elements of o € A*.
Formally, f : A>* — K% is causal if Vn € N, o,7 € A>*: Vi : i < n
o(i) = 7(i) then f(0)(n) = £(r)(n).

Unlike [18], where Mealy machines with complete transition functions are
studied another property (that we call consistency of f) is required. Finally,
f: A® = (14 K)™ is called consistent if for any stream o € A“ the sequence
f(o) € (1 + K)“ has the property that the symbols () must only be placed
on the rightmost part of the stream. Formally, f is consistent if ¢ € A“:
f(o)(k) = 0 then f(o)(n) = 0 for any n > k. The concept of consistency is
close to prefix closedness of languages.

The initial output and functional stream derivative of f are defined in
the same way as in [18]. Hence, fla] = f(a : 0)(0), which is well defined
(independent of o) due to causality. The functional stream derivative f, :
A® — (1+ K)*> is defined by f,(0) = f(a: o). There seems to be a problem
with defining stream derivative of a sequence of length 1. Fortunately, we only
need the stream derivatives of finite sequences in the context of functional
stream derivatives of [18], i.e. f(a : 0)’. Since o € A is of length at least
one, a : o is of length at least two, hence f(a : o) € (1 + K)™ is either of
length at least one or is undefined.

It has been shown in [18] that causal functions from streams over A to

189

KOMENDA

streams over K, where functional stream derivative plays the role of the transi-
tion function form final coalgebra of Mealy machines with complete transition
functions.

Now we are ready to propose the following (universal) partial Mealy au-
tomaton.

Definition 2.4 Let us define the partial Mealy automaton F = (F,tr) with
the carrier set 7 = {f : AY — (14 K)“ |f is causal and consistent}.

The first output and functional stream derivative endow JF with partial
Mealy automaton structure (F,tx), where tz : F — (1+ (K x F))* is defined
by

(fla], fa) if fla] # 0 €1,

0 otherwise,

tr(f)(a) =

The definition of derivative can be extended to strings using the classical
chain rule: for w € A* and a € A: (fu)a = fuwa-

Below we point out that to any state of any partial Mealy automaton we
can associate its behavior from F such that the mapping f : S — F be a
homomorphism of partial Mealy automata.

Proposition 2.5 The partial Mealy automaton (F,tx) is a final partial Mealy
automaton: for every partial Mealy automaton (S,t) (with inputs in A and
outputs in K), there exists a unique homomorphism [: (S,t) — (F,tx).

Proof. For any Mealy automaton (S,t) we define a function [: S — F. It
associates to a sg € S the function I(sg) : A — (1+ K)* in the following way:

for 0 € A¥ and n € {0,1,2,...}, the sequence of transitions corresponding

. o(0)|k o(1)|k o(n)|kn
to o is considered (if it exists), i.e. sg (—)i ° 5 (—)‘> Y s (—)i Sp+1. We

define in this case [(sg)(0)(n) = k,. If there is no such a transition along the
path labeled ¢(0)...o(n), then we put I(sg)(c)(n) = 0. Otherwise stated, [
maps any input sequence o € A to the stream (ko, k1, ko,...) € (1 + K)“ of
outputs observed along this input starting in sg. Then no transition possible
starting from o, is expressed by putting special symbols encoding ”empty”
obervation: k; = () for [> m.

It is immediately seen that [(sg) is consistent, because clearly I(sg)(0)(n) =
() for any n > m whenever I(sg)(o)(m) = (. It is not difficult to verify that
[(s0) is causal and that [is a homomorphism, which is moreover a unique one
(up to isomorphism). O

The stream function [(sg) above is called the (input-output) behavior of
sp. Final coalgebra F has the property that bisimulation on F implies (and
henceforth is equivalent to) equality. This opens the possibility of proving
equality of two causal and consistent stream functions f, g € F by coinduction,

190

KOMENDA

which amounts to showing that f ~ g¢: there exists a bisimulation relation
R C F x F such that (f, g) € R. Since the transition function of F is defined
using the tuple of the first output and functional stream derivative, the proof
of R being a bisimulation (used further) consists of two steps. Firstly, it is
shown that first outputs for any input coincide on all related pairs of stream
functions, and secondly it is to be shown that the functional stream derivatives
with respect to all input events are again related by R.

Now the final coalgebra F is formulated in an equivalent way, where ()
is not needed, but both infinite and finite sequences of inputs and outputs
are considered and the function between them must preserve their length.
We will consider causal partial (partially defined) functions from finite or
infinite sequences over A to finite or infinite sequences over K that are length
preserving, i.e. finite sequences over A are mapped to finite sequences over
K of the same length and infinite sequences over A are mapped to infinite
sequences over K. It is easily seen that F is isomorphic to the following
structure:

Foo ={f : A — K*°|f length preserving and causal with dom(f) prefix-closed}.

Note that the output set 1 + K is replaced by K and f is a partial function
between finite or infinite sequences over input and output set. The consistency
of f: AY — (1 + K)¥ enables to recast f as an element of F.

It follows from the construction below. First, it is shown how to ob-
tain from f € F an element of F,. Since f is consistent, there are two
possibilities: either for ¢ € A“ and any n € N we have f(0)(n) € K, i.e.
f(o)(k) # 0, or there is a k € N such that f(o)(k) = 0. In the former case
f is automatically an element of F,,. In the latter case the consistency of f
means that f(o)(n) = 0 for n > k. Then it is useless to evaluate f in the
whole infinite sequence o. It is then sufficient to consider only finite words
like o(0)o(1)...0(k) € A* and the corresponding finite words in the outputs
f(0)(0).f(o)(1)... f(o)(k) € K*. It is clear that such a mapping f is only
partial (as we forget the value of f on suffixes of ¢(0)o(1)...0(k)), and that
f is length preserving. Let us not here that intuitively, o(0)o(1)...0(k) € A*
is in the (prefix-closed) language of the underlying partial Boolean automa-
ton that forgets the outputs, while o(0)o(1)...0(k + 1) is already out of this
prefix-closed language. It is immediately seen that dom(f) is prefix-closed.

Conversely, to any length preserving and causal f : A* — K with
prefix-closed domain we can construct a causal and consistent mapping f :
AY — (1 + K)“. Indeed, it is simply sufficient to extend the maximal (wrt
prefix-order) finite words for which f is defined to infinite words and complete
the image sequences by symbols () that are placed on the rightmost part of
the streams f(o). Naturally, f is again causal and consistent.

An important observation is that for f € F,, we have in fact f|a] = f(a)(0)

191

KOMENDA

whenever f is defined for a € A. Otherwise, f[a] is undefined and there is no
a-transition in F,, from f.

For each length preserving and causal function f € F we define the initial
(first) value (of output) corresponding to a € A simply by fla] = f(a)(0).
Also, the functional stream derivative of f (with respect to input a) is defined
as the function f, : A>® — (1+ K)> given by f.(s) = f(a: s)"if it is defined.
Clearly, f, is again causal and preserves the length of s, because prefixig a
finite sequence by a increases the length by 1 and f keeps the length, but
the derivatives reduces it back to the original length. The transition function
tr + F — (14 (K x F))* is defined using the first output function and the
functional stream derivative, similarly tz_ : Foo — (14 (K X Fypo))? is defined
by

al, fa if fla| is defined
TN G YT

undefined otherwise,

2.2 Fundamental properties of stream functions

It is natural to call functions between streams by stream functionals to stress
the analogy with functional analysis. First we recall other elementary concepts
from stream calculus for streams over a semiring K = (K,®,®,0,1). The
constant stream corresponding to r € K is given by [r] = (r,0,...). The
notation X = (0,1,0,...) is important to describe any stream using constant
streams, addition and multiplication. The addition (sum) of streams is defined
using addition of K: For o, 7 € K*“:

(c@®7)(n)=0c(n)®r(n)

and Cauchy (convolution) multiplication of streams given by

n

(c®@7)(n) = @a(k) ®71(n — k).

k=0

The symbol ® for multiplication of streams is often left out as in the classical
calculus, cf. X f,)(c')(0) below meaning X ® f,)(c')(0) etc. The n-th
Cauchy power of X, ie. X" = (0,...,0,1,0,...) with 1 being placed on the
n + 1-st place. Finally the notation ¢ is used to denote the k-th stream
derivative of o.

The following theorem is provided that is the counterpart of fundamental
theorem of stream calculus in functional stream calculus. Fundamental theo-
rem of stream functionals is stated in Theorem 2.6. Let us note that similarly
as in the stream calculus the sum @ is formal, although it is well defined,
because there is only one element per component in & below.

192

KOMENDA

Theorem 2.6 For any f € F and 0 = (0(0),0(1),...,0(k),...) € AY we
have:

(o) = f(0)(0) & X fo)(0")(0) @ ... X* fo0)...ote—1) (@) (0) @ ...

or equivalently,

f(0) = flo(0)] ® X foo()] & ... X* fo)..ot-n) o (k)] @ . ..

Proof. It follows from the fundamental theorem of stream calculus, which
states that for any o € A“ it holds that ¢ = ¢(0) & X.o’, which can be
extended to 0 = o(0)®X 0’ (0)®X?0’(0)®. .. Similarly, it sufficies to show that
f(o) = f(0)(0)® X fr)(c’), which is a direct consequence of the fundamental
identity on K% for f(o): f(o) = f(0)(0) & X f(¢)". Indeed, o = o(0) : o',
hence by definition of functional stream derivative we get: fo0)(0”) = f(co(0) :
o) = f(a). Hence, f(a) = (7)(0) & X foio ().

|

In the proof of Theorem 2.6 we did not make use of coinduction, but im-
plicitly : it relies on fundamental theorem of stream calculus, which can be
proven by coinduction. Let us also mention that similar fundamental theorem
holds for functionals from F,,. Now the set F. is considered. In the next re-
sults partiality of the functionals from F, is important. Functionals from F
have interesting properties and some of them are proven below by coinduction
on stream functions. Some of them are listed below. The fact that we can
evaluate these functionals on finite words that are prefixes of (potentially) in-
finite words (streams) has interesting consequences. For instance, the lemma
below.

Lemma 2.7 For any f € Foo, w € A®, and a € A: f(a) : fo(w) = f(aw).
More generally, for any uw € AT and w € A®: f(u) : fu(w) = f(uw).

Proof. First we stress that the f(a) : f,(w) is an element of K. Hence,
the equality can be shown by coinduction on streams [17] extended to finite
and infinite sequences, which is the final coalgebra of partial stream automata
given by the Set functor F': S — 1+ (K x S). Put

R=A{{f(a): folw), flaw)) U{o,0) | [€ Foo, 0 € K=, and a € A.}

This amounts to show that the heads (initial values) are the same and that
the stream derivatives are also related by R. Firstly, [f(a) : f.(w)](0) =
f(a) and f(aw)(0) = f(a)(0) = f(a), because f is causal. Secondly, {f(a) :
faolw)} = folw) and f(aw)" = f,(w) from the very definition of functional
stream derivative. It is also easy to see that f(a) : f,(w) can not make further

193

KOMENDA

transition iff f(aw) can not (namely iff f(a) is undefined), which shows the
partial stream counterpart of (iii) of Definition 2.3. O

An interesting and useful observation is that the first output function at
first input fla] = f(a)(0) can be seen as a simple stream functional. Indeed,

the initial output function can be seen as a particular partial stream functional
defined by

Plaey =47

undefined otherwise: o # a,

The following concatenation like multiplication (denoted by ®) of a stream
functional g with this special stream functional f*[a] on the left, helps for-
mulating another fundamental identity of functional stream calculus.

Definition 2.8 For any f,g € Fu, 0 = (0(0) : ¢') € A, and a € A we
define

f(@(0) : g(d’) if a = a(0) € dom(f),

undefined otherwise,

(f=[a] © g)(0(0) : 0') =

Note that the multiplication on the right is just stream concatenation on
K following the notation of [17]. We make the convention that f(a) : g(¢’) =
f(a) if g(o’) is undefined. Addition on streams from K°° induces addition on

Feo. Simply, one defines for f; € Foo, @ € I1 (P, fi)(o) = B, (fi0)) .

Then we can write:
Theorem 2.9 For any f € Fo we have: [=@, fCla] © fa.

Proof. It can be shown by coinduction on F,,. We put

R={(Pr*a® fo, YU,)| € Foo and a € A}.

acA

Then R is a bisimulation on F,. Indeed, for any b € A we get (f*[a]® f.)[b] =
(f*la] ® f2)(0)(0) = (f>°[a](b). Let us observe that according to definition of
fla] we have either f°°[a](b) = f[b] or it is undefined, depending on b = a
or not. Hence, @, 4(f<[a] © f,)[b] = f[b] and the first outputs are equal for
@aeA(foo[a] @ fa) and f

Now, let (B, /*[a] © J, ™% [Then ['(0) = (@4 /¥[a] © 1.),(0) =
Ducal(fZlal © fa)(bo)} = {f[b] : fo(o)} = folo). Again, (f*<[a](b) = f[0]
in case b = a has been used. Finally, it is obvious that @, , f*[a] ® f, 7 iff
f # (namely iff f[a] is undefined), which shows (iii) of Definition 2.3.

Hence, ((D,c4 fla] : fa)p, o) € R, which was to be shown. O

194

KOMENDA

This equality may be viewed as a functional stream counterpart of the fun-
damental theorem of (multivariable) formal power series (behaviors of Moore
automata): s = s(\) + Y ., a.5, for s : A* = K. Therefore, multiplying a
stream functional f by the elementary functional given by flal], i.e. f>[al,
in the sense of definition 2.8 can be seen as a functional counterpart of for-
mal power series integration, which is given by ac, i.e. Xo for monovariable
streams over X = (0,1,0,...). This is expressed in the Proposition below.

Proposition 2.10 For any f € Foo and a € A: (f®a] ® f)a = f

Proof. The equality is shown by coinduction on F,,. Let

R={((f"al © fla, /YU ([, [) | f € Fandac A}

Then R is a bisimulation on F,. Indeed, for any b € A we get (f*[a]®f).[b] =
{(/*la] © f)(ab)}'(0) = (f>[a] © f)(ab)(1)={f(a) : F(b)}(1) = f(D)-

Now, let (f*[a] © f)o > f. Then f'(0) = (f>[a] ® fas(o) = {(f*[a] ©
Mabo)}" ={f(a) : f(bo)}" = f(bo) = fu(o). Hence, (f*[a] © f)ap = [and
therefore ((f®[a] ® f)as, f5) € R. Also, it is easy to see that (f*[a] ® f)a 2
iff f -2 (namely iff f[a] is undefined), which shows (iii) of Definition 2.3.

O

Remark 2.11 In section 4 we need a semiring structure on K in order to
introduce the synchronous product operation on causal and length preserving
functions that are behaviours of deterministic time-weighted automata.

Finally, let us mention that the behavior of Mealy automata are typically
described in the literature as formal power series f : AT — K. Still we
prefer to work with F, because as is shown in the next section, in the case
of deterministic time-weighted automata coalgebraic behaviors are similar to
timed languages from timed automata theory.

3 Deterministic weighted automata and timed languages

In this section deterministic (max,+) and interval automata without initial
and final delays are considered and three representations of their behaviors
are discussed: formal power series, timed languages and functions between
finite or infinite sequences of inputs and outputs.

Let us start with the definition of deterministic K-weighted automata. Let
K = (K,®,®) be a semiring.

Definition 3.1 A deterministic K-weighted automaton over the input alpha-
bet A and with weights in K is the Mealy automaton (S,%), where S is the
set of states and the transition function is ¢ : S — (1 + (K x S))%.

195

KOMENDA

Two important cases of semiring K are considered in this paper. A de-
terministic (maz, +)-automaton is a deterministic K-weighted automaton with
K = Ry = (RU{—00}, maz,+). The zero element, i.e. —oo of R4, is
denoted by ¢ in accordance with idempotent semiring notation [8] and the unit
element is denoted by e = 0. A deterministic interval automaton is a deter-
ministic K-weighted automaton with K = Z"%" = (R xR U(—o00, —00), &, ®),
where @ is the componentwise maximum and ® is the componentwise (con-
ventional) addition.

At the first sight our deterministic K-weighted automata might seem very
different from (non)deterministic K-weighted automata in algebra, which are
defined by G = (Q, A, a, i1, B), where @ is a finite set of states, A is the set of
events, and the linear triple consists of a: QQ — K, t: Q x Ax @Q — K, and
B Q — K, called input, transition, and output delays, respectively. Let us
recall that ¢ can be algebraically viewed as a collection of matrices

po A= K99 p(a)yg £t(g,a,q').

Since the definition g can be extended from a € A to w € A* using the
morphism property, i.e.

plar...a,) = pu(ay) ® ... play,),

o is often called a morphism matrix. Such a triple («, p, 8) is called a lin-
ear representation of GG. In this algebraic representation there is no need of
using special symbols to express partiality of the transition function, because
t(q,a,q') = 0 € K means there is no transition from ¢ to ¢’ labeled by a.
The transition function associates to a state ¢ € @), a discrete input a € A
and a new state ¢’ € @), an output value t(q,a,q’) € K corresponding to the
a—transition from ¢ to ¢'.

As our K-weighted automata (viewed as coalgebras) are assumed to be
deterministic, there is exactly one initial state and ¢ is deterministic, i.e. ¢ :
@ xA— (14+ K x Q). Note that in this deterministic transition function
t the set) € 1 is needed to encode the partiality of the transition function,
unlike the nondeterministic transition function, where the zero element of K,
i.e. 0 € K encodes the fact that there is no transition between two given states
with a given label. It is immediately seen that this deterministic transition
function can be recasted in the coalgebraic form in terms of the set functor
F(S) = (14 (K x 9))4, cf. Definition 3.1.

Essentially, our attention is restricted to transition function, while initial
and final weights (called delays in timed systems) are discarded, or at least
a and f take their values in the Boolean subsemiring of K: e.g. Vg € A :
a(q) € {0,1} meaning «(q) = 1 iff ¢ is the initial state. Initial and final state
play no role in our study, because from a coalgebraic perspective any state can

196

KOMENDA

play a role of an initial state in the sense that the behavior homomorphism
[: S — F evaluated in s € S gives the behavior of S, where s is the initial
state.

Below it is assumed that K = R,,,,. From an algebraic viewpoint, behav-
iors of timed systems are timed languages or formal power series. Below the
notion of a timed language is recalled from the theory of timed automata [2].

Definition 3.2 A timed word s; is a (finite or infinite) sequence over the
alphabet A x R, i.e. s; € (A x R)>®, where (01,t1)... (0, 0,) ... means that
the execution time of an event a; is achieved at time ¢;, 2 = 1,2,.... A timed
language is a subset of timed words, i.e. L; C (A x R)*.

It is easy to see the relationship between elements of the final coalgebra
F or its equivalent presentation F,, from the previous section and timed
languages. In fact, timed languages give the cumulated execution time of a
sequence, which is the sum of durations of individual events in the sequence.
This subsumes that the multiplication of the underlying output alphabet,
which is the semiring R,,,, is the conventional addition. In particular, it
means that the sequence of execution times t;...%, ... from Definition 3.2 is
nondecreasing.

On the contrary, for any partial, length preserving, and causal function
f: Foo and o € A™ the value f(o) gives the sequence of duration times
of individual events from o, which is naturally not nondecreasing in general.
For a given f € F, it is easy to obtain the corresponding timed language
by simply making the sum of the duration of consecutive events from the
initial event up to a given one. For instance, the function f : AT — R
that maps the sequence a,b, c,b to the sequence 1,2,4,3 and is only defined
on nonempty prefixes of a,b,c,d (e.g. a,b is mapped to the time sequence
1,2) corresponds to the finite timed language given by a single timed word
(a,1)(b,3)(c,7)(b,10). The timed words and such simple stream functionals
are easy to obtain from one another. However, timed languages (subsets of
timed words) are strictly more expressive than our stream functionals. This
is natural, because timed words can express concurrent timed behaviors of
general timed automata, while stream functionals are tailored to sequential
(single clock) timed systems. Still it will be shown in section 4 that there
is a class of concurrent timed behaviors that can be expressed by stream
functionals using synchronous product based on extended alphabets.

Let us note that timed words are even closer to formal power series than
stream functionals, but in general formal power series may hide some timing
information. In the example above, the corresponding formal power series
is la & 3ab & Tabe & 10abcb. However, for another formal power series la &
Tabc @ 10abeb there is no information about the execution time of ab, but only
the one about abc is specified and we only know that ab is executed in time

197

KOMENDA

interval (1,7).

But timed languages have no such a nice and rich structure as partial,
length preserving, and causal functions from F.,. This feature is important for
our main goal: coinductive definition of synchronous product of deterministic
weighted automata. Therefore, we only work with behaviors from F, in the
rest of this paper.

4 Behaviors of concurrent deterministic (max,+) au-
tomata

In this section the main result of this paper is presented: coinductive definition
of synchronous product of behaviors of deterministic time-weighted automata,
i.e. functions from F., is proposed and discussed in detail.

Let us first recall the automaton based definition of synchronous product
proposed in [12]. Tt is assumed that a distributed timed system is given by two
deterministic (max,+)-automata. Let Gy = (S1,t1) and Gy = (Ss,t2) be two
(max,+)-automata defined over local alphabets A; and A,. Then associated
natural projections are P; : (A3 U A9)* — Aj et P @ (A1 U Ag)* — A5 We
also need the Boolean matrices associated to morphism matrices :

e=0, if[u(a)y;#e

€= —o00, else

[Bu(a)]i; =

In order to avoid heavy notation, Bu(a) is in the sequel denoted by B(a).
This notation can be extended to a (Boolean) morphism on words from B :
A* — {0, —oo}™ ™ using morphism property B(ay ...a,) = B(ai) ... B(ay,).
The synchronous composition of two (max,+)- automata is based on an
extended alphabet composed of two types of events. Firstly, it includes all
shared events. Secondly, it includes pairs of local sequences in between the
synchronization event. Formally, A = (A; N Ay) U (A1 \ Ag)* x (As \ Ay)*.
The problem is that the alphabet actually depends on the particular dis-
tributed timed system under consideration in the sense that not all pairs of
local sequences (which would make the extended alphabet infinite) need to be
included in A. It suffices to include those pairs from (A; \ A2)* x (Ay \ Ap)*
that are actually executed by the automata. In fact, we need to include in A
exactly the pairs of maximal local strings (maximality is with respect to pre-
fix order) in between two consecutive synchronization events. Note that this
means that A4 can in general be infinite, but only in the case, where at least
one local automaton GG; or GGy has no loops consisting of private events only
A1\ Ay or Ay\ Ay, respectively. It is then natural to exclude this possibility by
assuming that local (max,+)-automata G; and G5 have no loops consisting of

198

KOMENDA

private events. Otherwise stated, any loop in local subsystems must contain
at least one shared (synchronization) event. In such a case the alphabet A for
given distributed timed system is finite.

In order to define the synchronous product on behaviors from F it is
necessary to use extended alphabet A.

The Kronecker (tensor) product of matrices denoted by ®° is involved. If
A = (a;j) is a m x n matrix and B is a p X ¢ matrix over K, then their
Kronecker (tensor) product A ®" B is the mp x ng block matrix

(A®" B)ipji = ai; @ by.

The parallel products of weighted automata a la A. Arnold [3] or P.
Bucholtz [4] is not suitable for timed systems, because if these are applied
to(max,+)-automata, their product as product of weighted automata remains
a sequential model.

In the logical setting trace theory has been developed, where events that
may occur simultaneously are related by independence relation. However, it
is not clear how to extend the trace theory into the timed transition sys-
tems setting. Let us recall that classical composition of weighted automata
[3] is simply given by tensor product of their linear representations. This cor-
responds to classical synchronous product of underlying Boolean automata,
but the duration of a transition in the synchronous product is the product
(i.e. conventional sum in R,)of the durations of participating transitions.
This is not suitable for timed systems modeled by (max,+)-automata, unless
there is no concurrency between events: e.g. the alphabets of subsystems are
equal. Indeed, one would need to distinguish simultaneously executed events
or strings and in the extreme case the duration of a global string is the sum of
durations of corresponding (projected or local) strings. Therefore, definition
below has been proposed, which corresponds to the intuition that in between
two synchronizing transitions the local strings are executed in parallel, i.e. the
duration of a string v of non shared events equals the maximum of durations of
its projections Py (v) and Py(v) in local automata. A much simple coalgebraic
counterpart of this definition will be given later in this section.

Definition 4.1 Synchronous Composition of (max,+)-automata
G1 = (Q1, Ay, a1, 1, 1) and Gy = (Qa, As, a, 12, B2), is the following interval
automaton defined over the alphabet

A= (A1 N A) U[(Ar\ A2)" x (A2 \ A1)

Gi||Ga =G = (Q1 X Q2, A, a, 1, B)
with Q1 x Qs set of states, A set of events, a = a; ®" ay the initial delay
c s AY — RN the morphism matrix and § = 8; ®" 3, final delay. The
morphism matrix is defined by :

199

KOMENDA

p1(v) @ Bo(v) @ By(v) @ pa(v), ifv=a€ A NA
p(v) = 4 pa(Pi(v)) @' By(Pa(v)) @ Bi(Py(v)) @ pa(Py(v)), if v = (Pi(v), Py(v)) €
(A1 \ Ag)* x (A \ Ay)*

Let us now explain the intuition behind this seemingly complicated defi-
nition. The interval automata G; and G5 are synchronized over the shared
events set: A; N As, but in between two consecutive synchronizations the au-
tomata Gy and Gy are free to execute their respective private events belonging
to A\ (A1 N Ay). These private events are represented by pairs of correspond-
ing local strings P (v) € (A1 \ A2)* and Py(v) € (Az\ A1)*. Not all events of A
are needed in concrete synchronous products. In fact, only those pairs of local
events are included that actually occur in local subsystems between two syn-
chronizing events. The extended alphabet A is still potentially infinite, which
is the main drawback of our approach. Fortunately, this may only happen if
there are loops of private events in one of the subsystems and the subsystems
are unable to synchronize. If this case is excluded a finite extended alphabet
A can be found.

In [12] we could not find any algebraic definition compatible with this
automata definition that would be based on formal power series [, = [(G;) and
l1 = I(Gh), i.e. independent of the linear representation G of l; and G of [5. A
definition for behaviors is only possible if automata representations are fixed,
but there is no algebraic definition independent of automata representation.
Yet, the formula for behavior of the synchronous product from [12] is very
complex and not practical to use, because for a given word over A;UA, it is the
sum of a number of terms that is exponential in the number of synchronization
events in this word. Still, even in the case of infinite alphabet A, we have
been able to compute the (algebraic) behavior of G||G9 on finite words from
A= A;UA,. Indeed, any w € A* can be decomposed as w = vga vy . . . a0y,
where a; € Ay N Ay, i@ = 1,...,n are shared (synchronization) events and
v; € (A\ (A1 N Ag))*, i =0,...,n are sequences of private local events. For
such a v; the corresponding local strings in G; and G4 are given by natural
projections Pi(v;) € A} and Pa(v;) € Aj, respectively. This way, any word
over distributed (global) event set A* can be seen as the word w = P;(vg) X
Py(vg)ay Pr(vy) X Py(vy) ... a, P (v,0) X Py(vy,) over the extended alphabet A.
The duration of private strings v; € (A \ (A; N Ay))* is simply given by the
maximum of the durations of local strings P;(v) and Ps(v).

In this paper such a definition for behaviors is given using finality of F
formed by causal and length preserving functions between A* and K with
prefix closed domains. They are endowed by partial Mealy automaton struc-

200

KOMENDA

ture as in section 2, where A is just replaced by the extended alphabet A.
The first output function of (I1||ls) will be defined using first output functions
of [y and [y extended to strings. The following concept is now needed. For
l; € Fs over A; and v; = ay ... a € A we define for i = 1,2:

(l)[vi] = (li)[a1] @ (li)ay [az] @ - . @ (li)ay..ap_, [ak]-

This is needed, because the whole local v; string playing the role of P;(v) from
definition below is executed in G; in a sequential way: the duration of its
execution is simply the usual sum, i.e. ®, of execution times of individual
events aq,...a; from v;.

Definition 4.2 Define the following binary operation on F over A: for [, [y €
L and Yv € A:

(Li]|l2)e = (L) Py || (I2) Py vy and
(L]|12)[v] = L[P1(v)] ® Blao[Pa(v)] & BL[Pi(v)] @ lo[Pa(v)].

Note that equivalently one can write:
max(l1[P(v)], lo[Pa(v)]) if [;[P;(v)] # € for i = 1,2

(1) (Lllt)v] = -
£ else, i.e. i =1,2:[Pi(v)] =¢

This definition is similar to the coinductive definition of synchronous product
[15] of partial languages (behaviors of partial automata). Indeed, our func-
tional input derivative for a shared event has the same form as the input
derivative for languages. As for private events, the extended alphabet con-
tains strings of these events (typically a finite number of them), but clearly
our definition of functional input derivative is formally of the same form as the
input derivative from the language definition [15] extended to strings. Namely,
for partial languages L, = (Li,L?), Ly = (L}, L3), and w € A* we have in
fact (L1]|L2)w = (L1)pyw)||(L2) pyw)- Of course, the first output function is
specific to the timed setting, but it is easy to understand from the equivalent
form (1). This formal simplicity of Definition 4.2 is another advantage of the
coalgebraic approach compared to the algebraic one, where it is only possible
to give automata definitions. It seems that there is no algebraic formula in
terms of local (algebraic) behaviors (formal power series), but only using linear
(automata) representations. Coalgebraic framework makes it simpler due to
the fact that final coalgebras are endowed with the same automaton structure
as another automaton of a given functor. In fact, algebraic behaviors (formal
power series) formal power series can also be endowed with a coalgebra struc-
ture [17], but only for the Moore automata functor. Maybe for this reason the
algebraic definition of synchronous product is not so elegant and it seems to
works on automata representations only: we could not find any definition for

201

KOMENDA

formal power series.

Let us mention another two points. Firstly, in the definition of functional
stream derivatives it is not necessary to distinguish the type of extended event.
Secondly, the first output function can equivalently be written as follows,
where we recall € = —o0 is the zero element of R,,,.. The value € in equation
(1) can be viewed as undefined. In the special case with full synchronization,
i.e. Ay = A, there is no need for using extended alphabet, in fact in this case
A = A; = Ay. Note that for any v = a € A we have in fact P (v) = P2(v) = a.

Thus, we obtain for [1,l, € £ and Va € A:

(Llll2)a = ()all(l2)a

and (I1||l2)[a] = l1[a] ® Bls[a] ® Bli[a] ® ls[a]. Interestingly, synchronous prod-
uct differs from sum or Hadamard product of two functionals (with obvious
definitions) in the initial condition, which is different from both sum and the
Hadamard product.

4.1 Ezrample

In this section the coinductive definition of the last section is applied to a
concrete example. We consider a simple distributed timed system consisting
of two subsystems: (max,+)-automata GG; and Gy over the alphabets A; =
{a,b,d} and Ay = {a,c}, respectively, drawn in figure 1. Their synchronous
product is by Definition 4.1 the following (max,+)-automaton :

G1||G2 - g - (Ql X Q27Aa 057/1“7/6)7
where (01 X ()5 is the set of states,
A ={a, (be,c),(d,0)} CT (AT NA)U(A\ (A1 NAy))",

a=0o ® a, =P & Py, and

pi(a) @' By(a) @ By(a) @ pus(a), ifv=ae AN A,
v(v) = q pi(be) @ Bo(c) @ Bi(be) @ pa(c), if v = (be, c)
pa(d) @ Ba(c) @ Bi(d) @ po(c), if v =(d,c)
can easily be computed. The synchronous product G;||Gs is drawn in figure
1 on the right.
The behavior of the composed automaton is the synchronous product of

behaviors of local components over A; = {a,b,d,e} and Ay = {a,c}, which
are g : (A1)® = (Ryee)™® and Iy 1 (A2)>® = (Ripae)™

202

KOMENDA

(de) /8
b/3 cl7
(be,c) /7
8 als
e/2 178

Fig. 1. Gl, G2 and G1HG2

An important feature is that the extended alphabet is based on the un-
derlying untimed partial automata and it includes only those sequences of
private events that can occur in between two synchronization events (a). In
our case these are sequences bec, bce, cbe (not to be distinguished one from
another) represented by their projections to the local alphabets, i.e. (be,c).
and sequences dc, cd represented by (d,c). Hence, the extended alphabet is
A ={a, (be,), (d,c)}. Note that P;(be,c) = be € A, Ps(be,c) = c € A}, and
similarly for (d,c). Hence, the differential equation for ({1||l2),, v € A makes
sense. The first output and derivative for v = a are as follows:

(Ii]ll2)a = (I1)all(l2)q and
(I1||l2)]a] = l1[a] ® Blsla] ® Bli[a] ® ls]al.

Let us mention that ({1||l2)(a) = (l1]]l2)(a)(0) = 5 = (I1||l2)[a], because
(l1]|l2) is length preserving and a € A* is of length 1. Now, according to the
fundamental theorem of functional stream calculus we get

(Llll2)(a(d, c)) = (Li]|l2)(a(d, ¢))(0) & (Li]|l2)a(d, c)(0).

Direct application of the formulas for derivative and first output function
yields

(Lil[l2)a(de) = (()all(l2)a)(de) = ((l)all(12)a) (de)(0) = ((1)all(12)a)[dc]

= (h)ald] @ B(lz)alc] ® B(lh)ald] © (I2)alc] = (l1)(ad)(1) ® B(l2)(ac)(1)®
B(l)(ad)(1) @ (la)(ac)(1) =8®@0@ 0 x 7=8.
The second last equality follows from f,[d] = f.(d)(0) = f(a : d)(0) =
f(ad)(1) for any f € Fu.
Similarly, we get ({1]/l2)(a(be, ¢)) = (l1]|l2)(a(be, ¢))(0) & (l1]|l2)a((be, ¢))(0),
where (I1]|l2)q(be, c) = ... = (l1)(a(be))(1) ® B(lz)(ac)(1) ® B(ly)(a(be))(1) ®
203

KOMENDA

(I3)(ac)(1) =5®040x7 = 7. These lines shows that the synchronous product
is easy to compute and moreover if the composed automaton is drawn, its
behavior is very intuitive and can directly be written down, cf. Figure 1.

The behavior functional [1]|ly € Fu is only partially defined: essentially
it is not defined for words that are outside the (prefix-closed) language of
the underlying partial automaton and all infinite suffixes of such words. For
instance, for w = aa or w = a*. On the other hand we have (14]|l2)(a(d, c))* =
(5858...)=(58)~.

The conclusion for this example is that both algebraic and coalgebraic
framework can be used to compute the behaviors of synchronous product
of (max,+)-automata. However, the coalgebraic approach does not use large
matrices (but scalar behaviors), while the algebraic framework needs automata
representations.

Remark 4.3 Two points are stressed. Firstly, our approach can be extended
to more than two local components as described in [12], but it becomes quite
complex. Secondly, synchronous product of interval automata, i.e. determin-
istic weighted automata with weights in 7% can be introduced in a similar
way as the synchronous product of (max,+)-automata. Interval automata has
been studied as Biichi automata over interval based alphabets in [6] and their
synchronous product are known as Product Interval Automata (PIA). The
same construction based on extended event alphabet can be applied to inter-
val automata and synchronous product of their behaviors can be defined by
coinduction.

PIA correspond to an important class of timed automata, where the clocks
are read (i.e. compared to constants in transition guards) and reset in a par-
ticular fashion: there are n clocks (one per component) and during a transition
in a PIA only clocks that correspond to the components that are active in a
transition are read and reset. This way the reading and reseting of clocks is
compatible with the distributed event set structure. Thus, the usage of clocks
can be completely avoided and PIA can be described by symbolic purely al-
gebraic methods.

PIA are capable of modeling many interesting applications like asynchronous
circuits. Hence, they represent a nice trade off between tractability (all funda-
mental problems are known to be decidable for this class of timed automata)
and modeling power.

5 Concluding discussion

In this paper deterministic (sequential) weighted automata has been studied
coalgebraically as partial Mealy automata. We have recasted their behaviors
(causal and consistent stream functions) as partial, length preserving functions

204

KOMENDA

(also called stream functionals) and extended basic results of stream calculus
into functional stream calculus.

The main advantage of the coalgebraic approach is the possibility to use
coinductive definitions and proofs that are known to be pertinent in many
applications. Moreover, final coalgebra itself is endowed with the same struc-
ture as another coalgebra of a given functor. This helps defining operations
on behaviors of state transition systems, e.g. streams, (partial) languages or
(partial) stream functions, because these behaviors are seen as corresponding
types of automata, e.g. stream automata, (partial) automata or Mealy au-
tomata. The corresponding definitions on automata are then simplified into
coinductive definitions on behaviors.

In this work another application demonstrating power of coinductive def-
initions compared to definitions by induction is given: synchronous product
of behaviors of deterministic weighted automata are defined by coinduction.
The main advantage of our approach is that the composed automaton remains
deterministic. On the other hand, the composed system has many states and
decentralized approaches must be used in order to avoid the state explosion
problem. Since our approach is compositional by construction, it is tailored
to decentralized (component-wise) techniques.

Recently we have developed supervisory control theory for (max,+) au-
tomata that is applicable to nondeterministic (max,+) automata as well [11]
(because determinism plays no essential role.) However, a major problem is
that the resulting controller series computed within a behavioral (i.e. formal
power series framework) need not be (max,+)-rational. Recall that a series
is (max,+)- rational (respectively (min,+)- rational) if it is in the rational
closure of series with finite supports, i.e. if it can be formed from polynomial
series (i.e. those with finite support) by rational operation @ (corresponding
to max, respectively to min), ®, and the Kleene star. A notion close to that
of a deterministic series is a unambiguous series, which is a series recognized
by unambiguous automata, i.e. automata in which there is at most one suc-
cessful path labeled by w for every word w. It is known from Lombardy and
Sacharovitch [14] that the class of formal power series that are at the same time
(max,+) and (min,+) rational coincides with unambiguous series. Moreover,
for these families of series, the equality (and inequality) of series is proven to
be decidable. Let us recall that sequentialization of weighted automata (i.e.
their determinizing) and its decidability status is not known for formal power
series over idempotent semirings (unlike the ring case, which is not so inter-
esting for applications in distributed timed systems). The results of [14] show
that essentially, beyond the class of deterministic series (i.e. those for which
deterministic representations exist) and hence deterministic representations of
the timed systems and their (control) specifications there is a little chance of
obtaining a rational (i.e. finite state) controller automaton. Also, equality of

205

KOMENDA

nondeterministic (max,+)-series is is known to be undecidable [13]. This is
a major motivation for our study that consists in coding concurrent (non se-
quential) timed systems using synchronous product construct instead of using
nondeterministic representations a la heap automata.

Among plans for further research, we plan to apply the coinductive defini-
tions presented in this paper in the study of decentralized control (as in [10])
of distributed timed systems that are formed as synchronous compositions of
sequential (i.e. one clock) systems. This would lead to an exponential sav-
ing of complexity of control synthesis compared to global control synthesis of
distributed timed systems.

References

[1] J. Addmek, S. Milius and J. Velebil. On coalgebra Based on Classes. Theoretical Computer
Science 316, pp.3-23, 2004.

[2] R. Alur and D. Dill. The Theory of Timed Automata. Theoretical Computer Science, 126:183-
235, 1994.

[3] A. Arnold. A. Arnold Finite Transition Systems. Semantics of Communicating Sytems,
Prentice-Hall, Englewood Cliffs, NJ, 1994.

[4] P. Buchholz, P. Kemper. Weak Bisimulation for (maz/+)-Automata and Related Models.
Journal of Automata, Languages and Combinatorics (2003) 8 (2), 187-218.

[5] S.G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems, Kluwer Academic
Publishers, 1999.

[6] D. D’Souza and P.S.Thiagarajan. Product Interval Automata, In Sadhana, Academy
Proceedings in Engineering Sciences, Vol. 27, No. 2, Indian Academy of Sciences, pp. 181—
208, 2002.

[7] S. Eilenberg. Automata, Languages, and Machines, Vol. A. Academic Press, New York, 1974.

[8] S. Gaubert. Performance evaluation of (maz,+) automata, IEEE Trans. on Automatic Control,
vol. 40(12), pp. 2014-2025, 1995.

[9] S. Gaubert and J. Mairesse. Modeling and analysis of timed Petri nets using heaps of pieces.
IEEE Trans. on Automatic Control, vol. 44(4): 683-698, 1999.

[10] J. Komenda and J. H. van Schuppen: Modular Control of Discrete-Event Systems with
Coalgebra. IEEE Transactions on Automatic Control, 53, N2 , pp. 447-460, 2008.

[11] J. Komenda, S. Lahaye, and J.-L. Boimond. Supervisory Control of (maz,+) automata: a
behavioral approach. Discrete Event Dynamic Systems, 19, N4 | pp. 525-549, Springer, 2009.

[12] J. Komenda, S. Lahaye, and J.-L. Boimond. Le produit synchrone des automates (max,+).
Modélisation des Systémes Réactifs (MSR09), Nantes, France, 2009. In JESA (Journal
Européen des Systemes Automatisés), vol. 43, pp.1033-1047, 2009.

[13] D. Krob. The equality problem for rational series with multiplicities in the tropical semiring is
undecidable. Internat. J. Algebra Comput., 4, pp. 405 - 425, 1994.

[14] S. Lombardy and J. Mairesse. Series which are both maz-plus and min-plus rational are
unambiguous, RAIRO - Theoretical Informatics and Applications 40, pp. 1-14, 2006.

[15] J.J.M.M. Rutten. Coalgebra, Concurrency, and Control. Research Report CWI, SEN-R9921,
Amsterdam, November 1999. Available also at http://www.cwi.nl/" janr.

[16] J.J.M.M. Rutten. Universal Coalgebra: A Theory of Systems. Theoretical Computer Science
249(1):3-80, 2000.

206

KOMENDA

[17] J.J.M.M. Rutten. Behavioural differential equations: a coinductive calculus of streams,
automata, and power series. Theoretical Computer Science Volume 308(1-3), pp. 1-53, 2003.

[18] J.J.M.M. Rutten. Algebraic Specification and Coalgebraic Synthesis of Mealy Automata.
Proceedings FACS 2005, ENTCS Vol. 160, Elsevier, 2006, pp. 305-319.

[19] J. Sifakis and S. Yovine. Compositional Specification of Timed Systems. Invited paper in

Proceedings of the 13th Annual Symp. on Theoretical Aspects of Computer Science, STACS’96,
pp- 347-359, Springer LNCS 1046, February 1996.

207

