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ABSTRACT
To take full advantage of the parallelism offered by a multi-
core machine, one must write parallel code. Writing parallel
code is difficult. Even when one writes correct code, there
are numerous performance pitfalls. For example, an unrec-
ognized data hotspot could mean that all threads effectively
serialize their access to the hotspot, and throughput is dra-
matically reduced. Previous work has demonstrated that
database operations suffer from such hotspots when naively
implemented to run in parallel on a multi-core processor.

In this paper, we aim to provide a generic framework for
performing certain kinds of concurrent database operations
in parallel. The formalism is similar to user-defined aggre-
gates and Google’s MapReduce in that users specify cer-
tain functions for parts of the computation that need to be
performed over large volumes of data. We provide infras-
tructure that allows multiple threads on a multi-core ma-
chine to concurrently perform read and write operations on
shared data structures, automatically mitigating hotspots
and other performance hazards.

Our goal is not to squeeze the last drop of performance
out of a particular platform. Rather, we aim to provide a
framework within which a programmer can, without detailed
knowledge of concurrent and parallel programming, develop
code that efficiently utilizes a multi-core machine.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—concurrency,
query processing

General Terms
Performance
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1. INTRODUCTION
Thread level contention is a new bottleneck facing de-

velopers of data-intensive applications, including databases.
Thread level contention occurs when tightly coupled, con-
currently executing threads serialize due to shared access to
a data structure. The contention may arise from an explicit
desire to achieve atomicity, for instance a lock protecting a
critical section, or implicitly when updates to a shared struc-
ture cause expensive cache coherence that slows access to the
same data by other threads. When only a few threads are
involved, contention is rarely detected, but with the increas-
ing number of threads available on chip multiprocessors, the
likelihood of contention also increases.

Contention is an important problem for databases be-
cause recent developments in computer architecture favor
a database execution model with tightly coupled, concur-
rently executing threads for in-memory database workloads.
We will first cover two processor architecture issues that in-
form this discussion and then discuss the implications for
database implementation.

1.1 Hardware Architecture Issues
Chip designers are finding it harder to increase clock fre-

quencies, because further increases in clock speed consume
too much power and generate too much heat. Instead of go-
ing faster, chips are becoming more parallel. Chip multipro-
cessors that contain multiple processor cores allow hardware
architects to improve computing performance per unit chip
area with lower power and heat demands. As these chips be-
come common in the marketplace, application programmers
(including implementors of database systems) are faced with
the new challenge of utilizing the parallel resources provided
by the new hardware. This is not an easy task as decades of
legacy code was developed for a uniprocessor architecture.

At the same time, main memory access has become a
performance bottleneck for many computer applications, in-
cluding database systems [1, 3]. We assume that the data
needed for queries is memory-resident. In disk-resident data-
bases with sufficient I/O bandwidth and adequate indexing,
I/O is not a performance bottleneck [1, 13].

Advances in the speed of commodity CPUs have far out-
paced advances in memory latency. Modern machines have
caches that enable them to store relatively small amounts of
data in higher-speed memory. When data is not found in the
cache, a cache miss results, and main memory must be ac-
cessed. In response to the growing memory latency problem,
the database community has explored a variety of techniques
to perform database operations in a cache-conscious way, to



reduce the number of cache misses, or to hide their latency
(see [7] for a survey).

1.2 Implications for Databases
When many concurrent threads are operating in parallel,

they could be working on independent tasks, or they could
be cooperating with each other on common tasks. When
each task has a small amount of state, the independent-tasks
model is attractive. Each thread can have its working-set
reside in cache memory. Because the tasks are independent,
there is no explicit coordination required between threads,
reducing overheads for coordination, such as locking.

The independent-tasks model has some shortcomings, how-
ever. When the working set of multiple tasks exceeds the
cache memory, cache interference can result in both the data
and instruction caches. For example, in [23] it was shown
that running two database operations in parallel was no-
ticeably slower than running them in sequence due to this
interference effect. Another example is partitioning. Us-
ing many independent partitioning threads performs worse
than concurrent partitioning using a shared data structure
when there are many partitions; when each thread has its
own partitions, the number of active cache lines is effec-
tively multiplied by the number of threads, leading to cache
thrashing [6]. To avoid cache interference on a machine run-
ning n independent tasks, each task can (on average) use
only 1/nth of the cache and memory capacity.

An additional shortcoming of the independent tasks model
is the need to have many independent tasks available. To-
day, the Sun UltraSparc T2 provides 64 thread contexts,
and future machines will likely have many more. It may
not be realistic to assume that the number of available in-
dependent units of work will always exceed the number of
threads. Load balancing in the presence of tasks that differ
in size also becomes a problem.

Instead of the independent-tasks model, we advocate the
opposite approach, namely devoting many threads to per-
forming a single operation in parallel. The advantage of this
approach is that all threads use a common data structure
that we can design to be cache efficient, meaning that un-
necessary cache interference will be avoided. All threads will
be sharing, and fully utilizing, the entire cache.

The difficulty of this many-threads approach is that the
threads are not independent. They may update shared data
elements. In order to guarantee correct execution, these
data elements need to be protected using locks or atomic
operations. The use of such protection can lead to two kinds
of performance problems: (a) the overhead of guaranteeing
exclusive access to data, and (b) the risk that popular data
items will cause threads to queue waiting for access to the
item, drastically reducing the effective parallelism due to
contention.

The difficulties of parallel programming are well-known,
and tuning algorithm behavior to avoid hotspots and other
performance hazards is extremely challenging. Further, if
there were to be a change in the hardware platform, such
as an upgrade to a machine with more cores, the old tuning
parameters may no longer prevent the hotspot behavior.

1.3 Our Contributions
We present ways to support generic operations that need

to access and update shared data structures in parallel. We
provide abstractions that allow a programmer to specify

a computation without worrying about parallelism or con-
tention. We also supply mechanisms that, without explicit
control from the programmer, manage the concurrent access
while avoiding or mitigating the contention bottleneck

Abstractions. We define a set of abstractions for use by
programmers who wish to enable concurrent updates to a
shared data structure. A programmer is required to write
four simple functions that describe how the state of the data
structure changes in response to new data elements. Our
abstractions resemble user-defined aggregates in SQL, and
the MapReduce framework [9], which we will discuss in more
detail in Section 2.2.

Mechanisms. Our contention detection mechanism re-
sponds to explicit instances of contention, where a thread
tries to update a resource and fails because some other thread
is updating the resource. We demonstrate that obtaining
this failure information can be done with low overhead. In
response to contention, we clone the resource, so that future
accesses to the resource are spread among the various copies,
reducing contention. We propose two cloning methodolo-
gies: a local cloning approach that lets each thread manage
its own clones, and a global cloning approach in which a
shared pool of clones is globally managed.

Performance Results. We have implemented our pro-
posed system, and have measured its performance. Our sys-
tem allows a contention-naive programmer to avoid contention-
related performance pitfalls that would otherwise cause an
order of magnitude drop in performance. We compare the
global and local approaches to clone management, and ex-
plain how important performance problems can be avoided.

Our goal is not to squeeze the last drop of performance
out of a particular platform. Rather, we aim to provide a
framework within which a programmer can, without detailed
knowledge of concurrent and parallel programming, develop
code that efficiently utilizes a multi-core machine.

2. RELATED WORK

2.1 Parallelism and Contention
Modern commercial database systems typically employ

some form of shared-nothing or shared-memory parallelism
[10]. A chip multiprocessor (CMP) is a shared-memory pro-
cessor, but differs from previous shared-memory systems:
in a symmetric multiprocessor (SMP), accesses to common
data elements in RAM must be mediated using a cache co-
herency protocol. Such protocols incur significant latencies
and use resources such as bus bandwidth. In a CMP, co-
herency is maintained on-chip, using fast, dedicated hard-
ware. As a result, parallel algorithms that would be imprac-
tical on an SMP due to cache coherency overhead may be
efficient on a CMP.

There have been many investigations of the performance
of database systems on multicore platforms. Hardavellas et
al. have profiled the performance of commercial database
systems on various multicore platforms [16], and show that
L1 data cache misses can be an important performance issue.
Qiao et al. show how to batch a collection of aggregate oper-
ations running on a multicore machine so as to avoid cache
thrashing [22]. Héman et al. describe ways to use the vector
processing capabilities of the Cell processor to improve the
performance of the MonetDB/X100 system [17].

There are numerous proposals for language constructs to
facilitate parallel programming. Examples include MPI [15],



OpenCL [19], Cilk [2], Pthreads [21], and StreamIt [12].
These language constructs enable programmers to specify
parallel tasks such as the spawning of threads in a generic,
platform-independent way. Cilk, for example, provides run-
time support for managing units of work so that a program-
mer does not have to explicitly schedule tasks. This line
of research is orthogonal to the present work. Rather than
focusing on explicit coordination of threads, most of whose
work is independent, we focus on detecting and ameliorating
contention on individual data elements.

There is also a significant body of work on non-blocking
data structures for concurrently accessed data items. Many
of these algorithms use compare-and-swap primitives. Mas-
salin and Pu [20] implement stacks, queues and linked lists
using double compare and swap (DCAS) primitives that are
more powerful, but not typically available on modern archi-
tectures. In general, writing correct non-blocking algorithms
using these primitives is difficult, and bugs in published algo-
rithms have been observed [11]. Our proposed abstractions
limit the computations we consider to simple commutative
operations for which such correctness concerns are of less
importance.

Another proposed method for dealing with concurrent ac-
cess to data is transactional memory [18]. Transactional
memory uses the traditional database abstraction of a trans-
action to control access to data items. In a typical transac-
tional memory implementation (in either hardware or soft-
ware) the system keeps track of the values read and written,
and will abort and restart a transaction if it appears that
there were updates that could have conflicted with another
thread’s updates.

Transactional memory is effective at resolving rare con-
tention. When accesses are mostly independent, there will
be few aborted transactions and performance will be high
while still guaranteeing correctness. Unfortunately, when
accesses are often contentious, transactional memory will,
like related optimistic concurrency-control methods, result
in a very large number of aborted transactions. Throughput
will be limited by the serialization of threads accessing the
popular data elements. Our work is thus complementary
to transactional memory approaches. One can use transac-
tional memory for shared data items that are known to be
accessed infrequently, and our cloning approach for popular
data items.

2.2 User-Defined Aggregates and MapReduce
Our proposed infrastructure uses abstractions that are

motivated by abstractions provided by user-defined aggre-
gates in SQL, and by the MapReduce framework [9]. In this
section, we briefly describe these abstractions.

All major database systems today allow users to define
their own aggregate functions to be used within SQL queries.
The following code fragment shows how one might define a
user-defined aggregate to compute sums of complex numbers
in Postgres.1

CREATE AGGREGATE complex_sum (

sfunc = complex_add,

basetype = complex,

stype = complex,

initcond = ’(0,0)’

);

1http://www.postgresql.org/docs/8.4/static/xaggr.html

The initcond parameter specifies that the initial value of
the aggregate is (0, 0). The sfunc parameter specifies a func-
tion that takes the current aggregate and a new value, and
combines them to yield a new aggregate value.

By allowing user-defined aggregates, database system ven-
dors allow users and programmers to leverage the infrastruc-
ture that already exists within SQL to compute aggregates.
The alternative, namely writing procedural code to compute
an aggregate, is far less satisfactory.

MapReduce [9] provides an abstraction for distributed
large-scale computation. A programmer specifies two rela-
tively simple basic functions, depending on the kind of com-
putation that is desired. The Map function specifies how
records are mapped to partitions or groups. The Reduce
function specifies how a derived value is computed from the
records within a partition. An example Reduce function that
is used by Google during inverted index construction takes
a (word,document-id) pair, and appends the document-id to
a list of document-ids for that word [9]. Other examples can
be found in [9]. The system manages the complex infrastruc-
ture needed to effectively manage the computation. Issues
of data placement, data movement, data sorting, scheduling
of computation, load balancing, and management of node
failures are handled automatically. The programmer does
not need to write code to address these issues.

Not all computations can be abstracted into a MapRe-
duce framework. Nevertheless, many useful computations
can be abstracted in this way. For those computations, the
big advantage of a MapReduce-style abstraction is that the
effort of developing a robust infrastructure for scalable com-
putation can be shared by a variety of computational tasks.
One does not have to re-code the infrastructure elements for
each new problem. As a result, the time taken to write new
code for computations that match the MapReduce abstrac-
tion is dramatically reduced, while scalable performance is
retained.

2.3 Contention on Multicore Processors
We briefly describe prior work in which contention hazards

for databases have been investigated.

2.3.1 Shared Buffers
A parallel join operation on the Cray MTA-2 multiproces-

sor [4] exhibited a performance bottleneck caused by threads
writing to a common output array. The threads had to wait
for access to the index counter for that array, causing them
to serialize their execution. Once the bottleneck was identi-
fied using performance counters and other diagnostic tools,
it was mitigated by giving each thread its own output ar-
ray. This was a specific case of the general problem of shar-
ing input or output buffers among concurrently executing
threads. Though fraught with potential thread-level con-
tention, concurrent buffer sharing was addressed in a more
generic manner in [8].

2.3.2 Hash-based Aggregation
Contention for performing aggregates on the Sun T1 ar-

chitecture, which has 32 thread contexts, was described in
[5]. Two kinds of concurrency control for parallel access to
a shared hash table were used for keeping running aggregate
values. The first employs locking primitives provided by the
operating system. The second takes advantage of the pres-



ence of operations that are guaranteed by the hardware to
be atomic.

When many threads attempt to modify the same hash
cell, a contention bottleneck can occur. There is a time-
window during which all but one of the competing threads
will be forced to retry an unsuccessful update. Such con-
tention bottlenecks can decrease throughput by an order of
magnitude [5]. These effects are particularly apparent when
the group-by cardinality is small, or when there are a few
heavy hitters among the grouping values [5].

3. DETECTING AND MEASURING CON-
TENTION

Atomic instructions are often exposed to programmers
through intrinsics, short pieces of code that look like C func-
tions, but are implemented in assembly language and in-
lined by the compiler. To enable contention detection, we
have written our own atomic intrinsics for the T2.

When performing an atomic update a developer will use
our atomic intrinsics, which also provide light-weight con-
tention measurement during the atomic operation. Two
atomic intrinsics used in this paper are 64-bit atomic in-
crement and 64-bit atomic add, named my_atomic_inc_64

and my_atomic_add_64, respectively. The C language usage
of these intrinsics can be found in Figure 2. We also defined
slight variants of these intrinsics that return the new value
of the data element.

The code for the my_atomic_add_64 intrinsic is shown in
Figure 1 in Sun’s assembly language. (my_atomic_inc_64
is similar.) The most important instruction in this code is
the compare-and-swap instruction casx, which is guaranteed
to be performed atomically, without interference from other
threads. The meaning of casx [L],A,B is:

Compare the old value in location L with A,
the expected old value. If they are the same,
then exchange B, the new value, with the value
in location L.

Otherwise do not modify the value at loca-
tion L because some other thread has changed
the value at location L since A was read. Return
the current value of location L in B.

After a compare-and-swap operation, one can determine
whether the location L was successfully updated by compar-
ing the contents of A and B.

The code in Figure 1 is based on Sun’s atomic add in-
trinsic. It has only three additional instructions, for load-
ing, incrementing, and storing the update-counter. Of these
three instructions, two actually occupy otherwise-unused in-
struction slots. As a result, there is only one instruction’s
worth of visible overhead. We measured the performance of
the alternative intrinsic, and found that it took about 7%
percent longer than the original on the T2. The bulk of the
time is spent on the relatively expensive casx instruction,
so the relative cost of the update-counter is small.

An important advantage of our direct approach to mea-
suring contention is that we get an exact and current mea-
sure of actual contention. Alternative methods (such as the
sampling and estimation methods described in [5]) are ap-
proximate at best, are not responsive to short-range fluctua-
tions in access patterns, and have sample collection/analysis
overheads of their own. Further, such estimation techniques

need to be aware of the algorithm’s behavior. In contrast,
our measurement does not have to know anything about the
algorithmic behavior generating the reference patterns.

4. CONTENTION MANAGEMENT
We aim to address contention bottlenecks apparent for

multicore machines. The primary hazard we wish to avoid
is situations where many threads attempt to concurrently
update a small number of data elements.

Unlike [5], we do not strive to design the best overall al-
gorithm for a single computational task, to get the best pos-
sible performance out of the machine. To achieve the level
of performance in [5], parallel code specific to the problem
at hand was needed, code that could not be reused without
much effort.

For algorithms of central importance (such as aggregation
in a database system) this effort may be justified. However,
the effort would have to be repeated for other similar tasks
such as partitioning [6]. Further, the performance tuning as-
pects of the algorithms, including the various thresholds for
switching between algorithms, would need to be recalibrated
on each candidate platform. For many tasks, it would be a
major advantage to be able to quickly write code that per-
forms in a scalable fashion on a multicore machine, avoiding
the contention hazards.

4.1 Abstractions
In what follows, we talk about a data structure element,

which may be any component of a data structure that is ref-
erenced using a pointer. Thus, an element may be a leaf of
a tree data structure, a hash bucket within a hash table, the
head of a linked list, a simple counter, or any other suitable
structure. The data structure element is encapsulated into
an abstract data type (ADT). The ADT is aware that the
element may have multiple internal versions of data. Nev-
ertheless, the ADT provides a simple interface that allows
the programmer to imagine that there is a single data item
being manipulated.

Our generic solution to contention on a data structure el-
ement x is to create an additional version of x. For example,
suppose we are accumulating a sum in x, and determine that
we have contention on x. We clone x to create an additional
element x1 that is initialized to zero. With two copies of x,
each will be accessed half as often as before. Our provided
infrastructure takes care of determining when to clone, and
which clone is accessed by which threads. At the end of the
computation, the two data elements are combined (summed
together in this example) to give the final result. If con-
tention continues after the cloning step, additional clones
can be created.

For such an approach to be meaningful, the computation
on x must, like the sfunc function of a user-defined aggre-
gate and the Reduce operation of MapReduce, be commu-
tative up to equivalence.2

In a manner similar to user-defined aggregates or MapRe-
duce discussed in Section 2.2, we expect a user to provide
four template functions for a computation. The create-clone
function specifies how a new version of a data element is
created. The combine function specifies how multiple ver-
sions of a data element are merged into a single result. The

2For example, in partitioning different orders of elements
within a partition are equivalent.



.inline my_atomic_add_64,0 ! %o1 contains update value

ldx [%o0], %o4 ! load current sum into %o4;

ld [%o2], %o5 ! load update-counter into %o5

1:

inc 1, %o5 ! increment update-counter

add %o4, %o1, %o3 ! add value to current sum; put in %o3

casx [%o0], %o4, %o3 ! compare-and-swap %o3 into memory location of sum;

! %o4 contains the value seen

cmp %o4, %o3 ! check if compare-and-swap succeeded

! i.e., if %o4 is equal to %o3

bne,a,pn %xcc, 1b ! if not, retry loop starting at 1:

mov %o3, %o4 ! statement executed even when branch taken; %o4 now

! has a more recent value of the current sum and

! we have to add %o1 over again

st %o5, [%o2] ! store the update-counter

.end

Figure 1: The my_atomic_add_64 intrinsic.

bool AggregatorAtomicUpdate(Aggregator *agg, const uint64_t value){

int32_t cas_counter = 0;

my_atomic_inc_64(&agg->count, &cas_counter); /* atomic increment */

my_atomic_add_64(&agg->sum, value, &cas_counter); /* atomic add */

my_atomic_add_64(&agg->sum_squares, value*value, &cas_counter); /* atomic add */

return (3 < cas_counter);

}

Figure 2: The atomic update operation.

simple-update operation specifies how the new value of a
data element is obtained from the current value and an up-
date. In the sum example above, the function would simply
be “x+=v;” where v is the update.

The fourth (and most interesting) function is an atomic-
update operation. We provide a set of atomic intrinsics based
on compare-and-swap primitives provided by the architec-
ture. The code given in Figure 2 is the atomic-update rou-
tine to compute three aggregates: a count, sum, and sum-
of-squares.

To understand this code fragment, one needs to under-
stand the meaning of my_atomic_inc_64 and my_atomic_add_64

presented in Section 3. The first argument of these intrinsics
gives a pointer to the data item being modified. The second
argument of my_atomic_add_64 gives the value of the update
being applied. The final argument of both intrinsics is the
address of a counter. This counter is incremented within the
intrinsic each time an update is attempted. An increment
of 1 means that the update happened without contention.
When contention happens, the intrinsic will make multi-
ple update attempts. Contention may occur several (say
n) times within a single intrinsic, meaning that the counter
returned will be n + 1 bigger than its previous value. For
example, suppose the first intrinsic encountered contention
twice, the second encountered no contention, and the third
encountered contention once. At the end of the function, the
cas_counter variable will have value 6; there were three suc-
cessful updates, and three contention events that required
the compare-and-swap update to be retried.

The final step of the atomic-update operation is to return

a boolean indicating whether there was contention encoun-
tered during the computation. In the example above, the
programmer has chosen to report contention to the system
when more than three update attempts were detected al-
together. Thus, with a cas_counter value of 6, the func-
tion returns true, informing the system that contention was
detected. It is then the responsibility of the system to de-
termine how to respond to the contention, which will be
presented next in Section 4.2.

The use of these abstractions is not limited to aggregate
functions. Another important application within database
systems is data partitioning, which is used in many contexts,
including sorting and joins. When data is being partitioned
in parallel, there may be hotspots in the form of popular par-
titions [6]. We have implemented partitioning using these
abstractions. In our implementation, a partition consists
of a linked list of buckets that can each hold a fixed num-
ber of records. Writers to a partition atomically increment
an index into the current bucket. This index corresponds
to the slot in which to insert the record. When a thread
reaches the end of the bucket, it obtains a lock on the par-
tition and allocates3 a new bucket that is prepended to the
list. The combine operation simply concatenates two lists.
While concatenation of lists may lead to buckets that are
only partially full within the linked list, we believe that it
is not worth the overhead of copying data between buckets;

3To avoid the time overhead of using malloc within a crit-
ical section, we manage bucket memory ourselves by pre-
allocating a large chunk of memory and allocating buckets
from that chunk as needed.



consumers of the data in the partitions are likely to remain
efficient even when buckets are not completely filled.

4.2 Techniques for managing contention
Given that we can accurately and efficiently measure con-

tention, what do we do about it when we find it? Our pri-
mary response to contention is to clone the contentious data
element, and manage future accesses to the element so that
they are divided among the available clones. To support
this kind of policy, we need to maintain information about
the current number of clones and to map threads to clones
in a balanced fashion. Since this information will be con-
sulted on every access, we need to minimize the number of
instructions needed for a thread to get access to a version.

We consider two broad approaches to managing clones.
We describe them below.

4.2.1 Managing Clones Globally
Under a global approach, we respond to a contention event

by creating one or more new clones in a shared address space.
Threads are partitioned among the clones in a deterministic
fashion. For example, if there are four clones and 64 threads,
then thread i will access clone number (i mod 4).

Clone allocation may happen in response to a single con-
tention event, or in response to a threshold number of con-
tention events. Using a threshold ensures that we only cre-
ate clones when contention is sufficiently frequent. How-
ever, such an approach requires the maintenance of a con-
tention counter for each data element. Responding to ev-
ery contention event means that the system will respond
more quickly to contention events, and no contention coun-
ters are needed. However, more memory may be consumed,
leading to additional cache misses. (An extreme example is
described in Section 5.2.)

In our implementation, we clone a resource in response to
a single contention event. If the contention is on a resource
that has already been cloned, then the number of clones is
doubled. Thus, each contention event leads to an increasing
number of new clones in the system. In this way, we can
respond to contention quickly. For example, we can get to
64 clones of a heavy-hitter element after 6 contention steps.
Had we chosen to simply add one more clone for each con-
tention event, 63 steps would be required.

In the special case where cloning has happened sufficiently
often that each thread maps to its own clone, we can avoid
synchronization altogether. That thread will have exclusive
access to a single version of the data item. Since atomic
operations are significantly more expensive than their non-
atomic counterparts, utilizing this many clones could be a
useful optimization for a few popular data elements.

4.2.2 Managing Clones Locally
An important observation based on [5] is that there can

be only a relatively small number of truly contentious data
items at any point in time. On the experimental platform
of [5], contention is noticeable only when a data element is
responsible for more than one eighth of the data accesses.
In such a scenario, there can only be eight contentious ele-
ments at any given moment. The identity of the contentious
elements may vary over time as the reference pattern of the
data changes, but the total number of currently contentious
elements remains bounded.

The precise number (eight in [5]) depends on the com-

Figure 3: The process involved in managing the

clones locally.

putational task and the number of available threads. On
a faster machine with more threads, the number would be
higher. Nevertheless, even if it was an order of magnitude
higher, it would still be a small number in absolute terms.

With this size bound in mind, we propose an alterna-
tive local design for clone management, which is depicted
in Figure 3. When a thread sees contention on a data ele-
ment, it creates a clone in a local table used by that thread
alone. The size of the local table is kept relatively small,
e.g., smaller than the thread’s share of the L1 data cache.
When the table is full, new insertions are accomplished by
spilling an existing value into the global data element.

Each new access is handled by first looking in the local
table. If a clone of the data element is found, the data value
is updated there using a fast non-atomic update. Heavy hit-
ters that initially cause contention should become resident in
this table, after which further contention is avoided. Since
the local table is L1-resident, the overhead of this lookup
should be small for values that are not found in the table,
and are subsequently updated atomically in the global data
element.

4.2.3 Contention Thresholds
In Figure 2, the contention threshold for aggregation is

3. If more than three attempts to atomically update three
data values are made, we report contention to the contention
manager. For partitioning, there is a single atomic update to
the bucket index, and so we could analogously report con-
tention if more than one attempt is needed. However, we
chose to use a threshold of two rather than one. In parti-
tioning using local clone management, if swapping happens
too often, one may end up with many nearly-empty buck-
ets, wasting space and time for memory allocation. The
higher threshold helps distinguish between true contention
and spurious events in which two threads happened to be up-
dating the same element at the same time without broader
contention.

5. EXPERIMENTS

5.1 Experimental Setup
All experiments were conducted on a 1.2GHz Sun Fire

T2000 server with an UltraSparc T2 processor (Table 1).



Operating System Solaris 10
Cores (Threads/core) 8 (8)
RAM 32GB
Shared L2 Cache 4MB, 16-way associative
L1 Data Cache 8KB per core

Shared by 8 threads
L1 Instruction Cache 16KB per core

Shared by 8 threads
Off-chip bandwidth 60GB/s, 4 memory controllers

Table 1: Specifications of the Sun UltraSparc T2.

Unless otherwise stated, we use all 64 available hardware
threads.

In this section we describe some of our initial experiments.
Our goal is to demonstrate that it is possible to overcome
contention hotspots using the proposed framework. We em-
phasize that we do not aim to find the very best parallel al-
gorithm for a specific task, such as aggregation. Our goal is
to enable a quick implementation of more generic tasks that
need to update a shared data structure in parallel, while
retaining high performance on a parallel machine.

5.1.1 Implementation Details
The first workload we consider is an aggregation workload

similar to that in [5]. The query is

Q1: Select G, count(*), sum(V), sum(V*V)

From R

Group By G

where R is a two-column table consisting of a group-by value
G and an aggregated value V. Though the query is identical,
the implementation is very different from [5]. [5] was highly
optimized and hard-coding of the aggregate functions al-
lowed the compiler to generate very tight inner loops and
use optimizations such as loop unrolling to reduce the in-
struction count.

In contrast, the aggregation implementation in this pa-
per uses the framework presented in Section 4. We have
built an aggregator ADT that implements the four func-
tions described in Section 4.1, including the atomic update
function shown in Figure 2. Not only do we use function
calls (whereas [5] avoided them), we also use function point-
ers. Clearly, the compiler will not be able to optimize this
code as successfully, and we expect that our absolute per-
formance will not match that of the algorithms described in
[5]. Nevertheless, the point of the present work is not to
match [5], but to investigate frameworks that can be used
to avoid contention in a more general way than the careful
coding and domain-specific analysis used in [5].

We measure the performance for a single time-slice con-
sisting of 224

≈ 16 million records. This gives a total time of
between 50 and 500 milliseconds per time-slice. The graphed
measurements are averages over four repetitions. The exper-
iments are performed for the first time-slice of an aggrega-
tion, which may have more insertions into the hash table
than later time-slices. The cost of insertions will only be-
come noticeable at group-by cardinalities in the millions, as
the number of records per group becomes small.

Records are 16 bytes, consisting of a 64-bit integer group-
by value, and a 64-bit integer value for aggregation. The
input fits in 256MB of RAM. All comparison and arithmetic
operations use 64-bit integer instructions.

The second workload we consider is data partitioning. We
use the same input as for the aggregation experiments, and
partition the data into a fixed number of partitions based on
a hash function of the grouping attribute. Both workloads
use a common infrastructure. Only the abstract functions
discussed in Section 4.1 are different.

For data-intensive applications such as databases, it is im-
portant to use a large page size. If pages were small, such as
4 kilobytes, then a 64-element TLB can only cover 256 kilo-
bytes of RAM; data structures much larger than that would
likely cause TLB thrashing. On the T1 and T2, it is pos-
sible to have memory regions with different page sizes, and
pages can be as big as 256 megabytes. Our implementation
makes particular effort to allocate large data structures on
large pages to avoid TLB thrashing. (For a more detailed
discussion of how page size choices influence TLB behavior,
see [6].)

5.1.2 Input Distributions
We consider multiple input distributions, where the dis-

tribution refers to the characteristics of the group-by key in
the input relation. For ease of comparison, use the synthetic
distribution generation code from [5] (which was based on
the work of Gray et al. [14]) and used the same distributions.
For each input distribution, we vary the number of distinct
group-by keys in the distribution. The distributions are: (1)
uniform, (2) sorted, (3) heavy hitter, (4) repeated-run, (5)
Zipf, (6) self-similar, and (7) moving-cluster.

In the heavy hitter input, one value accounts for 50% of
the group-by keys, while the other values are chosen uni-
formly from the other group-by keys. The repeated-run dis-
tribution consists of input records in segments, each consist-
ing of a numerically increasing sequence of group-by values.
For example, with 10000 group-by values, the sequence of
group-by values would be 1, 2, . . . , 10000, 1, 2, . . .. The self-
similar distribution uses an 80-20 proportion, and the Zipf
distribution uses an exponent of 0.5. In the moving-cluster
distribution, there is a window of data locality that gradu-
ally shifts as the input sequence progresses.

During input generation we specified a target group-by
cardinality. However, because of the probabilistic nature
of many of the distributions, this target was not always
met, especially when the requested group-by cardinality ap-
proached the size of the input.

The input is divided into 64 equal chunks to match the
number of available threads. Each thread processes its chunk
in its entirety. Considering other methods of dividing the in-
put, such as using a parallel buffer [8], is left to future work.

5.2 Cache and Memory Issues
On modern architectures, cache misses can cause signifi-

cant latency. Accessing an item that is not in the L2 cache
can take hundreds of CPU cycles. As a result, it pays to de-
sign algorithms and data structures so that they have good
spatial and temporal locality.

While implementing our prototype of the global clone
management scheme described above, we encountered the
following scenario that illustrates the difficulties in develop-
ing a robust generic system. Imagine that we are computing
a multi-threaded aggregation in which, in every thread’s in-
put stream, the group-by values cycle in the following pat-
tern according to our repeated-run distribution:

1, 2, . . . , n, 1, 2, . . . , n, 1, 2, . . .
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Figure 4: Number of group by values where contention has been detected and at least one clone constructed.

When n is large, we would hope to encounter relatively lit-
tle contention, because there are no elements that have a
frequency of more than 1/n.

Unfortunately, significant contention is observable. After
some analysis, we realized that every so often, there will
be a contention event caused by the random synchroniza-
tion of two threads. When this happens, a new clone will
be created, and processing will continue. The problem is
that because the input group-by sequences are the same, a
cascade of cloning events happens as element after element
experiences momentary contention. Even worse, the cloning
and contention slows down the contending threads, allowing
the remaining threads to “catch up” and ultimately com-
pound the contention problem by updating the same data
elements in lockstep, a phenomenon known as convoying.

Eventually, the contention itself is resolved, as all elements
reach t clones, where t is the number of threads. By that
time, however, we have used space nte, where e is the size
of a data element, rather than ne. On the T2 where t = 64,
that means we exceed the cache size 64 times earlier than
with a single copy of each data element. As a result, we
suffer many more cache misses whenever c/64 ≤ ne ≤ c,
where c is the cache size. This is a large range of sizes.

Figure 4(a) shows the number of elements that have at
least one clone after processing 224 tuples. Note that at a
group by cardinality of around 100000 the number of ele-
ments in the repeated runs distribution that have clones is
also close to 100000. The number of clones drops to zero at
the far right of the figure as the repeated runs distribution
degenerates to a sorted distribution with all unique values
so contention is not possible.

Since our goal is to create a robust infrastructure, we can-
not ignore such problems. We should have confidence that
there is no “degenerate” distribution of inputs that causes
a drop in performance that would surprise the programmer
using the system.

Our first attempt at a solution was to force each thread
to cycle through its input records using a prime increment,
wrapping around to the start of the array until all records are
consumed. If each thread uses a different prime increment,
then the threads will have different effective access patterns
and not end up in lockstep. (If one is worried about an

adversary designing a degenerate workload, one could even
choose the prime increments at random.)

While this attempt solved the contention artifact described
above, it introduced a new cache miss problem. Each cache
line was being read for just one input record. By the time
we cycled around to get another record from that cache line,
the cache line was no longer cache-resident, and we suffered
an additional cache miss. If there are r records in a cache
line, we suffer one miss per record rather than 1/r for a
sequential scan.

We addressed this second cache miss problem by refor-
mulating the traversal so that we use all of the records in
a cache line, and cycle through the cache lines (rather than
the records) using a prime increment. The results are shown
in Figure 4(b). Note that the y-axis scale is significantly
smaller than in in Figure 4(a). Although clones are being
created, the total number is much lower.

5.3 Global Clone Management
The performance of global clone management on vari-

ous input distributions is shown in Figure 5. Global clone
management helps aggregation avoid the contention that is
present at low group by cardinalities or in input distributions
with frequently occurring values, e.g., zipf, self similar, and
heavy hitter. For many points on the spectrum, the perfor-
mance improvement is more than an order of magnitude.

It is also important to consider the memory footprint of
this technique. Given an input whose distribution is un-
changing, one would expect the number of contentious ele-
ments to be some small factor of the number of threads. But
as Figure 4 shows, the number of group by values that expe-
rience at least one contentious update is quite a bit higher
than the number of threads. This phenomenon is demon-
strated in Figure 6, which plots the percent of group by
values encountering at least one instance of contention and
therefore having at least one clone. The first clone causes
the most memory allocation overhead as the contentious el-
ement is transformed to enable support for clones.

Why do 100% of group by values experience contention
even after there are many more values than threads? The
answer is that random collisions happen more often than
one might think. With a uniform input of N elements and
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Figure 5: The proposed techniques, global and local clones, on six representative data distributions.

a group-by cardinality of g, the total number of random

contentions per group-by element is N
“

1 − (1 −
1

g
)63

”

/2g.

(We divide by 2g rather than g to avoid counting a collision
twice, once for each thread.) At N = 224 and g = 1, 000,
we expect about 500 random contentions per group-by ele-
ment. At g = 10, 000, this number drops to about 5, and

by g = 100, 000, the number drops further to about 0.05.
These expectations are consistent with the uniform curve in
Figure 6.

5.4 Local Clone Management
The performance of local clone management, described in

Section 4.2.2, is also shown in Figure 5. In all of these per-
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Figure 6: Percent of group by values for which at least one clone has been created.

Figure 7: Varying the local table size. Size is the

number of clones.

formance graphs the size of the local table is 1024 elements.
Like the global clones, using local clones clearly mitigates
the contention bottleneck.

This 1024 element table size exceeds the L1 cache design
principle proposed in Section 4.2.2. Although a smaller ta-
ble size did perform well, a larger table size was found to
be better because of the higher than expected thrashing of
elements in the local table due to the infrequent random
contention events described in the previous section. The ef-
fect of table size can be seen in Figure 7. As expected, table
sizes that are too small do not fully alleviate contention. As
the table size increases to 4096 elements, the cache perfor-
mance causes a reduction in throughput for larger group-by
cardinalities.

Because the local clone table size is fixed, the run-away
memory allocation that can occur with global clones is not
possible. When the table is full, every addition of a con-
tentious element must evict an element from the table whose
value is then pushed back into the global table. There-
fore, applications seeking greater control over memory usage
should consider the local tables approach.

At high group by cardinalities, Figure 5 shows that the

local tables approach performs consistently worse than the
global tables approach. This is because checking for an el-
ement in the local table becomes pure overhead: almost all
elements will not be found in the local table. This sug-
gests a potential optimization to disable local table lookups
automatically when the system determines that finding an
element is unlikely. The benefits of such an optimization
would have to outweigh the cost of determining the rate of
hits to the local table.

5.5 Partitioning
We present performance results for partitioning with local

clone management. The size of each local table is fixed at
1024 partitions. Figure 8(a) shows the partitioning rate for
a uniformly distributed input with 224 distinct group-by val-
ues. When contention management is turned off, we see poor
performance when the number of partitions is small, due to
contention among the 64 threads for the partition buckets.
In contrast, when contention management is turned on, lo-
cal clones are created, and very high throughput is obtained
in this range because most partitions are L1 cache resident
and most updates can be achieved without using atomic in-
structions. These results show that our contention detection
framework is effective at identifying and fixing contention-
related performance problems.

Eventually, the number of partitions becomes too large to
fit in the L2 cache, and performance drops. The blue line
in Figure 8(a) shows the L2 cache misses per record for the
contention-management-on code; the scale for this curve is
on the right of the graph. There is a potential interaction
between cache misses and contention. If a cache miss occurs
during an atomic operation, then the time window during
which contention is possible becomes wider.

Figure 8(b) shows the performance of 8192-way partition-
ing on the repeated-runs distribution. When the group-
by cardinality hits 4096, performance drops dramatically.
(The performance returns to “normal” when the cardinality
is high, where the repeated runs are very long.) We traced
this problem to the same convoy effect described previously
for aggregation. When there are many partitions and all
threads have identical access patterns, threads degenerate
into a lockstep pattern in which there is thrashing on an



associativity set within the L2 cache. We applied the same
prime cache-line increment method described earlier, which
eliminates the sudden performance drop, with only a modest
overhead for for smaller group-by cardinalities.

Figure 8(c) shows the performance of 2048-way partition-
ing for all distributions when contention detection is enabled
and the prime cache-line increment is employed. Perfor-
mance is high for all distributions. Once the group-by cardi-
nality exceeds 2048, the performance levels off because there
are only 2048 partitions being used.

5.6 Absolute Performance
We ran the special-purpose algorithms from [5, 6] on the

T2 architecture to see how close the generic implementa-
tion comes in terms of performance. As discussed in Sec-
tion 5.1.1, the system cannot employ the same level of code
optimization because our implementation is generic. Fur-
ther, the present paper considers just one algorithm, with no
programmer-controlled parameters to tune (apart from the
threshold of Section 4.2.3). In contrast, [5] switches between
several algorithms depending on domain-specific knowledge
of sampled data and tuned thresholds.

On the T2, the atomic algorithm of [5] hits a performance
plateau of about 130 million records per second for large
group-by cardinalities in the absence of contention. Our
“no detection” method, reaches about 100 million records
per second. The only significant difference between these
methods is that the “no detection” method is implemented
generically. Thus, we can estimate that the overhead of a
generic implementation is a factor of about 1.3.

On the T2, the hybrid algorithm of [5] achieves a perfor-
mance of about 250 million records per second for small to
moderate group-by cardinalities for which most data fits in
the local table. Our local and global methods reach about
125 million records per second in comparable ranges. Thus,
we can estimate that the overhead of a generic implementa-
tion of aggregation relative to a special-purpose implemen-
tation is about a factor of 2. For partitioning, we get about
110 million records per second for 2048-way partitioning, a
region where the special-purpose implementation achieves
239 million records per second, suggesting a factor of 2.2
overhead.

We argue that this is a good trade-off point, because (a)
the performance was achieved with minimal performance
tuning knowledge on the part of the programmer, and (b)
the dramatic decrease in performance that occurs due to
contention is avoided and the parallel resource is being used
effectively.

5.7 Global vs. Local
Based on our experiments, both local and global clone

management are effective at eliminating contention bottle-
necks. Apart from the sorted distribution on small group-
by cardinalities, the global method performs slightly bet-
ter. However, it may consume more memory as discussed
above. To avoid convoys, both methods need to employ
the prime cache-line increment technique. This technique
is straightforward to implement when the input is an array
of fixed-length records. For variable-length records (or for
dynamically generated inputs), such a technique would need
additional bookkeeping to properly process the input a few
cache lines at a time.

(a) Contention management on vs. off.

(b) Prime cache line increment.

(c) 2048-way partitioning, various distributions.

Figure 8: Partitioning with local clones.

6. EXTENSIONS AND FUTURE WORK
While we have focused on atomic operations here, one can

also come up with mechanisms to manage contention via
locking. Contention can be detected as a failed attempt to
obtain a lock. While lock-based mechanisms may be more



expensive than atomic operations, there are computations
that are not easily expressed via atomic updates, and would
require a lock-based implementation. The same abstract
functions would be usable, with the system implicitly placing
locks around the non-atomic update function.

One could further improve performance of the prime-increment
method by using software prefetching to overlap some of the
cache miss latencies for the various cache lines being read.

An advantage of implementing contention detection and
amelioration generically is that the framework could be use-
ful for a variety of applications. We have focused on aggre-
gation and partitioning, which can be expressed naturally
using our abstractions. In future work, we plan to investi-
gate how broadly our abstractions can be applied to parallel
data-intensive computations.

The Sun Niagara T1 and T2 machines are convenient
for studying contention because they have so many paral-
lel thread contexts. Future machines from other vendors
will soon match or exceed this level of parallelism.

We plan to implement our framework on multiple hard-
ware platforms, and investigate the trade-offs necessary to
get good performance on each of them. The abstractions will
not change across platforms, meaning that programmers can
write code that is portable from one supported architecture
to another. The “intelligence” of efficiently managing con-
tention on each architecture will have been factored out into
code libraries.

7. CONCLUSION
Our goal in this paper was to enable a programmer to

avoid contention hotspots without requiring sophisticated
parallel programming or performance tuning. We provided
abstractions that allow a class of data-intensive computa-
tions to be formulated in a simple way, using four basic
functions.

We have built a system that uses these four functions
to perform the computation in a multithreaded way. Con-
tention is detected in a low-overhead fashion. When con-
tention is detected, we clone the contentious resource so that
future references are distributed among the clones. We have
implemented a global clone management scheme, and a local
clone management scheme, and measured their performance.
We have shown that contention hazards that could cause an
order-of-magnitude drop in performance are avoided, and
that the computation makes efficient use of the parallel re-
sources available.

8. REFERENCES

[1] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill,
and David A. Wood. DBMSs on a modern processor:
Where does time go? In Proceedings of VLDB
Conference, 1999.

[2] Robert D. Blumofe and Charles E. Leiserson.
Scheduling multithreaded computations by work
stealing. In In Proceedings of the 35th Annual
Symposium on Foundations of Computer Science
(FOCS), pages 356–368, 1994.

[3] Peter A. Boncz, Stefan Manegold, and Martin L.
Kersten. Database architecture optimized for the new
bottleneck: Memory access. In Proceedings of VLDB
Conference, 1999.

[4] John Cieslewicz et al. Realizing parallelism in
database operations: Insights from a massively
multithreaded architecture. In DaMoN, 2006.

[5] John Cieslewicz and Kenneth A. Ross. Adaptive
aggregation on chip multiprocessors. In VLDB, 2007.

[6] John Cieslewicz and Kenneth A. Ross. Data
partitioning on chip multiprocessors. In DaMoN, 2008.

[7] John Cieslewicz and Kenneth A. Ross. Database
optimizations for modern hardware. Proceedings of the
IEEE, 96(5), 2008.

[8] John Cieslewicz, Kenneth A. Ross, and
I. Giannakakis. Parallel buffers for chip
multiprocessors. In DaMoN, pages 9–18, 2007.

[9] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
simplified data processing on large clusters. In
OSDI’04: Proceedings of the Symposium on Operating
Systems Design & Implementation, 2004.

[10] David J. DeWitt and Jim Gray. Parallel database
systems: The future of high performance database
systems. Comm. ACM, 35(6), 1992.

[11] Simon Doherty et al. DCAS is not a silver bullet for
nonblocking algorithm design. In SPAA, 2004.

[12] Michael Gordon, William Thies, and Saman
Amarasinghe. Exploiting coarse-grained task, data,
and pipeline parallelism in stream programs. In
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2006.

[13] Goetz Graefe and Per-Ake Larson. B-tree indexes and
cpu caches. In Proceedings of the 17th International
Conference on Data Engineering, pages 349–358,
Washington, DC, USA, 2001. IEEE Computer Society.

[14] Jim Gray et al. Quickly generating billion-record
synthetic databases. In SIGMOD, 1994.

[15] William Gropp, Ewing Lusk, and Anthony Skjellum.
Using MPI: Portable Parallel Programming with the
Message Passing Interface. MIT Press, 2nd edition,
1999.

[16] Nikos Hardavellas et al. Servers on Chip
Multiprocessors: Limitations and Opportunities. In
CIDR, pages 79–87, 2007.
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