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ABSTRACT
We propose a novel privacy-preserving distributed infrastructure in
which data resides only with the publishers owning it. The infras-
tructure disseminates user queries to publishers, who answer them
at their own discretion. The infrastructure enforces apublisherk-
anonymityguarantee, which prevents leakage of information about
which publishers are capable of answering a certain query. Given
the virtual nature of the global data collection, we study the chal-
lenging problem of efficiently locating publishers in the community
that contain data items matching a specified query. We propose
a distributed index structure, UQDT, that is organized as a union
of Query Dissemination Trees (QDTs), and realized on an overlay
(i.e., logical) network infrastructure. Each QDT has data publishers
as its leaf nodes, and overlay network nodes as its internal nodes;
each internal node routes queries to publishers, based on a sum-
mary of the data advertised by publishers in its subtrees. We exper-
imentally evaluate design tradeoffs, and demonstrate that UQDT
can maximize throughput by preventing any overlay network node
from becoming a bottleneck.

Categories and Subject Descriptors:H.2.4 [Database Manage-
ment]: Systems—Distributed databases

General Terms: Design, Performance

1. INTRODUCTION
During the last decade, the web has enabled unparalleled access

to the vast amount of electronic data that is continually being cre-
ated, and search engine technology has made it feasible to issue
queries and locate web sites that contain data of interest to a user.

As the web evolves, two significant new trends are emerging.
First, write access to the web is becoming increasingly democratic
as it is easier for a large number of users to create and publish data
on a wide variety of topics; this is evident from the proliferation of
blogs, Wikis (e.g., Wikipedia), user-generated videos and photos,
etc. Second, it is becoming easier to form web communities based
on shared interests; this is evident in the considerably popularity
of social networking sites like Facebook and MySpace. With the
confluence of these two trends comes the natural desire to freely
exchange data within the community – this includes making one’s
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own data collection accessible to others within the community, and
also being able to query, tag, and comment on the global collection
that is the union of all local data of users within the community.

Recent events have called attention to the pressing need to en-
hance the infrastructure of online communities to enable freedom
of speech without fear of retribution against the community users.
People have come to learn that their online blogs along with the
mainstream news websites can be easily censored, or worse, the
true identity behind their online nicknames can be revealed. This
information can be used to censor or discriminate certain individ-
uals pertaining to various online activist groups or dissidents. To
fully deliver on the promise of freely exchanging data, any commu-
nity-supporting infrastructure needs to enforce the key requirement
of preserving the privacy of publishers. That is, there should be no
easy way for any third party to infer the identity of publishers of
documents on specific topics.

This privacy-preserving publishing requirement precludes some
obvious approaches that reuse and build on existing centralized
technologies, e.g., search engines, hosted online communities, etc.
While these models are designed to handle the large number of po-
tential publishers and the dynamic nature of published data, en-
abling a straightforward query access to the global data collec-
tion, the downside is that publishers aredisintermediatedfrom con-
sumers by the central site: (i) The central site has control over the
visibility of publishers to user queries, and can effectively censor
publishers by choosing to not index them; and (ii) The central site
has complete knowledge of all information created and advertised
by publishers. Even under the unrealistic assumption that the cen-
tral site is trusted by publishers, the site is vulnerable to third-party
censors1 and attackers.

For this reason, we advocate a decentralized approach where
there isno central authority, and the global data collection isvir-
tual. More specifically, we make the following contributions.

1. We propose a distributed privacy-preserving publishing in-
frastructure in which data resides only with its owner. The infras-
tructure disseminates user queries to publishers, who answer them
at their own discretion. Moreover, the way publishers advertise
their data, in order to receive relevant queries, is designed to pre-
vent any third party from pinpointing which publisher advertises
what data (even when extensively colluding with or attacking com-
munity members).

2. Given the virtual nature of the global data collection, we ad-
dress the challenging problem of efficiently disseminating queries
to publishers that contain data items matching a specified query.
We propose a distributed index structure, UQDT, that is organized
as a union ofquery dissemination trees(QDTs), and realized on an

1See, for example, National Coalition Against Censorship
(http://ncac.org/) and OpenNet Initiative (http://opennet.net/)



overlay (i.e., logical) network infrastructure. Each QDT has data
publishers as its leaf nodes, and overlay network nodes as its in-
ternal nodes; each QDT internal node maintains a summary of the
data advertised by publishers in its subtrees. Unlike Distributed
Hash Tables (DHTs), no QDT node has complete knowledge of all
the publishers that publish an advertised data item.

3. We define a notion ofpublisherk-anonymitywhich guaran-
tees that for every publisherp and published data itemd, the infor-
mation stored in the UQDT, as well as the communication required
to maintain the UQDT, are insufficient to distinguishp from k − 1
other potential publishers of itemd. We show how to configure the
UQDT to guarantee publisherk-anonymity even when an arbitrary
number of UQDT nodes are compromised by hacking, subpoena,
collusion, or impersonation attacks.

4. The adoption of the UQDT solution hinges on its perfor-
mance. We present algorithms that use the UQDT for routing queries
to publishers efficiently, following the parent-child links from a
QDT and making effective use of the advertised data summaries
maintained by QDT internal nodes. While a single QDT suffices
in principle to route queries, this results in congestion at the upper
levels of the QDT, severely limiting the throughput of the overall
index structure, and making it potentially vulnerable to Denial of
Service attacks. We build on well known techniques for scalable
dissemination trees and for “Russian Doll” search over sets [24].
We show how UQDT can achieve load balancing and throughput
maximization for a workloadW by a judicious combination of
(i) Overlaying multiple QDTs over the network, each with a dis-
tinct root, and arranging for queries inW to be channeled in paral-
lel through distinct QDTs, and (ii) Maintaining limited selectivity
information about data items to help inform the routing strategy. To
the best of our knowledge, there are no works that combine multi-
ple trees for load balancing and hierarchical summaries for ad-hoc
query routing in distributed systems.

5. We experimentally evaluate UQDT design tradeoffs through
extensive simulations, using a real Wikipedia collection comprising
about 1.1 million documents of total size 8.6GB. We demonstrate
that UQDT can maximize throughput by preventing any overlay
node from becoming a bottleneck. In addition, we show in [13]
how UQDT empowers information publishers to join democratic
communities and query their global collection in an ad-hoc fash-
ion using expressive queries. To this end, we explore various QDT
topologies (e.g., Scribe [6] generated multicast trees, as well as bal-
anced structures), number of QDTs, and routing strategies (based
on the selectivity information maintained), and show that (i) One
can statically identify a near-optimal number of QDTs for any spec-
ified QDT topology, which maximizes throughput by preventing
any overlay network node from becoming a bottleneck, and (ii) Main-
taining selectivity information about a few popular data items (2−
3%) achieves considerable gains over random routing, and is al-
most as good as a “fully informed” routing strategy.

Paper Outline. We start with an overview of our proposed frame-
work and the space of design tradeoffs in Section2. Section3
presents our operation choices, followed by the analysis of pub-
lisher k-anonymity in Section4. Experimental setup and results
are presented in Sections5 and6. We discuss related work in Sec-
tion 7 and then conclude.

2. OVERVIEW OF OUR FRAMEWORK
Data and Query Model. For the purpose of information discov-

ery and flexible querying, we abstract information as collections of
data items, where each data item is described by a set ofcontent
descriptors (CDs). CDs are an abstraction of keywords, terms, or
other atomic information units [30]. For instance, in information

retrieval applications, data items are text documents, and the CDs
are the terms appearing in them. In relational databases, collections
are tables, data items are tuples, and CDs are (attribute,value) pairs.
Further examples are given in Section5. Given a data itemD, we
denote its set of CDs withcd(D).

We consider queries expressed as sets of CDs, and denote the set
of CDs of queryQ with cd(Q). We say that data itemD matches
queryQ if cd(Q) ⊆ cd(D). Notice that the case of matching con-
junctive keyword queries against text documents (the most com-
mon Information Retrieval operation) corresponds to the particular
case in which CDs are keywords. Given a data collectionD, the
resultof Q onD, denotedQ(D), is the set of data items inD that
matchQ: Q(D) := {D ∈ D |D matches Q}.

Communities of Data Publishers and Consumers.We con-
sider communities of autonomous publishers, who join the com-
munity with their own locally stored data collection and make it
available for querying. In return, they can query theglobal collec-
tion consisting of the union of all local collections.

Given our focus on providing democratic community access for
autonomous publishers, we adopt a decentralized approach. In this
setting there is no central control authority: the global collection is
virtual, data resides only with the publishers owning it. The advan-
tage is that publishers maintain complete control over who accesses
their content, and how the content is "advertised" to the community.
The challenge is efficient query evaluation while avoiding naive
broadcast of queries to all publishers. We propose a distributed
index structure that supports sending a queryQ to all publishers
relevant toQ while minimizing the number of irrelevant publishers
reached byQ. We say that a publisher isrelevantto Q if one of its
local data items matchesQ.

Our indexing solution targets a service-oriented logical network,
in which we distinguish two types of nodes. There are datapub-
lisher nodes(community members) that provide data services and
connect to the network via direct links to nodes at its edge. The
data are indexed inside the network, which consists of a set of inter-
connected and reconfigurablerouter nodes. These are responsible
for routing queries to the relevant publishers. In an internet-scale
distributed setting, it is natural that routers are controlled by a mul-
titude of distinct network providers covering different autonomous
administrative domains. Thus, no single provider controls more
than a fraction of the entire network, and the resulting architecture
is not centralized.

While different queries might hit the same set of nodes, our goal
is to balance the community search generated load at routers during
query dissemination while preserving low space usage of index at
a node and still preserving publisher k-anonymity.

Design Requirements.We consider the following key require-
ments on the infrastructure design. First, published data should not
be relinquished to anyone but to community members, and only
by answering queries upon successful credential authentication of
the query issuer. Note that harvest-index-query methods (e.g., cen-
tralized solutions) fail. Second, publishers should advertise just
enough information in the community to be reached by user queries
without disclosing their identity. Publishers advertise the contents
of their local store by declaring a set of CDs appearing in their lo-
cal collection. Note that not all existing CDs need to be declared,
especially if they pertain to private data items. The advertised infor-
mation plays the role of a distributed index that is described next.

Publisher k-anonymity. We propose a notion of privacy that
protects community members by preventing an attacker from as-
sociating them with the CDs they advertise. We definepublisher
k-anonymity(detailed in Section4), which guarantees that for ev-
ery publisherp and published CDd, the information stored in the



infrastructure, as well as the communication required for mainte-
nance, are insufficient to distinguishp from k − 1 other poten-
tial publishers ofd. The distributed index guarantees publisherk-
anonymity even when the UQDT nodes are compromised by hack-
ing, subpoena, collusion, or impersonation attacks.

Query Dissemination Trees. We propose the organization of
the internal nodes into a logical tree we call aQuery Dissemination
Tree (QDT). The internal QDT nodes are routers, the publishers are
leaves. Regardless of which querier initiates a queryQ, Q is sent
to the root of the QDT, whence it propagates down the tree to the
publishers. The intention is that, when Q reaches a noden with no
publishers in its subtree that are relevant toQ, n prunes its subtree
from the search, i.e. it does not forwardQ to its children. This
pruning saves the network traffic and processing atn’s descendants.

One immediate technical difficulty associated with this goal is
how to instrument the index to efficiently determine that none of
n’s descendant publishers are relevant toQ. Of course, it is infea-
sible to maintain at every noden the collection of all data items
in n’s subtree as being prohibitively wasteful in terms of space. It
would also defeat the purpose of preserving privacy of publishers:
it would require a publisherp to trust every router on the path lead-
ing top from the root. This is an unrealistic prerequisite.

We present in two steps the way routers exploit the advertised
CDs by publishers. In a first cut, we assume that it is feasible to
store at every noden the setcd(n) of all CDs declared by publish-
ers located inn’s subtree (we revisit this assumption shortly). This
assumption is supported by empirical evidence that, for real data
sets, the overlap of CDs across data items in a collection is con-
siderable, and the union of all CDs (with duplicate removal) is or-
ders of magnitude smaller than the combined size of the collection.
For instance, in Section5 we describe a collection of1.1 million
Wikipedia articles of combined size8.6 GB that has only3.2 mil-
lion distinct CDs. Note that when onlycd(n) is stored at a routern,
n does not know which CD appears in which publisher, nor which
sets of CDs appear together in a data item. This offers publishers
an added degree of protection against compromised routers.

Query Routing in Single-QDT. In this setting, we consider the
following simple query routing algorithm. Every queryQ posed
by a querierp is initially sent to the root of the QDT (in a message
containing bothQ andp’s address). When a router noden receives
the message, it forwards it in parallel to each of its children in QDT
if and only if cd(Q) ⊆ cd(n). When a publisher node is reached,
it sends back top the result ofQ against its local collection. Note
that whencd(Q) 6⊆ cd(n) holds, it is guaranteed thatn’s publisher
descendants are irrelevant toQ. Therefore, the first-cut routing
algorithm never prunes relevant publishers, thus ensuring that the
final result ofQ over the global collection is computed in full. In
contrast, whencd(Q) ⊆ cd(n) holds, it is not necessarily the case
that at least one publisher inn’s subtree is relevant toQ. This is
because the CDs incd(Q) may not be co-located in the same data
item, or even at the same publisher. Therefore, the first-cut algo-
rithm may forward queries unnecessarily, generating non-minimal
traffic and processing load. This is a result of the unavoidable trade-
off between censorship resistance and evaluation performance.

EXAMPLE 2.1. Throughout the paper we use the following
running example. Consider a network of25 nodes that integrates
news from8 newspaper websitesP1, ..., P8 (the remaining17 nodes
are routers). Figure1(a)shows the CDs declared by each publisher
(i.e., simple keywords). Consider also a query workload consisting
of the four queries shown in Figure1(b). Without showing the ac-
tual documents, assume that for every queryQ there is at least one
newspaper website that publishes a document matchingQ.

Assume for now that the routers and publishers are organized

Publisherp CDs declared byp, cd(p)
P1 Peking, Tibet, stocks, train, money
P2 Peking, yak tea, Hong Kong, train
P3 Peking, Tibet, yak tea, Hong Kong, money
P4 Peking, freedom, yak tea, stocks, money
P5 Peking, freedom, yak tea, stocks, money
P6 freedom, Tibet, stocks, money
P7 freedom, yak tea, stocks, money
P8 freedom, yak tea, stocks, money

(a) Publishers’ declared CDs.

QueryQ cd(Q)
Q1 Peking, freedom
Q2 Tibet

QueryQ cd(Q)
Q3 train
Q4 Hong Kong, money

(b) Query workload.

Figure 1: Running Example Setup

in the single-QDT configuration QDT1, shown in Figure3(a). The
router nodes are identified by their preorder traversal rank. For
simplicity, we assume that it is feasible for each noden to store all
CDs declared by the publishers in its subtree,cd(n). For exam-
ple, node 2 stores all CDs published byP1 andP2, thuscd(2) =
{Peking, Tibet, stocks, train, money, yak tea, Hong Kong}.

1 2 3 4 5 6 7 8

1 node 1 Q1 Q2 Q3 Q4

2 node 2 Q1 Q2 Q3 Q4

node 8 Q1 Q2 Q3 Q4

node 13 Q1 Q2 Q3 Q4

3 node 3 Q2 Q3

node 9 Q1 Q2 Q4

node 14 Q1 Q2

node 16 Q1 Q2

4 node 4 Q2 Q3

node 6 Q2 Q3

node 10 Q1 Q2 Q4

P4 Q1 Q2 Q4

P5 Q1

node 17 Q2

node 20 Q2

node 23 Q2

5 P1 Q2 Q3

P2 Q3

P3 Q2 Q4

NodeLvl.
Time Unit

P3 Q2 Q4

node 18 Q2

node 21

node 24

6 P6 Q2

P7

P8

Figure 2: Query Dissemination in Single-QDT Configuration
For simplicity, let us consider in this example that every node

can process exactly one query per time unit. If all queries in the
workload are issued simultaneously at time 0 and processed in the
orderQ1 toQ4, then Figure2 shows their dissemination according
to the first-cut routing algorithm. For example, regardless of the
issuing node, queryQ3 is disseminated in QDT1 starting from the
root node (node 1), which is congested and can only processQ3 at
time unit 3. Becausetrain is contained incd(1), Q3 is forwarded
to all of node 1’s children, in this case to 2, 8 and 13, where the
dissemination continues recursively. Sincetraindoes not appear in
the CD sets of nodes 8 and 13, their subtrees are pruned . However,
node 2’s CD set does matchQ3 and the query is routed down to
node 3 at time unit 5, then to nodes 4 and 6 at time unit 6. Both
these nodes have a match andQ3 reaches the publisher nodesP1

andP2 at time unit 7. Each of the two publishers runsQ3 on its
local collection and sends the result back to the issuing node.⋄

CD Set Summaries.We now revisit the assumption that all CDs
in cd(n) are stored with every routern. We address the case when



cd(n) is larger than can be comfortably stored at a routern with
available memory of sizeM . To this end, we observe that we do not
necessarily need to keep the exact setcd(n). Instead, it suffices to
store asummarysmmM thereof at noden. We choose to represent
smmM as aCounting Bloom Filter[5, 18] of sizeM for its well-
known properties: compactness and probabilistic set membership
of CDs (i.e., no false negatives, control over false positives rate).

We obtain the final version of our routing algorithm by replacing
in the above first-cut every containment test with a call to a Bloom
filter set membership test. Note that false positives do not affect the
correctness of query evaluation.

Throughput Maximization. We have so far confined our dis-
cussion to the routing of a single query through the network. We
next extend our solution to handle query workloads (sets of queries).

We start by observing that the arrival of a query at noden triggers
measurable computation effort pertaining both to the processing of
the query and to its forwarding ton’s children. This limits the
number of queries passing throughn per time unit and can lead to
congestion. Since queries pruned at upper levels in the tree never
reach the lower levels, the fraction of any workloadW reaching
noden is a subset of the fraction reaching its ancestors. In particu-
lar, the root becomes a bottleneck since it is reached by all ofW . In
contrast, edge routers at the leaves are reached by relatively small
fractions ofW and may not be heavily utilized.

EXAMPLE 2.2. Revisiting Figure2, observe that the num-
ber of query messages reaching the nodes is significantly skewed
among the tree levels, and ultimately among the nodes, decreasing
from the root to leaves. Because all queries touch the top 2 levels,
their nodes receive 4 messages each, while nodes on the lower lev-
els receive 0, 1, 2 or 3 messages. Overall, it takes a total of 8 time
units to disseminate all queries, of which the root alone introduces
a delay of 4 time units, while nodes 21 and 24 remain idle. ⋄

We propose to alleviate congestion at the upper levels of the QDT
by spreading the load more uniformly across the nodes. Currently,
there are two main solutions to achieve this. One class of algo-
rithms replicate data (or indices of it) redundantly at the router
nodes. Thus, each router can initiate to answer queries. Never-
theless, this incurs increased updates cost as well additional space
cost to store all replicas which is inappropriate with our initial set of
goals. In contrast, we propose to partition the global data collection
and interconnect the publishers for each partition block in a differ-
ent overlay. We show next how this technique alleviates congestion
while still preserving the space usage at routers.

Therefore, our solution consists in overlaying multiple QDTs
over the network, each with a distinct root, and arranging for var-
ious fractions ofW to be channeled in parallel through distinct
QDTs. Since all QDTs are supported by the same underlying logi-
cal network, a network noden participates in several QDTs, receiv-
ing and forwarding queries via each of them. Balancing the load
involves arranging for the distribution of levels associated withn
to be (as close as possible to) uniform across the set of all QDTs.
For example, the fact thatn receives a high fraction of the queries
flowing through QDT1 because it resides on an upper QDT1 level,
is compensated byn being reached by only a small fraction of the
queries flowing through QDT2, where it resides on a lower level.

The goal of splitting the query workload into fractions that flow
through distinct QDTs raises two fundamental technical obstacles.

The first pertains to controlling memory consumption at the router
nodes. If a noden participates in multiple QDTs, it must maintain
separate summaries for each of its subtrees. It is important that the
total space used by the union of all summaries associated withn
should not exceed the space used byn’s summary in the single-
QDT configuration. We satisfy this requirement by arranging for

each ofn’s summaries to pertain todisjoint CD sets. To this end,
we partition the space of all possible CDs into a number ofk dis-
joint blocksP = {Bi}1≤i≤k. (We discuss shortly what consider-
ations go into picking the value ofk, and we describe in Section3
how the partitioning is achieved in practice.) We call eachBi a
CD block. We assign to each CD block its own QDT, obtaining a
family UQDT = {QDTi}1≤i≤k.

The second problem is the query semantics preservation: we
need to ensure that, by being routed only on a single QDT, a query
is guaranteed not to miss any relevant publishers. We achieve this
soundness property by requiring each QDT to satisfy the following:

(‡) QDTi contains as leaves all publishers whose local
data collection has at least one CD in common withBi.

We defer to Section3 the discussion on how the internal nodes of
each QDTi are organized.

Query Routing with Multiple QDTs. For every queryQ, we
pick the QDT to send it to as follows. The partitionP induces a par-
tition PQ = {Qj}1≤j≤m on cd(Q), such that for eachQj ∈ PQ

there isBi ∈ P with Qj = cd(Q) ∩ Bi. We call each suchQj a
query blockand we say that the CD blockBi correspondsto Qj .
Note that by definition each query block corresponds to precisely
one CD block, which in turn corresponds by construction to pre-
cisely one QDT. Given a query blockQj ∈ PQ, we can therefore
refer to “the” corresponding QDT, and denote it withqdt(Qj).

In general,Q has1 ≤ m ≤ |cd(Q)| query blocks, with corre-
sponding QDTsqdt(Q1), . . . , qdt(Qm). For routingQ, we only
pick one of these QDTs, sayqdt(Qj). Regardless of how this pick
is taken, we send to the root of this QDT a message containing
three components:(Qj , Q, p), wherep is the address of the initiat-
ing querier.qdt(Qj) routes this message as described above in the
single-QDT case, with only three minor refinements:

• since every internal noden can participate in various QDTs,
n stores one summarysmmM

T per QDTT ;
• n usesQj for routing in qdt(Qj) (i.e. for lookup into the

summaryn.smmM
qdt(Qj)

); and
• leaf nodes useQ for evaluation against their local data.

EXAMPLE 2.3. Example2.2 shows how the congestion ap-
pears inevitably in the upper levels of the dissemination tree. Here,
we show how congestion can be alleviated by using multiple QDT
overlays over the same nodes.

We consider a configuration of 4 QDTs, each corresponding to a
block in the CD space partitionP. P is shown in Table1.

Block CDs
B1 Peking, freedom
B2 Tibet, yak tea
B3 Hong Kong, stocks
B4 train, money

Table 1: Blocks of the 4-Partition

In general, internal nodes can be connected in any configuration
at the network overlay layer. Figure3 depicts 4 possible QDTs, one
per CD space partition block.

Table 2 shows the CD summaries maintained at every router.
Since a router appears in multiple QDTs, it actually manages a set
of summaries. For simplification purposes, we assume that each
summary stores the exact set of CDs rather than its approximation.

Figure 4 presents the routing diagram in the 4-partition over
time, where queriesQ1..Q4 are issued simultaneously at time0.

QueryQ1 is a conjunctive query both of whose CDs fall in the
first partition blockB1. The only routing choice is hence the tree
corresponding toB1, namely QDT1 shown in Figure3(a). Since
P ’s blocks are disjoint, single-conjunct queries also have only one



Node Tree Data summary
4, 6, 3, 2, 10 QDT1 Peking
9, 8, 14, 13, 1 Peking, freedom
18, 17, 21, 20, 24, 23, 16 freedom
20, 2, 21 QDT2 Tibet
23, 10, 8, 24, 13, 1 yak tea
4, 9, 18, 6, 14, 17, 16, 3 Tibet, yak tea
24, 18, 9, 8, 14, 13, 16, 3, QDT3 stocks
21, 17
1, 2 Hong Kong
20, 6, 23, 10, 4 Hong Kong, stocks
9, 1, 18, 2, 6, 14, 10, 16, QDT4 money
17, 4, 8, 21
3 train
13, 24, 23, 20 train, money

Table 2: CD Summaries in the 4-QDT Configuration

13

3

82

1

4 6

P2P1

9

10 P4

P3

14 16

P5 17 20 23

18 21 24

P6 P7 P8

(a) QDT1 for B1.

16

4

149

3

20 23

P2P1

6

18 P4

P3

10 17

P5 21 24 1

2 8 13

P6 P7 P8

(b) QDT2 for B2.

17

20

106

4

24 1

P2P1

23

2 P4

P3

18 21

P5 8 13 3

9 14 16

P6 P7 P8

(c) QDT3 for B3.

21

24

1823

20

13 3

P2P1

1

9 P4

P3

2 8

P5 14 16 4

6 10 17

P6 P7 P8

(d) QDT4 for B4.

Figure 3: Query Distribution Trees for the 4-Partition

routing choice. For instance,Q2 andQ3 are routed using QDT2
in Figure 3(b), respectively QDT4 in Figure 3(d). Q3’s routing on
QDT4 by CDtrain is highlighted in Figure4.

In contrast, queryQ4 intersects CD blocksB3 andB4, which in-
duce two query blocks:PQ4

= {{Hong Kong}, {money}}. This
offers two routing alternatives: either by using CDHong Kongon
QDT3, or by usingmoneyon QDT4. In the diagram, we assume
that QDT3 was picked. When the subquery hits publishersP2 and
P3 the full queryQ4 is tested on the local store (onlyP3 has a
match for both CDs ofQ4).

Comparing with Example2.1, notice that the 4-QDT configu-
ration outperforms the single-QDT case: the former takes 6 time
units to complete the dissemination, while the latter needs 8. The
improved throughput is due to better load balance: contrast the
behavior of routers 21 and 24, which remain completely idle in
Figure2 but shoulder part of the dissemination task in Figure4.

Finally, observe that the benefit of better node utilization out-
weighs the drawback of using query blocks for pruning, instead of
the entire (and more selective) set of query CDs. Indeed, the 4-QDT
configuration wins despite its less aggressive pruning which leads
to slightly more messages (50, as opposed to 46 for one QDT).⋄

It is easy to check that property(‡) implies the soundness of our
query evaluation algorithm:

PROPOSITION 1. For every queryQ, partition P, and pick of
j, our query routing algorithm correctly computesQ’s answer.

Obviously, for single-block queries there is no choice and the
QDT is uniquely determined. However, in the general case of

1 2 3 4 5 6

node 1 Q1 Q2 Q4

node 2 Q1 Q4 Q2

node 8 Q1

node 13 Q1 Q3

node 3 Q2 Q3

node 9 Q2 Q1

node 14 Q2 Q1

node 16 Q2 Q1

node 4 Q4 Q2

node 6 Q4 Q2

node 10 Q4 Q2 Q1

P4 Q1 Q2 Q4

P5 Q1

node 17 Q4 Q2

node 20 Q3 Q4 Q2

node 23 Q3 Q4 Q2

P1 Q2 Q3

P2 Q3 Q4

P3 Q2 Q4

Node
Time Unit

P3 Q2 Q4

node 18 Q3 Q2

node 21 Q3 Q2

node 24 Q3 Q2 Q4

P6 Q2

P7

P8

Figure 4: Query Dissemination in 4-QDT Configuration
multiple-block queries, Proposition1 uncovers an optimization op-
portunity: the judicious QDT choice (out of several equally sound
alternatives) towards throughput maximization. So we treat the
spectrum of possible routing strategies as an optimization dimen-
sion in its own right.

The UQDT Design Space Layout.We remark that the number
k of blocks in the partitionP of the CD space defines a spectrum of
possible configurations of the same network, thus adding a new di-
mension to the optimization space. One extreme of this spectrum is
the casek = 1, which we have discussed above as the single-QDT
configuration. At the other extreme, we have the case in which
each block ofP is a singleton CD. We refer to it as theper-CD
configuration. We argue next that neither of the extremes results in
optimal throughput, and that the value ofk is an optimization di-
mension we need to explore. Indeed, Example2.1and Example2.3
show that the single-QDT configuration is certainly not optimal,
being outperformed by a 4-QDT configuration for the given query
load. At the same time, constructing too many QDTs is counter-
productive, since the increase ink decreases the size of the query
blocks, thus resulting in less selective lookups in each node’s sum-
mary. This translates into less pruning, i.e. more query forwarding
messages: the 4-QDT configuration in Example2.3 generates 50
messages, as opposed to the 46 of the single-QDT configuration in
Example2.1. In conclusion, ask increases, we observe two oppo-
site effects: an increase in load balancing potential, but also in the
overall load (number of messages) in the network. An independent
consideration that precludes extremely high values ofk is that the
maintenance of any overlay network involves a small, but non-zero
control traffic overhead [6]. Maintaining too many QDTs would
amplify this overhead.

In Section3, we discuss the following optimization issues, all
of which have significant impact on query throughput: How can
a partitionP of the infinite space of all possible CDs be chosen
and represented finitely (this includes determining the value fork)?
How canP be used to efficiently determinePQ? How are the
various QDTs corresponding toP organized for better throughput?
How does the choice of QDT (the pick ofj) impact throughput?

3. OUR APPROACH
In Section2, we have provided an overview of our proposed so-

lution for query dissemination, identifying the dimensions of the
space of possible implementations. We delegate to Section4 the



discussion of how to configure and maintain the UQDT to ensure
publisher anonymity. As a proof of concept for the viability of our
approach, we developed an actual implementation, described in this
section and evaluated experimentally in Section6.

QDT Topology. There are many possible topologies for organiz-
ing the router nodes into a QDT. Although our solution is generic,
we investigate two approaches.

First, we take the pragmatic approach of “piggy-backing” on top
of a mature overlay tree-building approach to disseminate messages
to groups of nodes (also known asmulticastgroups). Since multi-
cast overlay trees are constructed with a different goal than QDTs,
it is not immediately clear that they are optimal for query dis-
semination (though we show experimentally that we can “convert”
them, achieving very good performance). However, one advantage
of delegating the QDT construction to such off-the-shelf technol-
ogy is that it is equipped to exploit information on the topology of
the underlay network with minimal control overhead. Moreover, it
maintains overlays dynamically, adapting to the change in underlay
network conditions. One widely-used representative of this class of
tools is Scribe [6], and FreePastry [32] is one popular open-source
implementation, which we used.

In addition, we consider home-grown QDTs built for the ex-
press purpose of balancing the forwarding effort among the routers.
Since every router forwards a query to each of its children, the for-
warding effort is linear in the node’s fanout. This suggests con-
structing (nearly) balanced QDTs, with as little variation as possi-
ble in the node fanouts. We need to construct such trees ourselves,
since Scribe does not guarantee balanced trees.

QDT Maintenance. When a publisherp joins the community,
it declares a setcd(p) of CDs it is willing to answer queries about.
Recall from Section2 that, to preserve soundness of query evalu-
ation, we must satisfy property(‡). To this end, we determine (as
described shortly) all the CD blocks with non-empty intersection
with cd(p), which in turn lets us identify all QDTs thatp must join.
The act of joining a given QDT is taken care of by Scribe which
identifies the router node that will become the new publisher’s par-
ent. Once the publisher is added to QDTT , the CD summaries of
all its ancestors inT are updated by insertingcd(p) into them. This
insertion is implemented by simply obtaining once and for all the
set of indicesind(cd(p)), which is then passed bottom-up fromp
to T ’s root, so that every router on the way can increment its cor-
responding Bloom filter counters. Whenp leaves a QDTT , the
index setind(cd(p)) is also sent bottom up top’s ancestors inT ,
each decrementing the corresponding counters. The case when an
existing publisherp changes its listcd(p) of declared CDs leads to
the propagation of similar counter operations.

Partitioning the CD Space.An important issue we need to ad-
dress is how to represent the partitionP of the CD space finitely,
and how to efficiently determine which block a given CD belongs
to. As described above, we need this test to quickly identify the
QDTs a new publisher must join. Moreover, the same test is re-
quired to compute the induced partitionPQ of a queryQ, in order
to identify the QDT candidates for routingQ. We describe here
our solution assuming that we have already established the number
k of blocks inP (we discuss below how we determinek with an
eye on load balancing). Givenk, we implementP simply as a hash
functionhP from CDs to the set{1, . . . , k}, wherehP distributes
CDs uniformly over its range. Then each blockBi ∈ P consists of
all CDs mapped byhP to i: Bi := {d | d is a CD, hP(d) = i}.
Of course, each CD block is potentially infinite so we never really
materialize it. Indeed, we don’t need to: all we need is to quickly
determine, given a CDd, which CD block it belongs to. This oper-
ation is implemented as a constant-time invocation ofhP(d).

Load Balancing. The way we determine the numberk of QDT
trees, as well as their actual construction, are motivated by the goal
of spreading the load evenly across routers. In the following, we de-
note withNr the number of router nodes in the service provider’s
overlay network, and withNp the number of publisher nodes. Since
in any QDTT , every router node is reached by a larger fraction of
the query flow throughT than its descendants inT , we need to en-
sure that for every routern, the distribution of QDT levelsn resides
at is close to being uniform. We adopt a solution which is certainly
not the only possible one, nor necessarily optimal, but it is easy
to implement and (as proven experimentally in Section6) it yields
excellent performance. We start by constructing (using Scribe) a
single QDTT1 whose internal nodes are theNr routers and whose
leaves are theNp publishers. Scribe tends to build trees of low
height, in which the root has a significant fanout that dominates the
fanouts of nodes in lower levels. The root and its children receive
by far the highest fraction of queries flowing through the tree, and
are hence in most need of relief through load balancing.

Denoting withNu the number of nodes on the top 2 upper lev-
els in T1 (Nu = 1+ number of router children of the root), we
constructk = ⌊Nr

Nu
⌋ QDTs,{Ti}1≤i≤k. EachTi is an isomorphic

copy of T1, whose nodes are obtained by keeping the sameNp

leaves and only re-shuffling theNr internal nodes as follows. To
completely specifyTi, we show how itsNr internal node positions
are populated with the actualNr routers. This can be formalized as
a functionai from the set ofNr routers to the set{0, . . . , Nr − 1}
of positions inT1. We adopt the convention that thepositionof
noden corresponds ton’s rank in the breadth-first, left-to-right
traversal ofT1 (position0 is the root). Letπ(n) := (n − Nu)
mod Nr be the right-to-left cyclic permutation with stepNu on
{0, . . . , Nr − 1}. If a1 specifies the initial QDTT1, then for each
1 < i ≤ k, we populateTi by cyclically permuting with stepNu

the nodes ofT1 a total ofi− 1 times:ai := πi−1 ◦ a1.

EXAMPLE 3.1. In Example2.1, there areNr = 17 routers,
and the root of the initial tree QDT1 has three children, yielding
Nu = 4. We computek = ⌊ 17

4
⌋ = 4 and construct the4 trees

in Figure 3. Notice that the trees in Figure3(b), 3(c), 3(d) are
obtained by cyclically permuting to the left by 4 steps the tree in
Figure3(a)once, twice, respectively three times. ⋄

It is easy to see that our methods of determining the number
of QDTs, and of populating them, ensures the following fairness
property:all routers appear precisely once in the top 2 levels of any
QDT.Furthermore, thek level values associated to every router are
distributed almost uniformly over all possible level values inT1.
For instance, in Figure3, router1 appears on levels1, 4, 4, 3.

Finally, note that buildingk + 1 QDTs actually degrades the
load balance, because the additional cyclic permutation causes a
“wrap-around” that returns some of the routers residing on the top
two levels inT1 to the top two levels ofTk+1, subjecting these
routers to unfair load (since we use the floor function to determine
k, the wrap-around is not necessarily complete). In general it fol-
lows that, to maximize balance, we want to use a number of QDTs
that is a multiple of⌊Nu

Nr
⌋. In Section6, we validate this rule ex-

perimentally, also showing that choosing multiples higher than1 is
unnecessary: they do not improve load balance, while leading to
higher control overhead.

Routing Strategies.We next discuss how a noden that initiates
a queryQ picks the QDT to routeQ on. First,n uses the hash func-
tion hP described above to computePQ = {Qj}1≤j≤m, which in
turn determines the set of candidate QDTs{qdt(Qj)}1≤j≤m. If
m > 1, n picks one of these candidates. We consider several alter-
natives for implementing this pick.

A simple solution is to choose1≤j≤m at random, in the hope



that randomness avoids sending many queries down the same QDT
and alleviates congestion. We call this therandomrouting strategy.

We also consider alternative strategies, all attempting to alleviate
the effect we discussed in Section2: as the number of QDTs in-
creases, the selectivity of query blocks decreases (recall that, when
routingQ through QDTqdt(Qj), only the CDs inQj are looked
up in the summaries). This results in increased overall query for-
warding and processing in the network. To compensate for this
effect, the routing strategy should ideally use the most selective
query blockQj for routing, as this results in the most aggressive
pruning ofqdt(Qj)’s subtrees duringQ’s dissemination.

Identifying the most selective block of a query is not trivial, as it
requires determining the frequency of every CD in the global col-
lection, and storing these statistics (or making them otherwise ac-
cessible) at every publisher. We call the strategy assuming each
publisher’s access to this information thefully-informed routing
strategy. Assuming independence between the CDs, the publisher
initiating Q computes the selectivity of a query blockQj as the
product of the individual frequencies of the CDs inQj . Fully-
informed routing is very expensive in terms of both space and traf-
fic. Indeed, for large global collections, the number of CDs can be
considerable. Moreover, space consumption is exacerbated by the
fact that the frequency must be stored with every potential query
initiator. A more serious problem is the traffic arising because the
global collection is virtual: gathering and maintaining the appro-
priate statistics requires constant communication between nodes.

We therefore investigate a less ambitious strategy: instead of
identifying the most selective query block forQ, its initiatorp only
tries to avoid using the least selective ones. It suffices to this end
to maintain and store at each publisher a short list of thes least
selective (most frequent) CDs in the global collection, withs a rel-
atively small value ensuring small storage space and maintenance
traffic consumption. Finding the overall tops most frequent CDs
amounts to the distributed top-s heavy hitters estimation [2, 28].

We implement a simple solution that exploits the already existing
QDT overlays, employing them in a dual role as multicast (data dis-
semination) trees. With every CD they advertise, publishers declare
its frequency in their local collection. Each noden maintains a list
n.L of length at mosts entries, each containing a CD and its fre-
quency. For non-root routers, the list gives thes most popular CDs
across all their QDT subtrees. For QDT roots and publishers, the
list holds most populars CDs across the global collection. When-
ever a noden updates its list, it propagates the new list bottom-up
along all QDTsn participates in. Ifn is a root, it propagates its list
to the otherk− 1 roots. Whenever the root of a QDTT updates its
list, it disseminates it top-down to all publishers inT .

When noden issues a queryQ, it picks the QDT corresponding
to Q’s most selective block according to the information inn.L.
Note that some query blocks may contain CDs not occurring in the
n.L list. These are treated as selective CDs, and blocks with the
highest number of selective CDs are preferred. If multiple such
query blocks exist,n breaks the tie by computing the selectivity of
the conjunction of popular CDs in each block, usingn.L. If this
still leaves more than one candidate query block, one is picked at
random. We call this strategypartially-informedrouting, and ob-
serve that it leads to a spectrum of strategies parameterized by the
size of internal state reserved for the list of popular CDs. We use
the termx-informed routingin short for partially-informed routing
based on the list of the most popularx% of CDs. Notice that100-
informed routing becomes fully-informed, and0-informed routing
degenerates to random routing. In Section6, we show experimen-
tally that, by keeping track of even very short lists, we observe

performance very close to the fully-informed strategy, and much
better than the random strategy.

EXAMPLE 3.2. We revisit Example2.3, explaining why query
Q4, which had two routing alternatives, was sent to QDT3. To en-
able fully-informed or partially-informed routing, publishers main-
tain frequencies of (some of) the CDs in the global collection, which
in our case includemoney(published by 7 publishers),stocksand
yak tea(published by 6 publishers). Notice thatHong Kongis de-
clared by only 2 publishers and hence more selective thanmoney,
which is why it is preferred by the fully-informed routing strat-
egy. Since CDHong Kongappears in blockB3, the corresponding
tree QDT3 is used. The same outcome is achieved for partially-
informed routing, assuming for instance that publishers maintain
only the 3 most popular CDs: the list includes CDmoney, signal-
ing toQ4’s initiator to avoid routing by it. ⋄

Finally, when no selectivity information is available, we fall back
on heuristicrouting: simply directQ to the QDT corresponding to
one ofQ’s maximum-cardinality blocks, breaking ties with random
picks. This strategy is based on the heuristic that higher numbers
of conjuncts tend to yield higher selectivity.

4. PUBLISHER K-ANONYMITY
The challenge for the design of the UQDT maintenance proto-

col is to simultaneously guarantee that (i) queries reach all rele-
vant publishers, (ii) network traffic is minimized and congestion
avoided, and (iii) publishers are encouraged to register with the
dissemination infrastructure, being guaranteed that the registration
will not expose their connection to certain sensitive CDs. We have
shown above how the UQDT infrastructure addresses requirements
(i) and (ii). In this section, we focus on item (iii).

The privacy guarantee: publisher k-anonymity. Our approach
here is to adapt the notion of k-anonymity from relational table
anonymization [33]. In our context, we wish to guarantee that for
every publisherp and every CDc, if p advertisesc, then the rout-
ing information stored in the UQDT and exchanged during UQDT
maintenance does not allowp to be distinguished from at leastk−1
other potential publishers ofc. This involves ensuring that the set
of publishers connected to the same edge router consists of at least
k members, and that even edge routers cannot tell which among
its k+ publishers advertises any given CD. This latter requirement
defends against the event when edge routers are compromised (by
hacking, subpoena, or impersonation). As described shortly, this
guarantee involves collaborative computation among the publish-
ers of an edge router. We describe how this collaboration can be
conducted without exposing a publisher even if (i) all other publish-
ers in its group have been compromised and are colluding against
it but the edge router is trusted, or (ii) the edge router and up to
N − k publishers have been compromised, whereN is the number
of publishers inp’s group.

First observe that, if every edge routere could be trusted to be-
have as prescribed in Section3, and to never be compromised, then
the publishers would remain k-anonymous if ancestors of the edge
routers were compromised. Indeed, recall thate only stores and
communicates to its parents in the UQDT the Bloom filter summary
of cd(e), i.e. the union of all CD sets advertised by its publishers.
The Bloom filter, which is the only exposed information, does not
recordwhichof thek+ publishers advertises a particular CD, nor
which sets of CDs occur together in some document.cd(e) is there-
fore insufficient to pinpoint who amonge’s publishers advertises
any given CD. By ensuring thate’s subtree contains sufficiently
many publishers advertising CDs as a group, we enable each pub-
lisher to remain anonymous by “hiding in the crowd” comprised of
this group. As an added bonus, the CD summary implementation is



hash-based and does not distinguish among two distinct CDs with
the same hash code. Publishers exploit this by declaring the hash
codes of their advertised CDs rather than their actual value. An in-
spection of the edge router’s summary will therefore fail to answer
with certainty even the simple question whether a given CD is ad-
vertised by some publisher, let alone by a given publisher. Recall
from Section3 that the price traded off for this added protection is
that false positives to CD membership tests lead to queries being
forwarded unnecessarily to the publishers, thus affecting perfor-
mance. Our experiments show that this overhead is small and the
false positives are negligible. Also note that, the further up an an-
cestora of an edge routere is, the more fuzzinessa’s CD summary
will contain. If a is compromised and its summary exposed, then
each ofe’s publishers is hidden not only in the crowd ofe’s k+
publishers, but in the larger crowd of all publishers ina’s subtree.
Finally, note that the publishers not ina’s subtrees are not affected.

But how do we defend against the case when the edge routere
itself is compromised? Since the collection of documents stored
at publishers is dynamic, every one ofe’s publishersp (in some
QDTi) needs to declare toe the set of CDs it wants to advertise (or
stop advertising). A compromisede would record this information
if p were to declare its CDs directly. To preservep’s anonymity
even againste, we designed the following protocol.

Publishersp1, .., pN (with N ≥ k) of the same group participat-
ing in QDTi declare to their edge routere only batch updatesof
their advertised CDs, instead of sending up individual updates. To
advertise a new set of CDs, publisherpj installs them in an initially
empty Bloom filter. That is, it starts from a filter with all counters
set to0, hashes each CD, and increments the counters whose index
is given by the hash codes. The resulting filter is publisherpj ’s
updateUj . The batch updateS is the vector sum of all publisher
updates,S = U1 + . . . + UN . e receivesS and sums it to its CD
summary (since both are represented as Bloom filters, the operation
reduces to vector sum). CD deletions are handled by subtractingS
from e’s summary. It is easily shown that this protocol supports the
correct maintenance of CD summaries. More, it ensures thate can-
not figure out the individual updates, as it only receives their sum
over all publishers. Note thate doesn’t even see the actual CDs;
it obtains only their count (muddled by hash collisions). We can
show that this protocol preservesk-anonymity even if all routers
are compromised.

We must address one last issue: where can the batch updateS
be computed? Askinge to do so would defeat the purpose, as
it would involve each publisher to send its update toe. Instead,
S is computed collaboratively by the publishers, without involv-
ing e. To find out the nodes connected toe, individual publish-
ers can publish/broadcast the router they are connected to (e.g., by
running one’s own Web service answering the “buddies” request
using public key cryptography to rule out impersonation). To de-
fend even against the case when publishers themselves are com-
promised, we use the classical cryptographic technique of secure
multi-party computation [22]. This allows a set ofN publishers
to compute the batch update without revealing the individual val-
ues to each other or to outside observers of their communication
traffic. This shields every publisher even against the case that all
other publishers in its group are colluding against it, assuming that
they are not also colluding withe. If e as well as some some pub-
lishers are colluding, thene knows the updates of these publishers
and can subtract them from the overall batch update, retrieving the
batch update of the uncompromised publishers. If fewer thank of
these remain, then anonymity decreases. One can defend against
this case by arranging sufficiently large publisher group sizesN ,
so that compromising more thanN − k of them is practically in-

feasible. Another possible defense consists in publishers joining
UQDT only togetherk − 1 trusted “buddies”. This does require
trust, which however is bounded and does not need to extend to a
vast unknown infrastructure.

Secure multi-party computation involves overhead. However,
note that the publisher group only needs to compute as many sums
as entries in the Bloom filter vector. This is a constant of the UQDT,
independent of the size of the global document collection. Further,
the computation is performed only on batch updates, so its over-
head is manageable by adjusting the update frequency.

Finally, recall k-anonymity guarantee holds on a per-CD basis.
Since UQDT partitions the CD space among its member QDTs,
there is no interaction between QDTs to derive compromising in-
formation. If the guarantee holds for each QDT in isolation, it holds
for entire UQDT.

What we do not defend against.We emphasize that we are only
concerned with putting publishers’ minds at ease w.r.t. the safety of
participating in the UQDT. We do not address here the orthogonal
problem of how publishers decide whether to answer a query once
it reaches them (recall that the query answer is sent directly to the
query issuer), or whether to identify themselves in the answer. To
guarantee that the query issuer is not an impersonator, and that the
query answer cannot be observed by third parties, one can adopt
existing techniques based on authentication credentials, encrypted
channel communication, and anonymization proxies (discussed in
related work). We do not aim to make the infrastructure impervi-
ous to large-scale censoring attacks, such as a governmental agency
completely shutting down the Internet in a region, or a denial-of-
service (DOS) attack overloading the UQDT to decrease data avail-
ability. However, note that the effect of DOS attacks is mitigated
by our load balancing scheme, which maximizes throughput.

5. EXPERIMENTAL SETUP
The Initial Overlay Network. To analyze the effects of our im-

plementation choices on query dissemination, we built a simulator
of a 10,000-node overlay network consisting ofNp = 9, 400 pub-
lisher andNr = 600 router nodes.

A Real Data Set.To obtain true-to-life community, we simulate
a distributed community that shares an XML dump of Wikipedia,
comprising about 1.1 million real Wikipedia documents which amount
to 8.6 GB [14]. We simulate that documents are each brought into
the community by one of the 9,400 publishers. Due to lack of infor-
mation on which publisher generated which document, we assign
the documents to publishers in a uniform random manner.

CD Definition. Since Wikipedia uses structural schema (i.e.,
not ontological), the majority of the tags on the root-to-leaf XML
paths are concerned with document organization, providing no se-
mantic meaning. This motivates us to consider CDs defined as pairs
(t, w), wherew is a keyword that appears in contextt, given by the
last XML tag on the path from the root tow. We include this tag
to support context-aware queries that go beyond standard keyword
search. Moreover, we focus only on the tags that carry meaning to
users (e.g.,“link”, “b”, “title”, “subtitle” and “category” ). The
combination of such CDs yields a complex set of about 3.2 mil-
lion distinct CDs accounting for24% of the set of all distinct CDs
obtained by considering all possible tags. We have tried other CD
definitions (see [13]) and obtained analogous results. The point is
that the flexibility of CD definition is a key enabler for striking the
right balance between query expressivity and space overhead.

EXAMPLE 5.1. We setup the Bloom filter for each node’s sum-
mary as follows. Fixing the false positive rate at10−2, it follows
from [18] that the optimum number of hash functions is7 when
the size of the Bloom filter at every router (assuming a single-QDT



configuration and counters of size 1 bit) isM = 3.6 MB, which
represents only0.044% of the global collection size. For larger
counter sizes, the false positive rate is even lower. Fork QDTs, the
global memory consumption per node stays the same, since thek
Bloom filters at every node summarize disjoint sets of CDs. Each
Bloom filter has size3.6/k MB, and the same error rate of10−2. ⋄

Query Workload. We force the dissemination process to work
under two extreme query types. We construct a family of10 work-
loads{WF

c }1≤c≤10, each consisting of5, 000 c-conjunct queries
drawn at random from the space of queries with no match against
the global collection. Similarly, we build the family of workloads
{WT

c }1≤c≤10, each comprising5, 000 c-conjunct queries drawn
at random from the space of queries with at least one match in the
collection. We also generate the50, 000-query workloadWT =⋃10

c=1 W
T
c . The{WT

c }i workloads increase the overall forwarding
effort by forcing QDTs to send queries all the way to (some) leaves.

Scribe QDTs.Recall from Section3 that, even in multiple-QDT
configurations, the QDTs are isomorphic. We obtain a (unique up
to isomorphism) QDTS topology using Scribe. We first convince
ourselves of the faithfulness of the simulation, by generating a fam-
ily of 20 Scribe tree topologies for the same node set (by varying the
order in which the nodes join the network). We observe only non-
essential variations across the family, thus boosting our confidence
that picking any tree in this family is representative of Scribe’s be-
havior. The particular Scribe tree we pick has9, 400 leaf nodes and
600 internal nodes,5 levels, average fanout of16.7, and a maxi-
mum fanout of101. The fanout features a very skewed distribution,
decreasing from root to leaves (this holds for all 20 Scribe trees we
considered). The distribution of the number of nodes per tree level
1 to 5 is as follows:1 node (the root),40 (of which 3 are publish-
ers),1, 189, 6, 163 and2, 607 nodes. We determine the numberk
of isomorphic copies as in Section3. We haveNr = 600 routers in
total; among the40 children of the root,37 are routers. We obtain
Nu = 1 + 37 = 38 and hencek = ⌊Nr

Nu
⌋ = ⌊ 600

38
⌋ = 15.

Fanout-balanced QDTs. We extend our simulation to QDT
topologies not created by Scribe. We consider a topology QDTB

that uses the same router and publisher nodes, but eliminates the
skewed fanout distribution that is typical of Scribe trees. This is
beneficial since a node’s fanout influences its forwarding cost. We
first organize the600 routers into a balanced skeleton tree with
fanout8, where levels1, 2, 3, 4, 5 have, respectively,1, 8, 64, 512
and the remaining15 nodes. Next, we connect the9, 400 publish-
ers to this skeleton tree, achieving for each node a fanout of16 or
17. There are75 non-leaf routers in the skeleton tree, and each re-
ceives8 publishers, for a total fanout of16. Among the leaf routers
in the skeleton tree,400 receive17 publishers and125 receive 16
publishers. We determine the numberk of fanout-balanced QDTs
in the usual manner:k = ⌊Nr

Nu
⌋ = ⌊ 600

9
⌋ = 66.

Metrics. Our goal is to improve the query throughput of the
multi-QDT overlay, defined as the number of queries answered per
time unit. Throughput is a manifestation of two more fundamen-
tal factors, namely the processing and forwarding effort at every
router. For a given workloadW , we define theprocessing load
at noden, PLoadW (n), as the number of query messages reach-
ing n across all QDTs it participates in. Theforwarding loadatn,
FLoadW (n), is the number of query messages leavingn along all
QDTs it participates in. Notice that none of the two measures is
derivable from the other, sinceFLoadW (n) depends onn’s fanout
distribution (over the QDTs it participates in) and on the amount of
pruning atn. For both load flavors, we define thepeakload, which
is the maximum load over all nodes. Clearly, decreasing either or
both kinds of peak load results in increased throughput.

EXAMPLE 5.2. In Example2.1, 46 messages are used to dis-
seminate 4 queries in 8 time units, while in Example2.3, 50 mes-
sages disseminate the same query workload in 6 time units. Defin-
ing throughput as the number of queries answered per time unit, the
4-QDT case has the higher throughput. The reason we don’t sim-
ply use throughput as a metric is that it requires assumptions on the
relative duration of processing and forwarding cost (in our running
example, we take the simplifying assumption that forwarding cost
takes constant time, independent of fanout).

In Figure 2, the processing load for a node is the number of
queries on its row. For example, the processing load for node 13
is 4, which is also the peak processing load. In Figure4, the peak
processing load is 3, experienced for instance by nodes 2 and 10.

The forwarding load can be read by inspecting the transitions
between columns and keeping track of parent-child relationships in
the various trees. In the single-QDT case (Figure2), root node 1
has the highest peak forwarding load, 12 (it forwards each of the 4
queries to its 3 children). In the 4-QDT configuration (Figure4),
the peak forwarding load is 6 messages, experienced by node 20 (1
message forQ2, 3 forQ3 and 2 forQ4).

Notice that, compared to the single QDT, the 4-QDT configura-
tion decreases both processing and forwarding peak load, which
leads to improved throughput regardless of the concrete values of
the per-query processing and forwarding cost. ⋄

The above considerations suggest comparing configurations by
their degree of reduction of the peak processing and forwarding
loads. Note, the ideal load balance is achieved when the peak
“drops” to the average load, which is measured as the average over
all router nodes.

Note that our goal is not merely to achieve balance, as one can
do so without improving throughput by simply raising the average
load. Indeed, as discussed in Section2, with increasing numberk
of QDTs both kinds of average load increase (though only slightly,
as shown experimentally). This is because routing by smaller query
blocks results in less pruning, which increases the overall number
of messages. Thus, the lowest possible average load occurs in the
single-QDT configuration, and represents the ideal target for low-
ering the peak load. Since we are interested in closing the gap
between the peak load in ak-QDT configuration and the ideal peak
load, we report theideal-to-actual load ratiometric, defined as the
ratio between the peak load in thek-QDT and the average load in
the single-QDT configuration.

6. SIMULATION RESULTS
In this section, we explore through extensive simulations the

space of configurations defined by the three dimensions given by
the topology of QDTs, number of QDTs, and routing strategies.
We confirm empirically that the configuration choices we advo-
cate achieve near-optimal peak load reduction, and therefore near-
optimal throughput.

Warm-up: Single-QDT Configuration. In this experiment, we
confirm that the number of messages reaching the various levels
in a single-QDT configuration is sufficiently skewed to justify our
load-balancing efforts, in particular that the routers on the first two
levels of the tree bear the brunt of the load. For query workloads
WF

2 andWT
2 , and the Scribe topology QDTS , we report in Table3

for every level the total and average number of messages seen by
its nodes. Notice that the average number of messages per node de-
creases drastically below the upper two levels. Also notice that, un-
surprisingly, workloadWT

2 generates more overall messages, since
its matching queries undergo less pruning than those inWF

2 .
Effect of Number of QDTs. In this experiment, we validate

our method for determining the numberk of QDTs (recall Sec-



WF
2 WT

2QDT
# msg. Avg. # msg. # msg Avg. # msg.

level per level per node per level per node
1 5,000 5,000 5,000 5,000
2 200,000 5,000 200,000 5,000
3 173,066 146 636,507 535
4 28,509 5 513,464 83
5 4,869 2 193,575 74
Total 411,444 - 1,548,546 -

Table 3: Messages per Level (k = 1, QDTS , fully-informed)

tion 3). For workloadWT and fully-informed routing, we increase
the numberk of QDTS copies from1 to 31. Figure5 shows the
average and the peak load for both processing and forwarding.
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Figure 5: Effect of Number of QDTs (WT , QDTS , fully-
informed routing)

Notice that with increasingk, the gap between the peak load
and the average load decreases considerably. The highest load im-
balance occurs fork = 1 as shown in the big gap between the peak
and the average values for both the processing and the forwarding
load. As predicted by our analysis in Section3, k = 15 is indeed
the “sweet spot” where the minimum gap is measured. Increasing
k to 17 increases this gap. This is because the two additional cyclic
permutations cause a “wrap-around” of the routers from the top
two levels of QDTS1 to the top two levels of QDTS16 and QDTS17
and thus introduce load imbalance. Also note that there is no point
in looking at strict multiples of⌊Nr

Nu
⌋ beyondk = 15, as they cost

more overlay maintenance overhead without bringing the peak load
any closer to the average load.

Finally, we observe that the negative effect of increasing overall
number of messages with increasingk does occur: the average pro-
cessing load is indeed the lowest fork = 1 since routing is done
using with all conjuncts, thus benefiting from maximum routing
selectivity. However, the increase is very slow when compared to
the decrease in peak load. The negative effect of average load in-
crease is outweighed by that of peak load reduction, as shown by
the closing gap between peak and average loads.

We observe this behavior more accurately in terms of the ideal-
to-actual peak load ratio, which for increasingk approaches the
ideal value1. For example, the ideal-to-actual peak load ratio for
the same values ofk as in Figure5 are, respectively:6.42, 1.85,
1.49, 1.21, 1.44 and1.20.

Figure5 shows the same trend for the forwarding load, with the
only difference that, while the gap of peak and average loads de-
creases with growingk ≤ 15 and saturates oncek exceeds15, we
remain far from the ideal reduction (for which the ideal-to-actual
load ratio is1). This is explained by the forwarding load’s correla-
tion with the node fanouts and the fact that Scribe builds trees with
highly skewed fanout distribution.

Effect of Static Load Indicators. In the extended version [12],
we introduce two load indicators to capture statically the balance
degree of ak-QDT configuration, and we confirm experimentally
a good correlation with the dynamic query dissemination perfor-
mance. These indicators measure for each noden its average tree
level, and its average fanout (over all QDTs it participates in).

Effect of Routing Strategy. We next compare the routing strate-
gies defined in Section3. For the partially-informed strategy, we
consider the case when publishers maintain the tops popular CDs
for s = 43k, 74k and 124k, corresponding respectively to1.37%,
2.33% and3.89% of the total number of CDs in the global col-
lection. We compare the strategies for workloadWT and QDTS ,
reporting the ideal-to-actual peak load ratio in Figure6.

First, we note that random routing performs worst, closely fol-
lowed by heuristic routing. Both strategies are significantly outper-
formed by the (partially- or fully-)informed ones for everyk > 1
(with the exception ofk = 1 when all routing strategies coincide).

The family of informed routing strategies follows a common
trend: with increasingk ≤ 15, the gap between ideal and actual
load shrinks drastically, reaches the sweet spot atk = 15 and es-
sentially saturates fork > 15 (with a slight increase atk = 17
for processing load, due to discussed imbalance introduced by the
wrap-around).

Interestingly, random and heuristic routing behave slightly dif-
ferently: atk = 5, the actual load gets closer to the ideal load
than atk = 15. This is caused by the following effect. The more
QDTs, the more query blocks, which decreases the chance of a ran-
dom pick hitting the most selective block. With increasingk, this
effect starts generating non-minimal traffic, eventually canceling
the load balancing effect. This explains why the random strategy
degrades with increasingk. The reason the degradation saturates
is that the number of query blocks cannot increase indefinitely (it
must saturate once all blocks become singletons). Heuristic routing
suffers from essentially the same problem: the more blocks we split
a query into, the smaller the variation in block cardinality. Recall
that, for same-cardinality query blocks, heuristic routing degener-
ates to random. In contrast, for the informed routing family, the
experiments show that this negative effect remains subtle, being
canceled out by the judicious choice of selective query blocks.

Finally, we get very close to the benefits of fully-informed rout-
ing in negligible space overhead, by maintaining the frequency for
only a small fraction (3.89%) of all CDs. These results strongly
recommend partially-informed routing over the other strategies.

Effect of QDT Topology. We repeated all above experiments us-
ing the fanout-balanced QDT topology QDTB , observing the same
trends as for the Scribe topology QDTS . We do not report the
detailed results for lack of space. Instead, we summarize in Ta-
ble4 the comparison between the Scribe-generated and the fanout-
balanced topology, relative to the peak load reduction. For query
workloadWT and the fully-informed routing strategy, we show the
ideal-to-actual peak load ratio factor for the appropriate number of
QDTs (15 for QDTS and66 for QDTB).

ideal-to-actual peak Scribe fanout-balanced
load ratio (QDTS) k = 15 (QDTB) k = 66

processing 1.21 1.18
forwarding 9.3 2.3

Table 4: Effect of QDT Topology (WT , fully-informed)
Notice that both topologies come within reach of the ideal load

reduction (when the ideal-to-actual load ratio is1) for processing
load. However, for forwarding load the Scribe topology misses
the ideal by an order of magnitude, whereas the fanout-balanced
topology only by a factor of2.3. The main reason not even the
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Figure 6: Effect of Routing Strategy (WT , QDTS)

QDTB topology reaches the ideal forwarding load reduction is the
inherent imbalance between the number of routers and publishers:
the perfect configuration consists of a perfectly balanced tree whose
internal nodes are routers and whose leaves are publishers. We did
not simulate such a configuration because in practice we have no
control over the numbers of routers and publishers.

Our experiments confirm that fanout-balanced topologies result
in improved forwarding load reduction over Scribe topologies with-
out sacrificing processing load reduction. The benefit of using
Scribe is of logistic nature, as it comes off-the-shelf with the over-
lay maintenance functionality. An advantage of our solution is its
generality; it assumes no control over the shape of the QDT, focus-
ing on extracting the performance inherent in the topology.

7. RELATED WORK
To provide high throughput and scalable search over distributed

content we identify three research directions related to our work,
mainly, mediation based, replication based, and partitioning based
solutions. We analyze each of them in terms of efficiency, query
power expressivity and publisher anonymity.

Mediation approach. In the mediator approach the data resid-
ing with different publishers in the network is collected and ac-
cessed via a single site, also called the mediator. This architecture
is the standard for most of the current search engines and online
hosted communities. Our focus on publisher anonymity makes
the centralized architecture less than ideal, since publishers need
to trust the mediator when registering their data with it (or when
allowing crawlers to collect their data). Moreover, the central point
of access to data is vulnerable to censorship attacks (governments
have been known to press search engines to not return query an-
swers on certain political hot topics, and to turn over their records).

Query dissemination in P2P networks. Recently there has
been a large body of work that focuses on finding only the peers
with relevant data to a user’s query. These methods construct data
summaries at nodes and use them as routing indices (e.g. [11, 9])
to disseminate the query in the network toward the relevant pub-
lishers. These works are not focused on publisher anonymity.

Replication based approaches.One way to increase data avail-
ability and to balance the load, and therefore to improve the system
throughput is to replicate all or parts of the data (or indices of it)
redundantly at the router nodes [27, 20]. Disseminating queries to
publishers in such a scenario is simple since each such router has
global information. This however means that compromising a sin-
gle router will violate the anonymity of all publishers.

Partitioning-based approaches. An alternative way to lever-
age the distributed computational power is based on partitioning
the data across the peers. The publishers and the consumers do not
need to know the details of the partitioning scheme to send data or
queries. The network takes care of identifying the relevant match-
ing data to the queries. Our approach is partition based.

DHT based. A partition-based solution to building routing in-
dices that is popular among structured P2P networks is to leverage
distributed hash tables (DHTs). A DHT provides a distributed log-
ical abstraction of object identifier lookups (e.g. filename lookups)
over the physical underlay [20, 39, 1, 4, 23, 34]. A follow-up body
of work builds hierarchies of overlays based on DHTs. To improve
locality, the hierarchies are created based on the document content
similarities [40] or on the nodes proximity in the network to mini-
mize latency [38, 29, 21]. However, DHTs are inappropriate for the
problem we study, since DHT nodes maintaincompleteknowledge
of all the publishers that advertise specific data items. An attacker
can gain global publisher information for specific CDs by simply
compromising the responsible DHT node. In contrast, no UQDT
node maintains knowledge about the publishers of any data item.

Other routing strategies. Our load balancing technique applies
to any tree topology, and is complementary to research on deter-
mining the best topology for dissemination (e.g. see [25, 10] for
tree-shaped P2P indices that are not DHT-based).

Koloniari and Pitoura [26] consider the problem of routing path
queries over schema-less XML documents in a P2P system. Their
approach is similar to our single-QDT configuration, with the atten-
dant limitations, and our technique for maximizing throughput has
the potential to be useful for this problem as well. At the opposite
spectrum, [19] builds a QDT for each published data item which
can sometimes be impractical due to the large number of CDs. Both
these related works do not address the publisher anonymity issue.

P2P publish/subscribe. A complementary problem is that of
distributed publish/subscribe, wherein query subscriptions from u-
sers are maintained in a distributed index structure, and data items
are disseminated to subscribers when they are published. Various
multicast techniques are used for dissemination [3, 6]. Although
constructed for a different goal, we show how off-the-self multicast
Scribe trees for data dissemination can be used for QDTs.

Content-based publish/subscribe approaches match the entire pub-
lished content against (possibly aggregated) subscription queries.
A good example is ONYX [15], wherein a dissemination tree is
rooted at each publisher. Each router maintains for each inter-
face an aggregate subscription (XML query) that summarizes all
the subscriptions downstream along that interface. A published
data item starts from the root (the publisher), and gets forwarded
to downstream interfaces whose corresponding aggregate subscrip-
tions match the data item. Chand and Felber [7] take a similar
approach. SemCast [31] aggregates subscriptions in a centralized
way using a cost-based model.



Censorship resistance.Most of the existing censorship-resistant
systems including Free Haven [17], Publius [36], and Tangler [35]
are based on anonymizing the communication, and therefore anonym-
izing the end-to-end communicating entities (Tor [16], Freenet [8],
etc.) This is usually done by using proxy based services with DHTs
(e.g., Anonymizer.com), or using servers to encrypt and route the
traffic through established anonymous tunnels over the other nodes.
Note that both DHTs and encryption/routing servers need to be
trusted by publishers. These anonymization techniques can be used
as a complementary measure together with UQDTs. The advantage
of UQDTs is that they do not require publishers to trust them.

8. CONCLUSION
The dawn of the age of online communities poses the challenge

of empowering information publishers to join democratic commu-
nities and query their global data collection in an ad-hoc fashion.
We present an infrastructure that meets this challenge by allowing
data to reside with its owners and by supporting queries against
all data collection with no need for any trusted central authority,
which disintermediates publishers from consumers. These queries
are evaluated by dissemination to relevant publishers using a dis-
tributed index structure. Our solution precludes third parties from
learning the exact publisher–CD associations, guaranteeing pub-
lisherk-anonymity (i.e. for every CD, there are at leastk possible
publishers) even if nodes of the dissemination index, or peer pub-
lishers are compromised.

Technically, our approach is dual to the conventional work on
data dissemination. Our contributions towards efficient query dis-
semination range from identifying the design space (with its trade-
off dimensions, relevant metrics, and notion of optimality), to in-
troducing solutions that achieve near-optimality with low overhead.

Partially-informed routing emerges as the best-value strategy,
with low space overhead to yield the same benefits as fully-informed
routing. The solution exploits crucially the dual role of QDTs,
deploying them as both query and statistics dissemination trees.
While we show that fanout-balanced topologies are closest to opti-
mal, an advantage of our solution is its generality, in that it focuses
on extracting the performance inherent in any given topology.
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