
Durable Top-k Search in Document Archives

Leong Hou U†, Nikos Mamoulis†, Klaus Berberich‡, Srikanta Bedathur‡
†Department of Computer Science, University of Hong Kong

Pokfulam Road, Hong Kong
{hleongu, nikos}@cs.hku.hk

‡Max-Planck Institute for Informatics
Saarbrücken, Germany

{kberberi, bedathur}@mpi-inf.mpg.de

ABSTRACT
We propose and study a new ranking problem in versioned data-
bases. Consider a database of versioned objects which have dif-
ferent valid instances along a history (e.g., documents in a web
archive). Durable top-k search finds the set of objects that are con-
sistently in the top-k results of a query (e.g., a keyword query)
throughout a given time interval (e.g., from June 2008 to May
2009). Existing work on temporal top-k queries mainly focuses
on finding the most representative top-k elements within a time
interval. Such methods are not readily applicable to durable top-k
queries. To address this need, we propose two techniques that com-
pute the durable top-k result. The first is adapted from the classic
top-k rank aggregation algorithm NRA. The second technique is
based on a shared execution paradigm and is more efficient than
the first approach. In addition, we propose a special indexing tech-
nique for archived data. The index, coupled with a space parti-
tioning technique, improves performance even further. We use data
from Wikipedia and the Internet Archive to demonstrate the effi-
ciency and effectiveness of our solutions.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search process

General Terms
Algorithms, Experimentation

Keywords
Document Archives, Top-k Search, Temporal Queries

1. INTRODUCTION
Consider a set of objects (e.g., web documents) and a sequence
of different rankings of these objects. The rankings are ad-hoc
(i.e., not pre-defined) and could be derived from a search opera-
tion (e.g., a keyword query). Assume that the objects are not static,
but change over time (e.g., different versions of web pages), and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10,June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

that the search operation refers to a time interval. Then, the dif-
ferent rankings are sensitive to the change of documents during the
query interval. The Internet Archive (www.archive.org) is a char-
acteristic example of a document archive, where search on different
versions of documents is possible. A given time interval (e.g, June
2008 – October 2009) and a set of keywords (e.g., “Welsh football
player”) define a sequence of rankings of all documents over time.
The order of a document may change if the document is replaced
by a newer version that has different relevance to the keywords.

This paper studies the problem of finding objects that are consis-
tently in the top-k throughout the sequence of rankings defined by
a time interval[tb, te) and a set of keywordsW . The main applica-
tion is finding documents that are consistently relevant to a specific
subject over a given time period. The result of this query has size
0 to k; queries can have empty results ifk is small or the rank-
ings change radically. Empty results can be avoided by relaxing
the consistent top-k constraint of the query using a ratio variable
r, 0 < r ≤ 1: we seek for objects that are in the top-k for at
leastr × (te − tb) time in the[tb, te) interval. We call this prob-
lem durable top-k search. Wikipedia is one of the systems where
durable top-k search can be applied. A page in Wikipedia is typi-
cally modified by editors over time. For instance, Figure 1 shows
how an entry about football player “Ryan Giggs” evolves; this page
has been modified over 3500 times from 2004 to present.

(a) in October 2007 (b) in May 2008 (c) in October 2009

Figure 1: Different versions of topicRyan Giggs in Wikipedia

As an example, consider five documentsd1–d5, having differ-
ent versions over time, and a query defined by time interval[tb, te)
and a set of keywords. The score (relevance) of each document
over time, within the interval[tb, te), normalized to be within[0, 1]
is shown in Figure 2(a). For instance, documentd4 has four ver-
sions, with scores 1, 0.7, 0.4, and 0.25. Figure 2(b) shows the sub-
intervals of[tb, te), within which the ranking remains constant. A
crisp durable top-3 query withr=1, hasd2 as the only result. If the
query is relaxed tor = 0.6, {d1, d2, d5} becomes the query result.

This query is not only applicable to document archives, but in
general for applications that need to merge of ad-hoc rankings,
which are time-parametric. For example, consider the changing
attributes of stocks over time (e.g., price, volume, etc.) and a con-
sistent top-k query for an aggregate (e.g., average) of an ad-hoc
subset of these attributes. Other applications include expert finding

d1 d2 d3 d4 d5

tb te

time

s
c
o
r
e

0.4

0.25

0.5

0.95
0.9

0

0.7

1

0.7

210 54 7 863

0.75

0

0.6

(a) Variable score over time

1 2 3 4 5

time

s
c
o
r
e

210 54 7 863

0.4

0.25

0.5

0.95
0.9

0

0.7

1

0.7
0.75

0

0.6

(b) Ranking in sub-intervals

Figure 2: Relevance of documents over time

and finding information sources that one should subscribe to. For
the former, consider a publication database and the query ‘column
stores’. Instead of the documents, the authors are ranked and their
aggregate score is derived from the scores of their relevant publi-
cations. Our query finds people who have consistently produced
relevant work: these are considered long-time experts on the topic.
For the latter, consider information sources such as blogs (twitter
users) that one typically subscribes to (follows). The user may want
to subscribe to those that consistently include relevant material to a
set of keywords.

Berberich et al. [6] introduced time-travel keyword queries in
document archives. Given a time interval and an aggregate func-
tion (relevance model), a time-travel keyword query returns the
most relevant documents to the keywords according to their ag-
gregate scores computed over the time interval. Typical relevance
models compute the maximum (MAX), minimum (MIN), or aver-
age (AVG) scores. For example, the MAX-aggregate scores of the
5 documents in Figure 2(a) are{0.6, 0.95, 0.5, 1, 0.75}. Although
previously studied time-travel keyword queries share some similar-
ity to durable top-k search, they cannot directly be used for this
new query.

We use a real example to show the special nature of durable top-
k search. We use a dataset from [22], which contains 11,328 URLs
from Google Directory1 and find their archive versions in 2004 at
the Internet Archive. Consider a query with keywordshealthyand
policy and time interval the third and fourth quarters in 2004. We
set k = 20 and r = 0.5 (r is tuned to ensure that the durable
query produces the same number of results as other models). The
number of different documents between the result of the durable
top-k query and the relevance models MIN, MAX, and AVG is
5, 8, and 8, respectively. The results of aggregate models are de-
rived from the utmost/average scores, which are not directly related
to consistency. Table 1 shows the different URLs computed by
the MIN model and the durable query. DUR−MIN (MIN −DUR)
contains the URLs which exist in the durable (MIN model) result
but not in the MIN model (durable) result. Note that the URL
www.asgoodasnews.comis a news magazine website and it dis-
cussedhealthyandpolicyat some time in 2004 but not consistently.
Therefore, it is not in the result of the durable query. On the other
hand, the durable top-k results are consistently relevant to the query
within the given time interval, and exclude noisy outliers.

The main challenge in processing durable top-k queries is that
they are based on an ad-hoc set of multiple keywords. This means
that the rankings of the document versions that overlap with the
query interval are not pre-defined and can only be determined from
the inverted lists of the query keywords. For example, the con-
tent of Figure 2(a) is not pre-computed, but dynamically derived

1http://directory.google.com/

Table 1: Example of durable top-k search results
DUR−MIN MIN −DUR

iwhc.org www.goodusedstuff.com
www.4girls.gov www.asgoodasnews.com

research.aarp.org/health www.hsrnet.com
www.accessexcellence.orgwww.fasthealth.com/journals

www.luteininfo.com hometown.aol.com/ihcinc
www.homeinonhealth.com www.sierrahealth.com

by intersecting the inverted lists of the query keywords (these con-
tain the document versions that include the keywords), skipping
document versions that are outside the query time interval. For
the keyword queries we consider in this work, documents are typ-
ically ranked using a relevance model such as Pivoted Normaliza-
tion [23], Okapi BM25 [20], variants of tf-idf [24], or language
modeling approaches [19]. The obtained relevance scores can be
represented as sums of keyword-specific contributions. Top-k ag-
gregation techniques [11] are immediately applicable, if the rele-
vance scores of document versions to each keyword are pre-computed
and the versions are ordered in the corresponding inverted lists.

In this paper, we propose an efficient, specialized technique for
durable top-k queries. Our method is based on a storage organiza-
tion, which sorts the contents of the inverted lists for each keyword
in descending score order. While accessing the lists of the query
keywords in parallel, our method maintains for eachi, 1 ≤ i ≤ k,
a band in the query timeline[tb, te) capturing the scores of the
current top-i results for each timestamp in the query interval. At
the same time, we maintain acandidates bandcapturing, for each
timestamp in[tb, te), the best possible score of any object, which
is not currently in the top-k at that timestamp. If, during retrieval,
thek-th band is above the candidates band, then the top-k results
at each timestamp are confirmed, which allows us to post-process
them and identify the response set of the durable top-k query. We
pair our method with several optimization techniques that minimize
the expensive maintenance of the candidates band and accelerate
time-travel search with the help of spatial indexing. In addition, we
propose a transformed R-tree index for indexing the inverted lists
on the disk. With the help of this transformation, we are able to
decompose a durable query into a set of simple top-k queries and
one durable query with smaller search space. This way, not only
the I/O but also the computational cost is reduced. More interest-
ingly, our durable top-k search approach derives the top-k results
at every timestamp, before computing the durable result. Hence,
durable results of different consistency can be found by progres-
sively increasing the parameterr.

The rest of the paper is organized as follows. Section 2 de-
scribes work related to the problem under study, which is formally
defined in Section 3. Section 4 presents a baseline approach to
solve durable top-k queries. Our optimized technique is described
in Section 5. Section 6 describes an indexing technique that im-
proves performance. Section 7 empirically evaluates our proposed
solution using Wikipedia data. Finally, Section 8 concludes the pa-
per and discusses future research directions.

2. BACKGROUND AND RELATED WORK
In this section, we review previous work which is closely related to
our problem, such as top-k search, indexing versioned documents,
and time-travel queries in document databases.

2.1 Top-k Queries
Fagin et al. [11] proposed and analyzed methods for top-k merg-

ing of ranked lists, based on sorted and random accesses. In an
Information Retrieval (IR) system, the relevance scores of a key-
word to all documents (or document versions) are precomputed
and stored in an inverted list. If the lists are ordered by score,
we can apply the methods of [11] to find the most relevant doc-
uments (or versions) to a given set of keywords. As random ac-
cesses at inverted lists are significantly more expensive compared
to sorted ones, we describe the “no-random accesses” (NRA) al-
gorithm (Algorithm 1), which computes top-k results using sorted
accesses only. NRA iteratively retrieves objectso from the ranked
inputs and maintains the upperγub

o and lower boundsγlb
o of their

aggregate scores. Boundsγub
o andγlb

o are the atomic scores ofo
seen so far plus the highest and lowest possible score from the lists
which have not been seen. LetWk be the set of thek objects with
the largestγlb

o . If the smallest value inWk is at least the largestγub
o

of any objecto not in Wk, thenWk is reported as the top-k result
and the algorithm terminates. LARA [18] is an efficient implemen-
tation of NRA, which manages the candidate results in a lattice and
minimizes redundant bound computations and checks.

Algorithm 1 NRA Algorithm
NRA(sorted listsL)

1: perform sequential accesses to eachLi;
2: for each new objecto updateγlb

o ; ⊲ lower score bound
3: if less thank object have been seen so farthen goto Line 1;
4: for each objecto seen so far computeγub

o ; ⊲ upper bound
5: Wk := thek objects with the highestγlb

o ;
6: l := min{γlb

o : o ∈ Wk}
7: u := max{γub

o : o /∈ Wk}
8: if l ≥ u then returnWk; otherwisegoto Line 1;

[16] is the most relevant piece of work to durable top-k search.
Given a database of time-series (spanning the same history) and a
time interval[tb, te) (which is contained in the history), the prob-
lem is to find the time-series that are consistently in the top-k set
for each timestamp of the query interval. For example, assuming a
database of stock transactions, one might want to find stocks that
are consistently in the top-20 by turnover, during the first three
months of 2009. There are certain differences between this problem
to the durable top-k queries that we study here. First, the contents
of the time-series in [16] are pre-defined (i.e., not ad-hoc), therefore
the values on which the top-k function is applied are pre-computed
and can be indexed. On the other hand, in our problem, ranking is
defined based on an ad-hoc set of keywords. Although relevance
with respect to a single keyword is pre-defined, pre-processing and
indexing for an ad-hoc keyword combination is not possible. Sec-
ond, the definition of [16] lacks the parameterr, which relaxes the
definition of durability and avoids otherwise empty query results
(i.e., for r = 1). Finally, the solution suggested in [16] does not
scale well. For each objecto, a sequence of ranks foro in the whole
history (e.g., 1st at the 1st timestamp, 3rd at the 2nd timestamp,
etc.) is pre-computed. To find consistent top-k objects during a
time interval, we search within each object list for its ranks in the
interval and we output only those documents whose ranks in all or-
derings in the time interval are at mostk. The cost of this method
is proportional to the number of objects (i.e., a time-interval search
first should be applied at each object list, then the retrieved ranks
have to be accessed and compared withk), so the method does not
scale well with the number of objects.

Pruning strategies in IR, based on specially designed inverted
files, were proposed in [1, 2, 26]. The contents of the inverted lists
can be ordered by document ids or scores. The first approach is the

classic implementation, which enables multi-way merging when
processing a query with multiple keywords. The sizes of inverted
lists can be reduced by storing the difference (i.e., gap) between
consecutive ids. If the inverted lists are stored in this way, a simple
solution could be used to compute durable top-k queries. First, we
traverse the complete inverted lists and put all entries that intersect
the query interval into a temporary array. Next, each record in the
temporary array is split into a start and end event and all events are
sorted by time. The durable top-k result is computed by running a
simple scanline algorithm from computational geometry. The scan-
line is run on a heap of sizek maintaining the current top-k, with
an additional data structure for elements that have been in the top-k
but are currently not. Such an approach is not efficient in practice,
due to the large overhead of generating, sorting, and scanning a
potentially huge number of document versions.

The second approach used in [1] keeps document entries in the
inverted lists ordered by scores and uses Algorithm 1 to terminate
list intersection early. However, the inverted lists cannot be easily
compressed, since the scores may be in floating point format. In
view of this, a hybrid approach is proposed in [2, 26], which uses
a two level structure. The documents in a list are decomposed into
different segments based on their scores and the documents in one
segment are sorted by ids to facilitate compression. NRA used also
on this data representation, but this time all segments having the
same score bounds are accessed in a batch and after each batch
access the termination condition is verified.

2.2 Indexing versioned document collections
Indexing versioned document collections has been studied in [7,

25, 14, 13]. Broder et al. [7] propose a technique that exploits
large content overlaps between documents to achieve a reduction
in index size. Each version is partitioned into a set of fragments,
e.g., an email is partitioned into two fragments, subject and body.
The fragments between versions are organized in a tree structure
and each child inherits the shared fragments from its parent. This
solution makes strong assumptions about the structure of document
overlaps. [25] uses content-dependent partitioning technique [21]
to partition a page into smaller fragments such that more fragments
are common between versions. More recent approaches by Herso-
vici et al. [14] and He et al. [13] exploit arbitrary content over-
laps between documents to reduce index size. [14] attempt to find
subsets of terms that are contained in consecutive versions of a
document. Each subset is stored into a virtual document and the
total storage cost is optimized by minimizing the overall number
and size of the virtual documents. [13] propose a two-level in-
dex compression that improves the query processing time. This
approach groups similar union-documents into clusters, where a
union-document contains all terms in the corresponding versions,
and the terms are compressed locally for each cluster. This struc-
ture greatly reduces storage and still preserves the hierarchical re-
lationship between documents and versions.

All these indexing methods primarily aim at reducing the space
required for storing the versioned document collections, taking ad-
vantage of the similarity between versions. However, the durable
top-k search problem that we study in this paper is CPU-intensive
and does not benefit directly from such compression techniques,
since all versions may have to be accessed and reconstructed from
the compressed storage scheme.

2.3 Time Travel Queries in IR
There is a significant body of work on analyzing large text collec-

tions over time. Bansal and Koudas [4] describe a full-fledged sys-
tem for searching the blogosphere. Among others, the system sup-

ports the detection of stable keyword clusters as described in [3].
Earlier work by Kleinberg [15] and Dubinko et al. [10] also fo-
cuses on the analysis of text and tag streams, respectively, to detect
bursty keywords or tags. However, all of the three aforementioned
approaches operate on the document collection as a whole and not
on ad-hoc keyword query results.

Other work has investigated the use of temporal information as a
means to obtain a better ranking of query results. Li and Croft [17],
for instance, propose a language modeling approach that factors in
the publication of the document. Del Corso et al. [8] focus on news
and propose ranking methods that take into account when a news
article was published and linked to by other news articles.

Berberich et. al. [5] proposed a temporal text indexing technique
for web documents which supports time-travel queries. In a typical
inverted file, each inverted list contains aposting(d, s), whered
is the document id ands is the relevance of the term in document
d. To support indexing of versioned documents, in [5], the inverted
file is extended, such that each posting includes a time intervalλ.
The temporal information characterizes the validity time interval
of the indexed version ofd. The objective of a time-travel query
is to identify the top-k documents with the highest aggregate score
during the query interval, as we explained in the Introduction.

IL

c
d

a

e

b

t2
time

s
c
o
r
e

t3t1 t4 t5 t6 t7t0

(a) single list

IL
1

IL
2

IL
3

s
c
o
r
e

c
d

a

e

b

t2
time

t3t1 t4 t5 t6 t7t0

(b) multiple lists

Figure 3: Comparison between one and multiple inverted lists

Consider a set of postings for a keywordw and a top-k time-
travel queryq on w with time interval[t2, t3) as shown in Figure
3(a). The query can be processed by accessing the postings in de-
creasing score order, ignoring those that do not overlap with the
query interval. While doing so, we can use upper bounds for the
subsets of the query interval where postings have not been seen
(i.e., run a version of NRA) and at some point confirm thek docu-
ments with the best aggregate scores. Although only four postings
(a, b, c, andd) are valid in time[t2, t3), the whole inverted list has
to be read, in the worst case. To tackle this problem, Berberich et.
al. [5] propose a partitioning approach, which splits the inverted
list with the entire posting set into smaller lists. For instance, we
can partition the inverted list of Figure 3(a) into three sub-lists as
shown in Figure 3(b). Each posting is stored in all lists which it
temporally intersects (e.g., postinga is stored intoIL1 andIL2).
Now, queryq temporally intersects only with listIL2, therefore
only five postings have to be read (instead of 13 ifIL of Figure
3(a) is used).

One strategy is to materialize sub-lists for all elementary time
intervals. For instance, we could create 7 sub-lists for the data in
Figure 3(a). This achieves excellent performance for queries with
short intervals, but a lot of space is wasted due to replicated stor-
age of postings that intersect multiple list intervals. In addition,
queries with long time intervals access multiple lists with overlap-
ping contents. In view of this, [5] study the optimization problem
of splitting the lists to a suitable set of sub-lists with or without a
constraint for the space occupied by them.

3. PROBLEM DEFINITION
Problem 1 is a formal definition of the durable top-k query. Al-

though this definition is tailored for temporal keyword search in
archives of documents with versions, we can adapt it (and the so-
lutions proposed in this paper) to apply on any type of data, with
different versions along arbitrary dimensions (e.g., document ver-
sions based on location, or blog items grouped by user).

PROBLEM 1. LetD be a set ofn documents. Eachd ∈ D has
a number of versions, and each versionvd of d is characterized
by a validity time interval[vd.tb, vd.te). The time intervals of two
different versions of the same document may not overlap. Letq be
a query, consisting by a set of keywordsq.W and a time interval
[q.tb, q.te). For a timestampt ∈ [q.tb, q.te), the relevance of a
documentd ∈ D to q is defined by applying an IR relevance model
on the versionvd of d for which t ∈ [vd.tb, vd.te), usingq.W .
The relevance is zero if no such version exists. Given an integer
k, 0 < k < n and a realr, 0 < r ≤ 1, the durable top-k search
problem finds alld ∈ D, such thatd appears in the set of top-k
most relevant documents toq within [q.tb, q.te) for time at least
r × (q.te − q.tb).

4. PRELIMINARY SOLUTIONS
In this section, we describe some direct adaptations of NRA for

solving the durable top-k search problem. For the ease of discus-
sion, we assume that all postings for each keyword are sorted by
their scores and materialized into a single inverted list. The use of
multiple inverted lists per keyword (as proposed in [5]) is orthogo-
nal to the presented solutions and will be discussed later.

4.1 Brute-force method
Consider a queryq with a set of keywordsW and a time interval

q.λ = [q.tb, q.te). Let Λ denote a set of sub-intervals such that (i)
no two intervals inΛ overlap, (ii) their union equals[q.tb, q.te) and
(iii) each document version either fully covers or does not overlap
with any sub-interval inΛ. Then, finding the top-k results in each
sub-interval suffices to compute the durable top-k result. Condi-
tion (iii) ensures the uniqueness of each document in a sub-interval
and conditions (i) and (ii) guarantee completeness. After collecting
the top-k results from all sub-intervals, we intersect them, while
measuring for each documentd the total temporal length of the
sub-intervals whered is in the top-k result. If this length is at least
r × (te − tb), d is a durable top-k result.

Algorithm 2 is a greedy method that findsΛ incrementally, by
accessing the postings that intersect withq.λ. Initially, we setΛ =
q.λ = [q.tb, q.te). For each postingp with interval [p.tb, p.te),
we find the subsetΛ′ of Λ such that all intervals inΛ′ intersectp
(line 1). If the begin/end timestampp.t of p is inside of an interval
[tb, te) in Λ′, this interval is split and replaced by the two intervals
[tb, p.t) and [p.t, te) (line 3). We can easily show that this algo-
rithm computes a unique correct set of (max-length) sub-intervals
that satisfy conditions (i), (ii), and (iii). We can then compute the
top-k results within each interval and the durable top-k result.

Algorithm 2 Interval Set Maintenance
maintainIS(interval set Λ, new interval [p.tb, p.te))

1: Λ′ is a subset ofΛ that each interval intersects with[p.tb, p.te);
2: if p.tb or p.te is inside a[tb, te) ∈ Λ′ then
3: replace[tb, te) by two sub-intervals;

For example, assume that our query contains 1 keyword and the
inverted list contains four postingsa, b, c, andd, as shown in Figure
4. Postingsa splits the entire intervalλ0 = [q.tb, q.te) into twoλ1

andλ2 (λ2 is the union ofλ3 andλ4, shown in the figure). Next,
postingb intersects intervalλ2 (i.e., Λ′ = {λ2}). λ3 andλ4 are
created sinceb.tb is inside ofλ2. Next, postingc intersects intervals
λ1, λ3, andλ4. The starting point ofc is not insideλ1, soλ1 is
not split to sub-intervals. On the other hand, the endpoint ofc is
contained inλ4, soλ4 is replaced by new sub-intervalsλ5 andλ6

(see Figure 4(b)). In turn, postingd splitsλ3 andλ5, ending with
6 sub-intervals in total (not shown in the figure).

1

time

s
c
o
r
e

a b

4

c

d

3

(a) after 2 accesses

c

1

time

s
c
o
r
e

a

3

b

5 6

d

(b) after 3 accesses

Figure 4: Example of intervals maintenance

4.2 Dynamic Adaptive Algorithm
The brute-force solution is inefficient since (i) it reads all post-

ings that intersect the query interval to create the sub-intervals set
and (ii) many sub-intervals are created, which require a large num-
ber of top-k queries. For instance, we have 6 sub-intervals after
we process 4 postings in Figure 4, meaning that 6 top-k searches
should be executed before we can collect the durable top-k result.
Note that some sub-intervals need not be computed at all ifk is
small. For instance, ifk = 1, we can terminate our search after
postingc is read since we can find the top-1 result for each time in-
terval already. As shown by Algorithm 2, the sub-intervals can be
maintained incrementally. Thus, we can maintain the sub-intervals
and execute top-k aggregation simultaneously.

For each sub-interval, NRA is invoked to compute the top-k re-
sult. According to Algorithm 1, we have to keep the lower bound
γlb

o and the upper boundγub
o for every objecto seen so far. LetΓlb

λ

andΓub
λ be the set of lower and upper bounds in intervalλ, respec-

tively. The usage of these bound sets will be discussed shortly.

Algorithm 3 Dynamic Adaptive Algorithm
DAA(sorted posting listsL)

1: p :=access the next posting fromL;
2: maintainIS(Λ, [p.tb, p.te));
3: for all newλ ∈ Λ do
4: if λ is finalized, goto line 3;
5: create or duplicateΓlb andΓub for intervalλ
6: if intersects(λ, [p.tb, p.te)) then
7: feedp to NRA for λ usingΓlb andΓub;
8: if NRA returns top-k result, markλ asfinalized;
9: if all λ ∈ Λ arefinalizedthen

10: compute durable top-k result;
11: else
12: goto Line 1;

According to Algorithm 2, if more postings are read from the
lists, more sub-intervals are created. Therefore, we propose a tech-
nique, called Dynamic Adaptive Algorithm (DAA), to terminate
our search as early as possible (see Algorithm 3). This is possible,
if the postings in the lists are sorted in descending score order. First,
we access the postings sequentially and the sub-intervals are main-
tained by Algorithm 2. If an existing interval is split into two new
ones, because it contains one endpoint of the currently processed
postingp, then for each of the two new intervalsλ, Γlb

λ andΓub
λ are

replicated from the old split interval.

After the setsΓlb
λ andΓub

λ are created for the new intervalλ, we
use the current postingp.d as the next input to NRA to update the
bounds and the current top-k results.2 If NRA confirms the top-k
result inλ, we mark intervalλ as “finalized”. That is, no further
splits are performed toλ, if new postings are found to intersect it
later. If all intervals are marked asfinalized, we merge their top-k
results to compute the durable top-k set. Otherwise, we get the next
posting from the inverted lists.

IL1 IL2

d1, 0.8, [1,5) d2, 0.9, [5,8)
d3, 0.5, [1,3) d1, 0.8, [1,5)

... ...

0.8

3
time

41 5 6 7 80 2

1.0

2.0

s
c
o
r
e u=1.8

1

(a) after1st access

0.8

3
time

41 5 6 7 80 2

1.0

2.0

0.9

s
c
o
r
e

u=1.7 u=1.7

1 2

(b) after2nd access

3

0.8

3
time

41 5 6 7 80 2

1.0

2.0
2

s
c
o
r
e

4

0.8 0.9

u=1.4 u=1.4u=1.4

(c) after3rd access

3

1.6

3
time

41 5 6 7 80 2

1.0

2.0
2

s
c
o
r
e

4

1.6

0.9

u=1.3 u=1.3u=1.3

(d) after4th access

Figure 5: An example of Dynamic Adaptive Algorithm

Figure 5 demonstrates the Dynamic Adaptive Algorithm. The
postings of two keywords stored into two inverted listsIL1 and
IL2, as shown at the top of the figure. Assume thatk = 1. After
the first access,Γlb

λ1
andΓub

λ1
are created.d1 is currently in the top-

k setWk of λ1 andu is 1.8 inλ1 (note thatu is the highest upper
bound score of anyo /∈ Wk). Next, we getd2 from IL2 and we
createΓlb

λ2
andΓub

λ2
. u in both intervals are 1.7 now. In order to

improve readability, we remove all data which are not inWk in the
subsequent figures. After the third access (d3 from IL1), λ1 is split
into two intervalsλ3 andλ4 and theirΓub andΓlb are duplicated
from λ1. u in λ3 is 1.4 sinced3 has been seen in this interval with
the upper boundγub

d3
(0.5+0.9=1.4);u in other intervals is also 1.4,

which is the highest aggregate score from all lists. Finally, after
the fourth access, we update thed1’s γlb to 1.6 inλ3 andλ4. In
addition,u becomes 1.3 in all intervals. According to the NRA
termination condition, intervalsλ3 andλ4 returnd1 as their top-1
result.

5. THE BAND APPROACH
During the execution of DAA, manyΓlb andΓub sets are cre-

ated. These affect negatively not only the execution time but also
the memory usage. In this section, we introduce a new method that
solves the durable top-k problem using the shared execution para-
digm, based on the observation that two neighbor intervals usually
have similar top-k results. In a nutshell, our method performs simi-
lar splits as DAA, however, we do not maintainΓlb andΓub at each
sub-interval. Instead, we maintain (in a compressed representation)
for eachi, 1 ≤ i ≤ k, the band (i.e., boundary) for thei-th worst-
case score at each time unit in the query interval. In addition, we

2In case of a split, the new posting is fed to only one of the two
intervals: the one that intersects the posting.

maintain in acandidates bandthe best-case score of all objects cur-
rently not in the top-k set for each time unit. If the candidates band
drops below thek-th band at all time units, we can guarantee that
the top-k results are found at all timestamps and we can terminate.

5.1 Top Bands Computation
First, we define the concept of top-k band. Consider the finest

granularity unit of the time dimension (e.g., days) and assume that
postingp spansu units of this granularity (i.e., the time interval
[p.ts, p.te) includesu basic time units). Then,p can be modeled
as a sequence ofu postingsp = τ1

p , τ2
p , . . . , τu

p , each spanning
a single time unit. Note that the other attributes (i.e., document
id and score) are common to all unit-postings ofp. Assuming a
representation, where each posting is replaced by its unit-postings,
Definition 1 formally defines the top-k band.

DEFINITION 1. The top-k band is a sequence ofτ t
p unit-postings,

one for each time unitt in [q.ts, q.te), whereτ t
p is the unit-posting

among all those valid at timet with thek-th highest score.

time

h
j

b

e

a

gf
d

c
1.0

i

(a) 10 Postings

1
c

1
d

1
e

time

1.0
1
a

2
c

1
g 1

h

3
c

2
d

2
e

2
h

1
b

top-1 band top-2 band

(b) top-1 and top-2 bands

Figure 6: An example of top-k bands

Figure 6 shows an example of top-k bands. Consider a keyword
with 10 postings (a to j), as shown in Figure 6(a). The top-1 and
top-2 bands are shown in Figure 6(b). The postings that are not re-
lated to the top-1 and top-2 bands are removed. For simplicity, we
overload the notationτ i

p to denote segments of consecutive unit-
postings from the same postingp and usei to distinguish between
segments from the same postingp. The top-1 band consists of 3
segments{τ1

a , τ2
c , τ1

b }. Note thatτ1
a andτ1

b are the same as post-
ingsa andb respectively since there is no other segment better than
a or b in their valid intervals. Postingc is decomposed into three
segments and onlyτ2

c appears on the top-1 band. By removing all
segments in the top-1 band (i.e.,τ1

a , τ2
c , andτ1

b), the top-2 band
becomes the top-1 band of the remaining segments. This important
property helps us to maintain the bands iteratively.

Algorithm 4 shows a recursive method that maintains the set of
top-k bands for single keyword queries (multiple keywords queries
will be discussed shortly).T top

i denotes the top-i band and it is
modeled by a set of segments. LetT ins be a set of new segments
that should be used to update the top bands. Eachτ ∈ T ins is
decomposed into a set of small segmentsτ = {τ1 ∪ ... ∪ τn},
according toτ ’s intersections withT top

i . For instance, in Figure 7,
postingd is decomposed into 3 segments{τ1

d , τ2
d , τ3

d}.
After we collect the set of segments{τ1, ..., τn}, we compare

them with the top-i bandT top
i one at a time. Ifτ i does not intersect

with any segment inT top
i (line 5), τ i is inserted intoT top

i since it
fills a current gap in the top-i band. Suppose that there is aτ top

intersecting withτ i at t. If the score ofτ top is not worse than the
score ofτ i, τ i is moved toT next to be processed in the next band
(line 7). For instance,τ1

d in Figure 7(b) will be processed in the
top-2 band. Ifτ i has a higher score thanτ top, we decomposeτ top

at timet, which is the endpoint ofτ i insideτ top. Consider again
the example of Figure 7(b). Segmentτ1

c intersects withτ3
d and its

score is lower than the score ofτ3
d . Therefore, it is decomposed into

{τ2
c , τ3

c }. τ3
d andτ2

c have the same validity interval (τ3
d .λ = τ2

c .λ).

Algorithm 4 Top-k Bands Insertion

insertBand(top-i band T top
i , set of segmentsT ins, int k)

1: setT next := ∅
2: for τ ∈ T ins do
3: for each τ top ∈ T top

i , decomposeτ if τ ∩ τ top 6= ∅, such thatτ
is decomposed into{τ1, ..., τn}

4: for eachτ i do
5: if not intersect(τ i,τ top) then
6: insert intoT top

i

7: else ifτ top.s ≥ τ i.s then
8: insertτ i into T next;
9: else ⊲ intersect att

10: uset to decomposeτ top into τ top1 andτ top2

11: # assuming thatτ top1.λ = τ i.λ
12: replaceτ top by τ top2 andτ i

13: insertτ top1 into T next;
14: T ins := T next;
15: if i < k then
16: return insertBand(T top

i+1, T ins, k);
17: else
18: return T ins;

Based on their scores,τ3
d andτ3

c are inserted into the top-1 band
andτ2

c is stored inT next to be processed at the next call of the
algorithm (line 16), which computes the next band.

1

a

1

b

1

c

d

(a) insertion ofd

1

a

1

b

2

c

2

d

1

d

3

c

3

d

(b) new top-1 band

Figure 7: Insertion in top-k band

This process guarantees that the top-k results at all timestamps
are equivalent to the results of the top bands. Once we collect all
top bands, we process to compute the durable top-k result.

So far, we have discussed how to maintain the top bands for sin-
gle keyword queries. If we have multiple keywords, we read the
postings from each keyword (in parallel) and insert each of them
into the top bands using Algorithm 4. If the document version in
the current posting has been seen at some other keyword list before
and it is in the top-i band, we remove it from the band and reinsert
it considering its updated relevance score (which is increased com-
pared to its previous partial score). Note that the removal process
does not require to access any data outside the top-k bands. More
precisely, this does not require any change at the top-(i + 1) to
top-k bands since the relevance score is only increasing.

5.2 Candidate Band Computation
The simplest way to compute top-k bands is to read all post-

ings from each keyword once and exhaustively, while updating the
bands at each reading. However, we would like to terminate the
accesses to the inverted lists as early as possible. Therefore, we in-
vestigate an appropriate access plan and termination condition for
our band approach. If we access the postings in decreasing order of
their scores (i.e., like DAA), a termination condition can be derived
with the help of a typical top-k aggregation approach. Before we
discuss our solution, we define the concepts ofcandidate container
C andcandidate bandin Definitions 2 and 3.

DEFINITION 2. The candidate containerC stores the segments
of document versions which have been seen so far but they are not
included in top bands.

DEFINITION 3. The candidate band contains the segments that
are the top-1 band of the candidate containerC.

Note that the upper boundu in NRA is computed by the highest
possible scoresγub

o from the objects that are not inWk (whereWk

contains thek objects with the highestγlb
o). Similarly, we store all

segments that are not in our top bands to our candidate container
C. For each segmentτ i in C, its score is set to be the upper bound
γub of τ i. We compute a top-1 band fromC and this is ourcan-
didate band. After every access, if we have the top-k band and the
candidate band, it is possible to terminate retrieval if the conditions
of Lemma 1 are satisfied for every timestamp in the query interval.

LEMMA 1. The top-k result at timestampt has been stored in
the top bands if and only if the score of thek-th band at timet is
not worse than (1) the score of the candidate bandC at timet and
(2) the sumΨ of the last seen scores at all lists. Condition (2) is
checked if there is no element inC that intersectst.

Algorithm 5 shows the pseudocode of our band approach. We
use a set operation ‘≥∀λ’ to denote comparisons over a time inter-
val λ. For instance,T top ≥∀λ T cand means that at any timestamp
t in λ the segments inT top that are valid att are not worse than the
segments inT cand that are valid att. Similarly, T top ≥∀λ Ψ de-
notes that the segments inT top are not worse than the line defined
by Ψ. For the current posting, if a segment has been inserted into
the top bands or the candidate container, we remove it and reinsert
it with an updated score (lines 2-4). Then, subroutineinsertBand
is called (Algorithm 4), which updates the top bands incrementally
by insertingT ins and returns the already-seen set of segmentsT ret

that are outside the top bands (line 5). Next, we insert all segments
in T ret into the candidate containerC and compute the candidate
band (lines 6-9). Finally, if all timestamps meet the conditions of
Lemma 1, we terminate our search and proceed to find the durable
top-k result using the top bands.

Algorithm 5 Band Based Algorithm
BBA(sorted listsL)

1: p :=access the next posting fromL;
2: for all τ i ∈ p do
3: removeτ i from top band / candidate container;
4: setτ i.s to itsγlb and insert intoT ins; ⊲ use lower bound
5: T ret:=insertBand(T top

1 , T ins, k); ⊲ top bands
6: for all τ j ∈ T ret do
7: insertτj into intoC;
8: setτj .s to itsγub, ∀τj ∈ C; ⊲ use upper bound
9: T cand

1 :=compute top-1 band fromC; ⊲ candidate band

10: if T top
k

≥∀q.λ T cand
1 andT top

k
≥∀q.λ Ψ then

11: check durable top-k result;
12: else
13: goto Line 1;

We use the data from Figure 5 to demonstrate our band approach,
for k = 1. The first two postings (in round-robin order from the
lists) are inserted into the top-1 band using line 5 andΨ becomes
0.8 + 0.9 = 1.7. When we insert the third posting, it fails to enter
the top-1 band since its lower boundγlb = 0.5 is not better than
the γlb = 0.8 of τ1

d1
. Therefore, subroutineinsertBandreturns

{τ1
d3
}. After that, we insert it into the candidate containerC =

{τ1
d3
}, and we setτ1

d3
’s score to upper boundγub = 0.5 + 0.9 =

1.4. The candidate band is then computed, as shown in Figure
8(c). When the fourth posting is read, we removeτ1

d1
from the

top-1 band since the score ofτ1
d1

is updated by this access. We
update its score to0.8 + 0.8 = 1.6 and reinsert it into the top

bands. Next, we recompute our candidate band, as the score ofτ1
d3

becomes0.5 + 0.8 = 1.3. Note that top-1 result in interval[1, 5)
has been confirmed since the conditions (T top ≥[1,5) T cand and
T top ≥[1,5) Ψ) become true. The algorithm will terminate later,
after the interval[5, 8) is confirmed.

time

2.0

1

d1

=1.8

top-1 band cand band

(a) after1st access

time

2.0

1

d1

1

d2

=1.7

top-1 band cand band

(b) after2nd access

time

2.0

1

d2

1

d3

1

d1

=1.4

top-1 band cand band

(c) after3rd access

time

2.0

1

d2

1

d3

1

d1

=1.3

top-1 band cand band

(d) after4th access

Figure 8: Examples of Band Based Algorithm

5.3 Optimizations
Note that the main difference between thetop bandsand thecan-

didate bandis that the lower boundγlb is used in thetop bandsbut
we use the upper boundγub in thecandidate band. Unlike the seg-
ments intop bands, the entirecandidate bandcould be changed
when a new posting is read from a list due to the changes of upper
bounds. Consequently, thecandidate bandis recomputed at each
loop of Algorithm 5. The recomputation of thecandidate band
might be very expensive when containerC becomes very large. To
reduce this cost, we use a powerset-based approach to support in-
cremental updates at thecandidate band. In addition, we propose a
grid-based index to manage the data in the candidate container.

5.3.1 Lattice Based Containers
Similar to LARA [18], we create a set of containersCx, one for

each combination of them inputs{L1, ..., Lm} (recall that each
input is the inverted list of a keyword). For each segmentτ i in C,
τ i is stored intoCx if τ i has been seen exactly in thex inputs. The
practical difference betweenC and the collection ofCx’s is that
we maintain the lower boundsγlb of the segments in eachCx, as
opposed to maintaining the upper bounds of all segments inC.

As for the top bands, the top-1 bandT Cx
1 for eachCx can be

computed incrementally. That is, when we insert a new segmentτ i

into Cx, if this segment has been seen by other lists, we remove it
from its previous containerCy andT

Cy

1 . (Note that after the re-
moval of τ i from Cy, Cy should be updated appropriately. This
will be discussed in next subsection.) Finally, we insertτ i with an
updated scoreγlb into Cx and call subroutineinsertBandto main-
tain the top-1 band ofCx.

Now, let us see how we can derive thecandidate bandin C and
use it in BBA. This can be easily done by merging the candidate
bands of allCx’s. We concurrently traverse these bands in time-
order and for eachCx we add to the score of its top-band segment
and the sum of the last scores from the listsLd whered /∈ x. Then
we dynamically derive an upper bound for the segments ofCx.
The dynamically derived upper bounds for eachCx are compared
to compute the globally highest upper bound in allCx’s at each
timestamp. This is equivalent to thecandidate bandof C.

5.3.2 Grid-Based Segments Management
If we do not manage the segments inCx properly, we might

have to access all segments inCx each time a segment fromCx

has to be moved to another candidate set (because it has been seen
at a new input) and the candidate band forCx has to be updated.
To perform this operation efficiently, we use a grid index to divide
the two dimensional time/score space for eachCx into cells. A
segment is assigned to a cell if it intersects it. An example is shown
in Figure 9(a). For instance, segmentτ1

d3 is inserted into 6 cells of
the first row. If a segmentτ is deleted fromCx, it is removed from
the corresponding cells. Ifτ was part ofCx’s top band, we must
seek for a replacement in the band. To do this, we first check the
cells that intersectτ , if they are empty the cells below, etc.

time

s
c
o
r
e 1

d3 1

d1

(a) Rectangle Grid

time

s
c
o
r
e 1

d3 1

d1

(b) Striped Grid

Figure 9: Examples of different Grid Indices

In our implementation, in order to avoid the replication of seg-
ments to multiple cells, we use a grid with only horizontal stripes
such as that shown in Figure 9(b). As segments are horizontal, no
segment is replicated. Updates are also more efficient in this case.
In order to support fast search during top band updates atCx, we
order the segments within each cell in order to locate fast the ones
that overlap the removed segment.

5.4 Optimized Band Based Algorithm
An optimized version of BBA, which includes all optimizations

of Section 5.3, is shown in Algorithm 6. The main changes from
BBA to OBBA are lines 3-5 and 9-12. Once a segmentτ i is re-
moved from candidate containerCy, we access the corresponding
grid cell of Cy to update its band (lines 4-5). Line 11 calls sub-
routine insertBandto compute the top-1 band ofCx, whereτ i is
inserted. Finally, the complete candidate band is computed by the
set of candidate bands (line 12).

Algorithm 6 Optimized Band Based Algorithm
OBBA(sorted listsL)

1: p :=access the next posting fromLd;
2: for all τ i ∈ p do
3: removeτ i from top band / candidate band;
4: if τ i is in candidate containerCy then
5: removeτ i and replace interval ofτ i usingCy grid;

6: setτ i.s to itsγlb and insert intoT ins; ⊲ use lower bound
7: T ret:=insertBand(T top

1 , T ins, k); ⊲ top bands
8: for all τ j ∈ T ret do
9: setτj .s to itsγlb; ⊲ use lower bound

10: insertτj into intoCx;
11: insertBand(T Cx

1 , T ret, 1); ⊲ top-1 band ofCx;
12: computeT cand

1 using{T C1 , ..., T C2m }; ⊲ candidate band
13: same as lines 10-13 of Algorithm 5;

6. POSTINGS MATERIALIZATION
Typical document archives cover a long period (e.g., 10 years),

while user queries may apply to a relatively short period only (e.g.,
June 2005). If we use a single inverted list for each keyword, we
might have to scan a large number of irrelevant postings to the
query interval. To minimize the number of redundant accesses,
in this section, we propose a specially designed R-tree for materi-
alizing the postings in each inverted list, which outperforms other

typical indexing techniques as shown in our experiments. In ad-
dition, we propose a technique that decomposes a durable top-k
query into multiple simple top-k queries and a simpler durable top-
k query. This decomposition can further improve performance.

6.1 Transformed R-tree
There are different possible approaches for organizing the con-

tents of an inverted list in order to minimize the access of postings
which are irrelevant to the query interval, and still allow access
in decreasing score order for the relevant ones (to facilitate top-k
aggregation). These approaches include adaptations of interval in-
dexes, such as the interval tree [9], the segment tree [9], and the
R-tree [12], and data duplication with multiple inverted lists [5].

In this section, we propose an adaptation of the R-tree for this
indexing problem. In Section 7, we compare our proposal to al-
ternative indexes, including the proposal of [5]. The R-tree is a
classic spatial access method, which divides the space with hierar-
chically nested, possibly overlapping, minimum bounding rectan-
gles (MBRs). Figure 10(a) shows an example to build a R-tree in-
dex for an inverted list containing time-relevant document versions.
We have 4 leaf nodes (m1 −m4), 2 intermediate nodes (M1, M2),
and a root node (M) in this tree and each MBR looks like a flat
rectangle. Note that it is hard to avoid the high degree of over-
lapping in the R-tree when we have line segments in a 2D space
(time-score). Because of the overlapping, there is higher chance to
havefalse hits3, which degrade performance. For instance, assume
that we have a query, as shown in the shaded area of Figure 2(a).
This query intersects all leaf MBRs of the tree, meaning that all
postings have to be examined in this example, although only 60%
of them are actually relevant to the query interval.

d

f

b

g

a

ij

c

h

e

3
time

s
c
o
r
e

41 5 6 7 80 2

0.5

1.0

m4

m2

m3

m1
M1

M2

M

3 41 5 6 7 80 2

(a) Raw data and classic R-tree

m5

e

d

j

m4m3

m1

m2

M2

M1

M

(6,3)

i

a

f

h

b

c

g

(b) Transformed R-tree

Figure 10: Different R-tree representations

Since grouping line segments is not effective for time-travel queries,
we transform our data into a begin/endpoint space that supports bet-
ter grouping. Now, point is the basic indexed unit, making grouping
of data to nodes more effective. For each posting, we use a point
(tb, te) to represent it in a 2D space. We will explain how to handle
the score ordering shortly. Figure 10(b) shows an example after the
transformation. For instance, postinga with interval[5, 7) is repre-
sented by point(5, 7). After the transformation, our query result is
located in the shaded area. Although the shaded area is larger than
the one in Figure 10(a), it intersects only 6 nodes (M , M1, M2,
m1, m3, andm5) and there are fewer false hits.

To facilitate access of the postings that intersect the query inter-
val in decreasing score order (as required by our aggregation algo-
rithm), we pre-compute an aggregate scoresmax for each MBR,
wheresmax stores the maximum score for all child MBRs. In ad-
dition, if the MBR is a leaf node,smax stores the maximum score
3a false hitis an accessed posting that does not intersect the query
interval

of the postings inside. This scheme supports prioritized access of
the MBRs that intersect the query intervalq.λ by decreasing order
of their aggregate scores. Starting from the root of the tree, each
entry that intersectsq.λ is inserted to a priority queue. The entry
with the highest score is deheaped and the process is repeated for
its children. When a posting (i.e., leaf node entry) is deheaped,
we know that this corresponds to the next posting that intersects
q.λ and has the highest score among all remaining such postings.
Thus, the transformed R-tree elegantly combines temporal search
based onq.λ and decreasing-score access order of the results.

6.2 A Partitioning-Based Approach
In this section, we investigate a query decomposition technique

that further improves the performance of the band approach using
the transformed R-tree. This technique aims at reducing the num-
ber of band maintenance operations. Recall that the exact score of a
document versiondi at timet is unknown until it has been seen|L|
times from the inverted lists, where|L| is the number of keywords
in the query. Assume thatτ i is the unit posting ofdi at timestamp
t. For each new access ofdi at time t, τ i is first removed from
existing band structures (e.g., top bands/candidate band/candidate
container) and then reinserted into the band structure with an up-
dated score. Suppose that there is a method to determine the exact
score ofτ i before the first insertion; thenτ i is processed only one
time instead of|L| times. Based on this idea, we could further
improve the performance of the proposed algorithms.

Looking at the postings distribution in the transformed R-tree,
we observe that the order of some postings can be computed easily
using a simple NRA query. Figure 11(a) shows an example that de-
composes the space, based on query interval[3, 6), into four areas:
I, II, III, andVI. Note that areaI contains all postings thatfully
cover the entire query interval, which arec andd in our example.

IV

III

II

I

(6,3)

d

j

i

a

f

b

c

g

(3,6)

e

h

(a) Query decomposition

2.0
1

d1

top-1 band cand band

Next result in area I

d4 1.3 [0,8)

Next posting in -I

d5 0.7 [0,5)

3 time41 5 6 7 80 2

R1

d1 0.8 [1,5)

d3 0.5 [1,3)

d5 0.4 [1,7)

R2

d2 0.9 [5,8)

d1 0.8 [1,5)

d5 0.7 [1,7)

R1

d4 0.7 [0,8)

d7 0.3 [0,8)

R2

d40.6 [0,8)

d8 0 [0,8)

1.0

=1.51

d4

2

d4

1

d2

(b) Next access

Figure 11: Example of partitioning-based approach

Our partitioning-based approach excludes areaI from the durable
query; we only issue a constrained NRA query to compute the top-
k result in this area. The results of this query should be merged
with the results of the band approach in the remaining space. A
trivial way to do this is to compute the exact top-k result of the
constrained NRA, and then merge it with thepartial durable top-
k search in area∆ − I, where∆ represents the entire query area.
While this approach guarantees correctness, we may have poor per-
formance as more postings may be accessed compared to a single
durable query in the whole area. A better approach is to integrate
the constrained NRA query with our band maintenance algorithm.
In order to support such a partitioning-based approach, we revise
Algorithm 6, based on the following lines:

New accessing approach:
Instead of reading the next posting from the inverted lists

(as in line 1 of Algorithm 6), it is read either from (i) the
transformed R-tree excluding areaI or (ii) the next result of
the constrained NRA (using incremental search).

Choosing the maximum last seen score:
Note that we have two sets of last seen scores. For each
keyword, the maximum last seen score is chosen from area
∆ − I or areaI.

Revised termination condition :
Corollary 1 is an extended version of Lemma 1.

COROLLARY 1. The top-k result at timestampt is that
stored in the top bands if and only if the score of thek-th
band at timet is not worse than items (1) and (2) in Lemma
1, and (3) the next result from the constrained NRA.

With the above modifications, we can access the posting arbitrarily
from (i) or (ii) without affecting the correctness. In order to mini-
mize the number of accesses, in our implementation, we define this
order based on the best score (e.g.,Ψ) of the partial durable query
and the next element score in the constrained NRA.

We enrich the example in Figure 8(d) with more data to illustrate
the partitioning-based approach. Note that the last seen score ofL1

(L2) is 0.7 = max{0.5, 0.7} (0.8 = max{0.8, 0.6}). Currently,
Ψ is set to 1.5(=0.7+0.8). According to the information in Figure
11(b), we know that the next posting isd4 with score 1.3 and inter-
val [0, 8), which is computed by the constrained NRA. When we
insert this posting into the top bands, it is split into two unit postings
{τ1

d4
, τ2

d4
} with intervals[0, 5) and[5, 8) respectively.τ1

d4
fails to

enter the top-1 band butτ2
d4

successes to replaceτ1
d2

and enters the
top-1 band. Therefore, subroutineinsertBandreturns{τ1

d4
, τ1

d2
}.

In the next loop, the constrained NRA is called to find the next top
posting in areaI. Suppose that the constrained NRA only reads
one posting from each index and the next posting isd7 in area
I. The last seen score ofL1 (L2) becomes0.5 = max{0.5, 0.3}
(0.8 = max{0.8, 0}) andΨ is updated to 1.3. After this update,
we can terminate the search since now our top band is not worse
than (1)Ψ, (2) the candidate band, and (3) the next result of the
constrained NRA (see Corollary 1). Note thatd4 is inserted only
once into the top bands while it would be inserted twice using the
original band approach.

The partitioning-based approach can be extended to further re-
duce the area where the band approach is applied. Note that area
II (III) contains all postings that intersectq.tb (q.te) but not in-
tersectq.te (q.tb). Based on our observation for areaI, we can
also add two constrained NRA in areasII andIII. Finally, we
decompose the original durable query into three constrained NRA
queries plus one partial durable query only in areaIV.

7. EXPERIMENTS
In this section we empirically evaluate the performance of our

algorithms on the Wikipedia revision history, which is freely avail-
able atwww.wikipedia.org. The total size of the dataset used in our
experiments is 0.7 TBytes, containing the full editing history from
January 2001 to December 2005 of the entire English Wikipedia.
The compression technique proposed in [5] is used to group simi-
lar consecutive versions of the same document, reducing the total
size of the data to 0.15 TBytes. The resulting dataset contains a
total of 892,255 documents (i.e., topics) with 13,976,915 versions,
so there is a mean of 15.67 versions per document and a standard
deviation of 59.18. Okapi BM25 [20] is used to normalize the term
frequency with the length normalization parameterb = 1.2 and the

tf-saturation parameterk1 = 0.75. Inverted lists store postings of
the form [doc-id, begin-time, end-time, score].

We selected the most frequent keyword queries (of 2 to 5 key-
words) from a search engine log that yield a Wikipedia article as a
web-search result. This guarantees that all keywords are relevant to
Wikipedia articles. We classify a queryq based on the total number
of postingsV (q) in the inverted lists of its keywordsq.W and the
correlation between the keywords. The correlation is defined by

R(q) =
| ∩wi∈q.W D(wi)|

| ∪wi∈q.W D(wi)|
,

whereD(wi) denotes the set of documents containing keywordwi.
For instance, if a queryq hasV (q) and lowR(q), it is classified as
high volume andlow correlation (‘HL’ class in short). Accord-
ingly, we have 4 classes in total, ‘HH’, ‘HL’, ‘LH’, and ‘LL’. Some
statistics for these classes are shown in Table 2: average number
of postings per keyword, average interval length of postings, av-
erage number of distinct documents in postings of a keyword, and
number of queries|Q| in class. The space of an inverted list (un-
compressed) can be derived by multiplying the number of postings
with the posting size (16 bytes). In addition, the average number
of postings in class ‘HH’ is 64K, 202K, 713K, and 1.98M in years
2001, 2002, 2003, and 2004 respectively: more versions are created
in more recent years.

In the experiments, we evaluate the scalability of our algorithms,
including DAA (Section 4), BBA (Section 5.2), OBBA (Section
5.3), and the partitioning-based approach (PBA) (Section 6.2). We
use LARA [18] (an optimized implementation of NRA) for NRA
computations in DAA and PBA. Unless otherwise specified, in all
experiments we selected queries from the ‘HH’ class.4 In each ex-
perimental instance, 5 queries from the chosen class are used and
the results are averaged.

Table 2: Statistics of test queries in the four classes
class avg. postings perw |Q| avg. length avg. doc

HH 2.95M 61 45.79 days 41370.34
HL 3.32M 42 53.12 days 44873.87
LH 0.92M 39 36.45 days 13087.85
LL 0.77M 58 46.35 days 17117.49

All methods were implemented in C++ and the experiments were
performed on an Intel Core2Duo 2.66GHz CPU machine with 4
GBytes memory, running on Ubuntu 8.04. Table 3 shows the ranges
of the investigated parameters, and their default values (in bold).
In each experiment, we vary a single parameter while setting the
remaining ones to their default values.

Table 3: Ranges of parameter values
Parameter Values

Number of keywords|W | 2, 3, 4, 5
k 2, 5,10, 20, 40

Query length,λ (in days) 15, 30,60, 120, 240
Query begin time,tb (in year) 2001, 2002,2003, 2004

Query class HH , HL , LH, LL

7.1 Difference to Other Queries
First, we study how different the results produced by the durable

top-k query are, compared to simpler aggregation models. Table 4
shows the percentage of the durable top-k results that are not gener-
ated by other aggregate queries. For example, DUR−MIN denotes

4typical searches include correlated keywords; we used keywords
with a large number of postings to evaluate scalability.

Table 4: Result diversity in different queries
|W | 2 3 4 5 2 3 4 5
λ λ = 60 days λ = 120 days

DUR−MIN 10% 24% 6% 4% 26% 32% 12% 14%
DUR−MAX 14% 20% 10% 4% 20% 14% 24% 28%
DUR−AVG 34% 44% 10% 40% 36% 58% 16% 34%

the set difference between the results of the durable and the MIN
aggregate query. The queries are selected from class ‘HH’ (we
found similar results when using other query classes) and we tested
two query interval values (λ). The query length|W | varies from 2
to 5 keywords. There is a significant difference in the durable top-k
results, compared to other models and the difference increases with
λ, as larger intervals enclose more document versions. This shows
that the durable query provides different and potentially more in-
teresting results than simpler aggregation models.

7.2 Efficiency and Scalability
We now compare the durable top-k algorithms in terms of ef-

ficiency and scalability. Figure 12 shows the response time and
peak memory usage with respect to the number of keywords|W |,
when keyword queries are selected from two classes: ‘HH’ and
‘HL’. The optimized band approach (OBBA) always outperforms
the other two methods, being 1-2 order of magnitudes faster in
most cases. All methods become more expensive when there are
more keywords in the query. This is consistent to the observations
in [18]. All methods perform better for queries in class ‘HH’ than
queries in class ‘HL’, since the correlation between keywords in
class ‘HH’ is high; document versions of high scores in all key-
words are found faster, assisting early termination of search.

1.0e-2

1.0e-1

1.0e0

1.0e1

1.0e2

1.0e3

1.0e4

 2 3 4

R
es

po
ns

e
tim

e
(s

ec
)

Number of keywords

DAA
BBA

OBBA

(a) Response time ‘HH’

1.0e-1

1.0e0

1.0e1

1.0e2

1.0e3

1.0e4

1.0e5

 2 3 4

R
es

po
ns

e
tim

e
(s

ec
)

Number of keywords

DAA
BBA

OBBA

(b) Response time ‘HL’

 0

 100

 200

 300

 400

 500

 600

 700

 2 3 4

P
ea

k
M

em
or

y
(M

B
yt

es
)

Number of keywords

DAA
OBBA

(c) Peak memory ‘HH’

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 2 3 4

P
ea

k
M

em
or

y
(M

B
yt

es
)

Number of keywords

DAA
OBBA

(d) Peak memory ‘HL’

Figure 12: Effect of |W |

Note that we skipped the case|W | = 5 in Fig. 12. The reason
is that DAA in this case consumes the physical memory of our sys-
tem. In Figures 12(c) and 12(d), we show the peak memory usage
of the methods during the query execution. DAA is more sensitive
to the number of keywords in the queries than the band approach.
The reason is that it runsO(m) NRA top-k queries simultaneously,
wherem is equal to the number of postings that have been read.
Each query consumesO(m) space in the worst case [18], therefore
the space requirements of DAA are huge. On the other hand, the
band approach stores onlyk top bands, one candidate band, and one

candidate container. The worst case complexity isO(km) which
is much smaller thanO(m2) typically. As shown in Figure 12(d),
DAA uses more than 1.6 GBytes memory. BBA is not included in
this comparison, as it consumes similar memory to OBBA.

The next experiment studies the effect of different parameters in
queries of three keywords, all taken from class ‘HH’. Figure 13(a)
shows the response time of the methods as a function of the query
lengthλ. We use two months as our default query length. Whenλ
becomes larger, all methods become more expensive since we have
more top-k rankings while the query length becomes longer. Again,
OBBA is 1-2 orders of magnitude faster than BBA and DAA. More-
over, OBBA accesses only 0.8%, 1.4%, and 2.4% of all intersected
postings for queries in class ‘HH’ with query lengthλ 60, 120, and
240 days respectively. This shows that our best method can com-
pute the durable top-k result by scanning only a small prefix of
the inverted lists. Figure 13(b) plots the response time as a func-
tion of k. The effect is similar toλ; the size of the top-k ranked
lists increase linearly withk, and the overhead of maintaining the
lists/bands increases proportionally.

Figure 13(c) plots the response time of the methods as a function
of query begin timetb. Performance is sensitive totb, since more
editors joined Wikipedia, creating more versions in the more re-
cent years. For instance, topic “Ryan Giggs” was modified only 28
times in 2004, but it has been modified more than 572 times in this
year up to November. As more versions enter the system, the prob-
lem itself becomes harder. The figure also demonstrates that our
best method OBBA scales better than the other approaches. Fig-
ure 13(d) plots the response time of the methods as a function of
all four query classes. As expected, when correlation increases all
methods perform better, and when volume increases they become
worse. OBBA is 1-3 orders of magnitude faster than BBA and
DAA in all cases. In conclusion, OBBA consistently outperforms
BBA and DAA by a wide margin at all tested cases and it has a low
response time, making it practical in real scenarios.

1.0e-2

1.0e-1

1.0e0

1.0e1

1.0e2

1.0e3

 0 50 100 150 200 250

R
es

po
ns

e
tim

e
(s

ec
)

λ (day)

DAA
BBA

OBBA

(a) Effect ofλ

1.0e-2

1.0e-1

1.0e0

1.0e1

1.0e2

1.0e3

 0 5 10 15 20 25 30 35 40

R
es

po
ns

e
tim

e
(s

ec
)

k

DAA
BBA

OBBA

(b) Effect ofk

OBBA
BBA
DAA

 0.01

 100

 1,000

2001 2002 2003 2004

R
es

po
ns

e
tim

e
(s

ec
)

Query begin time

 1

 0.1

 10

(c) Effect oftb

OBBA
BBA
DAA

 1.0e−2

 1.0e2

 1.0e3

HH HL LH LL

R
es

po
ns

e
tim

e
(s

ec
)

Query class

 1.0e0

 1.0e−1

 1.0e1

(d) Effect of query class

Figure 13: Effect of different system parameters

7.3 Postings Materialization and Partitioning
In the subsequent experiments, we test the effectiveness of the

proposed storage and access scheme for the inverted lists (Section
6), comparing it with alternative approaches. We denote our trans-
formed R-tree indexing scheme by TR-tree, and we include in the
comparison (i) a singleinverted listIL where postings are ordered
by score only andλ is used for post-filtering them, (ii) themultiple
inverted listsMIL approach of [5], and (iii) a simple R-tree, which

indexes the intervals instead of their transformation. The simple R-
tree also stores aggregate score information at the MBRs and uses
the same prioritized traversal as the TR-tree. We do not include the
interval tree and segment tree in our experiments; according to our
findings, they do not scale well since the versioned postings have a
high overlap. Moreover, we split an IL into MIL using the method
proposed by [5] by setting the space budget equal to the size of our
TR-tree.5 OBBA is used as the durable top-k algorithm in all cases.
Our system uses a 4Kb page size. In order to measure the exact I/O
cost, we assume no memory buffer is available.

Figure 14(a) shows the page accesses of the methods as a func-
tion of the number of keywords. We set IL to be a baseline. MIL
accesses fewer pages than IL but is at least 3 times worse than the
TR-tree. The runner-up method R-tree is 2 times worse than the
TR-tree. Moreover, the TR-tree is less sensitive to the number of
keywords. Figure 14(b) shows the page accesses of the methods
as a function of the query lengthλ. The trend is similar to Figure
14(a). The TR-tree accesses at least 3 times fewer pages than the
runner up method. Note that MIL performs better when the query
length fits in one/few small inverted list(s). Therefore, if the query
length is small (15 days or smaller), MIL has higher chances to
achieve good performance.

 0

 10

 20

 30

 40

 50

 60

 70

 2 3 4 5

P
ag

es
 a

cc
es

se
s

(t
ho

us
an

ds
)

Number of keywords

IL
MIL

R-tree
TR-tree

(a) Page accesses of|W |

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 50 100 150 200 250

P
ag

es
 a

cc
es

se
s

(t
ho

us
an

ds
)

λ (day)

IL
MIL

R-tree
TR-tree

(b) Page accesses ofλ

Figure 14: Page accesses of different system parameters

In the last experiment, we compare the direct use of the best
durable top-k algorithm, OBBA, with the partitioning-based ap-
proach (PBA) that decomposes a single durable query into multi-
ple constrained NRA queries plus one partial durable query (Sec-
tion 6.2). Figure 15 demonstrates the effectiveness of this strategy.
As the number of keywords grows, PBA increasingly outperforms
OBBA as shown in Figure 15(a). When|W | = 5, PBA is three
times faster than OBBA. PBA maintains an advantage over OBBA
also in the experiment of Figure 15(b), where the number of key-
words is fixed to 3 and the query intervalλ changes. We note that
although PBA performs better than OBBA in terms of response
time, it may access more pages from the TR-tree. The reason is
that the same tree node may be accessed more than once by the
constrained NRA queries and the partial durable query. In our ex-
periments, PBA accesses around 10%-20% more I/O pages than
OBBA. In practice, this does not affect the overall performance of
PBA since these queries are clustered and the pages that are ac-
cessed more than once are already buffered.

In summary, the proposed TR-tree indexing scheme outperforms
alternative approaches with respect to various parameters and greatly
improves the I/O performance of OBBA. Moreover, it facilitates
the application of the partitioning-based approach, which further
reduces the response time of OBBA.

5The sizes of IL and the TR-tree are very similar, since point data
are handled in a space-efficient way by the MBR structure. MIL
also has similar size to the TR-tree due to the space budget setting.
The simple R-tree occupies 25% more space than other methods
since the postings highly overlap as shown in Figure 10(a).

 0

 0.5

 1

 1.5

 2

 2.5

 2 3 4 5

R
es

po
ns

e
tim

e
(s

ec
)

Number of keywords

OBBA
PBA

(a) Effect of|W |

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 50 100 150 200 250

R
es

po
ns

e
tim

e
(s

ec
)

λ (day)

OBBA
PBA

(b) Effect ofλ

Figure 15: Effect of partitioning-based approach

8. CONCLUSION
We studied the problem of durable top-k search in document

archives. We proposed two algorithms, the first is adapted from
a typical solution; the second is based on a novel shared-execution
idea. We tested our solutions on a large-scale corpus which in-
cludes all versions of Wikipedia pages from 2001 to 2005. Our
experiments show that the fully optimized algorithm outperforms
the simpler alternative by orders of magnitude in terms of response
time, which typically is very low (tens of milliseconds). Our solu-
tion also includes an effective indexing approach for inverted lists,
tailored for durable top-k search and time-travel queries, in general.
A space-partitioning approach can be applied with the help of this
indexing scheme to decompose the durable query into three simple
top-k searches and a durable top-k search in a constrained region.
This approach greatly improves computational performance, espe-
cially for queries with multiple keywords.

As part of our future work, we plan adding special constraints
to durable top-k queries. For instance, an object is acontinuous
durable top-k result if it is consistently in the top-k results in a
continuous time subinterval. Moreover, we plan to devise solutions
that take advantage of the ratior to accelerate search by pruning
the space earlier. In addition, we will study the behavior of our
proposed algorithm on other types of data, such as financial data or
blogs. Finally, we will consider applying ideas from IR techniques,
such as dividing inverted lists into segments based on scores [26],
to further improve the efficiency of OBBA.

Acknowledgments
This work was partially sponsored by Grant HKU 715509E from
Hong Kong RGC. We would like Gerhard Weikum for his fruitful
suggestions and Reza Sherkat for providing and preprocessing the
Internet Archive data.

9. REFERENCES
[1] V. N. Anh and A. Moffat. Pruned query evaluation using

pre-computed impacts. InSIGIR, pages 372–379, 2006.
[2] V. N. Anh and A. Moffat. Pruning strategies for mixed-mode

querying. InCIKM, pages 190–197, 2006.
[3] N. Bansal, F. Chiang, N. Koudas, and F. W. Tompa. Seeking

stable clusters in the blogosphere. InVLDB, pages 806–817,
2007.

[4] N. Bansal and N. Koudas. Blogscope: a system for online
analysis of high volume text streams. InVLDB, pages
1410–1413, 2007.

[5] K. Berberich, S. J. Bedathur, T. Neumann, and G. Weikum.
A time machine for text search. InSIGIR, pages 519–526,
2007.

[6] K. Berberich, S. J. Bedathur, and G. Weikum. Efficient

time-travel on versioned text collections. InBTW, pages
44–63, 2007.

[7] A. Z. Broder, N. Eiron, M. Fontoura, M. Herscovici,
R. Lempel, J. McPherson, R. Qi, and E. J. Shekita. Indexing
shared content in information retrieval systems. InEDBT,
pages 313–330, 2006.

[8] G. M. D. Corso, A. Gulli, and F. Romani. Ranking a stream
of news. InWWW, pages 97–106, New York, NY, USA,
2005. ACM Press.

[9] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars.
Computational Geometry: Algorithms and Applications.
Springer, Berlin, 3rd ed. edition, 2008.

[10] M. Dubinko, R. Kumar, J. Magnani, J. Novak, P. Raghavan,
and A. Tomkins. Visualizing tags over time.ACM Trans.
Web, 1(2):7, 2007.

[11] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware.J. Comput. Syst. Sci.,
66(4):614–656, 2003.

[12] A. Guttman. R-trees: A dynamic index structure for spatial
searching. InSIGMOD Conference, pages 47–57, 1984.

[13] J. He, H. Yan, and T. Suel. Compact full-text indexing of
versioned document collections. InCIKM, pages 415–424,
2009.

[14] M. Herscovici, R. Lempel, and S. Yogev. Efficient indexing
of versioned document sequences. InECIR, pages 76–87,
2007.

[15] J. Kleinberg. Temporal Dynamics of On-Line Information
Streams. In M. Garofalakis, J. Gehrke, and R. Rastogi,
editors,Data Stream Management Processing High-Speed
Data Streams. Springer-Verlag, 2006.

[16] M.-L. Lee, W. Hsu, L. Li, and W. H. Tok. Consistent top-k
queries over time. InDASFAA, pages 51–65, 2009.

[17] X. Li and W. B. Croft. Time-based language models. In
CIKM, pages 469–475, New York, NY, USA, 2003. ACM.

[18] N. Mamoulis, M. L. Yiu, K. H. Cheng, and D. W. Cheung.
Efficient top- aggregation of ranked inputs.ACM Trans.
Database Syst., 32(3):19, 2007.

[19] J. M. Ponte and W. B. Croft. A language modeling approach
to information retrieval. InSIGIR, pages 275–281, New
York, NY, USA, 1998. ACM.

[20] S. E. Robertson and S. Walker. Some simple effective
approximations to the 2-poisson model for probabilistic
weighted retrieval. InSIGIR, pages 232–241, New York, NY,
USA, 1994. Springer-Verlag New York, Inc.

[21] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing:
Local algorithms for document fingerprinting. InSIGMOD
Conference, pages 76–85, 2003.

[22] R. Sherkat and D. Rafiei. On efficiently searching trajectories
and archival data for historical similarities.PVLDB,
1(1):896–908, 2008.

[23] A. Singhal, C. Buckley, and M. Mitra. Pivoted document
length normalization. InSIGIR, pages 21–29, 1996.

[24] K. Sparck Jones. A statistical interpretation of term
specificity and its application in retrieval.Journal of
Documentation, 28(1):11–21, 1972.

[25] J. Zhang and T. Suel. Efficient search in large textual
collections with redundancy. InWWW, pages 411–420, New
York, NY, USA, 2007. ACM.

[26] M. Zhu, S. Shi, M. Li, and J.-R. Wen. Effective top-k
computation with term-proximity support.Inf. Process.
Manage., 45(4):401–412, 2009.

