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ABSTRACT

We propose and study a new ranking problem in versioned data-

bases. Consider a database of versioned objects which have dif-

ferent valid instances along a history (e.g., documents in a web
archive). Durable tog: search finds the set of objects that are con-
sistently in the topk results of a query (e.g., a keyword query)
throughout a given time interval (e.g., from June 2008 to May
2009). Existing work on temporal top-queries mainly focuses

on finding the most representative thpelements within a time
interval. Such methods are not readily applicable to durablé:top-
queries. To address this need, we propose two techniques that com
pute the durable top-result. The first is adapted from the classic
top-k rank aggregation algorithm NRA. The second technique is

based on a shared execution paradigm and is more efficient than

that the search operation refers to a time interval. Then, the dif-
ferent rankings are sensitive to the change of documents during the
query interval. The Internet Archive (www.archive.org) is a ehar
acteristic example of a document archive, where search on differen
versions of documents is possible. A given time interval (e.g, June
2008 — October 2009) and a set of keywords (e.g., “Welsh football
player”) define a sequence of rankings of all documents over time.
The order of a document may change if the document is replaced
by a newer version that has different relevance to the keywords.
This paper studies the problem of finding objects that are consis-
tently in the topk throughout the sequence of rankings defined by
atime intervalts, t.) and a set of keywordd’. The main applica-
tion is finding documents that are consistently relevant to a specific
subject over a given time period. The result of this query has size

the first approach. In addition, we propose a special indexing tech- Y 1© K queries can have empty resultskifis small or the rank-

nique for archived data. The index, coupled with a space parti-
tioning technique, improves performance even further. We use data
from Wikipedia and the Internet Archive to demonstrate the effi-
ciency and effectiveness of our solutions.
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1. INTRODUCTION

ings change radically. Empty results can be avoided by relaxing
the consistent top- constraint of the query using a ratio variable
r, 0 < r < 1. we seek for objects that are in the tbgfor at
leastr x (t. — t») time in the[ts, t.) interval. We call this prob-
lem durable topk search Wikipedia is one of the systems where
durable topk search can be applied. A page in Wikipedia is typi-
cally modified by editors over time. For instance, Figure 1 shows
how an entry about football player “Ryan Giggs” evolves; this page
has been modified over 3500 times from 2004 to present.

(@) in October 2007 (b) in May 2008  (c) in October 2009

Figure 1: Different versions of topic Ryan Giggsin Wikipedia

Consider a set of objects (e.g., web documents) and a sequence AS an example, consider five documerts-ds, having differ-

of different rankings of these objects. The rankings are ad-hoc
(i.e., not pre-defined) and could be derived from a search epera
tion (e.g., a keyword query). Assume that the objects are not static,
but change over time (e.g., different versions of web pages), and
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ent versions over time, and a query defined by time intdtvai.)
and a set of keywords. The score (relevance) of each document
over time, within the interval,, t. ), normalized to be withif0, 1]
is shown in Figure 2(a). For instance, documénthas four ver-
sions, with scores 1, 0.7, 0.4, and 0.25. Figure 2(b) shows the sub-
intervals of{ts, t.), within which the ranking remains constant. A
crisp durable togs query withr=1, hasds as the only result. If the
query is relaxed te = 0.6, {d., d2, ds } becomes the query result.
This query is not only applicable to document archives, but in
general for applications that need to merge of ad-hoc rankings,
which are time-parametric. For example, consider the changing
attributes of stocks over time (e.g., price, volume, etc.) and a con-
sistent topk query for an aggregate (e.g., average) of an ad-hoc
subset of these attributes. Other applications include expert finding
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Table 1: Example of durable top+ search results
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(a) Variable score over time (b) Ranking in sub-intervals

by intersecting the inverted lists of the query keywords (these con-
Figure 2: Relevance of documents over time tain the document versions that include the keywords), skipping
document versions that are outside the query time interval. For
the keyword queries we consider in this work, documents are typ-
o ) ) ically ranked using a relevance model such as Pivoted Normaliza-
and finding information sources that one should subscribe to. For tjg, [23], Okapi BM25 [20], variants of tf-idf [24], or language
the former, consider a publication database and the query ‘columnmodeling approaches [19]. The obtained relevance scores can be
stores’. Instead of the documents, the authors are ranked and thei"represented as sums of keyword-specific contributions. kTag-
aggregate score is derived from the scores of their relevant publi- gregation techniques [11] are immediately applicable, if the rele-
cations. Our query finds people who have consistently produced yance scores of document versions to each keyword are prestedp
relevant work: these are considered long-time experts on the topic. ang the versions are ordered in the corresponding inverted lists.
For the latter, consider information sources such as blogs (twitter |, this paper, we propose an efficient, specialized technique for
users) that one typically subscribes to (follows). The user may want qyraple topk queries. Our method is based on a storage organiza-
to subscribe to those that consistently include relevant material to ation, which sorts the contents of the inverted lists for each keyword
set of keywords. _ _ ~in descending score order. While accessing the lists of the query
Berberich et al. [6] introduced time-travel keyword queries in keywords in parallel, our method maintains for each < i < k,
d_ocument archives. Given _atime interval and an aggregate func-4 pandin the query timelinglt,, t.) capturing the scores of the
tion (relevance model), a time-travel keyword query returns the cyrrent topi results for each timestamp in the query interval. At
most relevant documents to the keywords according to their ag- the same time, we maintaincandidates bangapturing, for each
gregate scores computed over the time interval. Typical relevancetmestamp ints, t.), the best possible score of any object, which
models compute the maximum (MAX), minimum (MIN), or aver-  is not currently in the toge at that timestamp. If, during retrieval,
age (AVG) scores. For example, the MAX-aggregate scores of the the .-th band is above the candidates band, then the:togsults
5 documents in Figure 2(a) af@.6,0.95, 0.5, 1,0.75}. Although at each timestamp are confirmed, which allows us to post-process
previously studied time-travel keyword queﬁes share some simil_ar- them and identify the response set of the durablektaprery. We
ity to durable topk search, they cannot directly be used for this  pajr our method with several optimization techniques that minimize
new query. ) the expensive maintenance of the candidates band and accelerate
We use a real example to show the special nature of durable top-time-travel search with the help of spatial indexing. In addition, we
k search. We use a dataset from [22], which contains 11,328 URLS propose a transformed R-tree index for indexing the inverted lists
from Google Directory and find their archive versions in 2004 at on the disk. With the help of this transformation, we are able to
the Internet Archive. Consider a query with keywold=althyand decompose a durable query into a set of simplektapseries and
policy and time interval the third and fourth quarters in 2004. We gne durable query with smaller search space. This way, not only
setk = 20 andr = 0.5 (r is tuned to ensure that the durable the /0 put also the computational cost is reduced. More interest-
query produces the same number of results as other models). Thqng|y, our durable topk search approach derives the topesults
number of different documents between the result of the durable ¢ every timestamp, before computing the durable result. Hence,
top-k query and the relevance models MIN, MAX, and AVG is  qyrable results of different consistency can be found by progres-
5, 8, and 8, respectively. The results of aggregate models are de'sively increasing the parameter
rived from the utmost/average scores, which are not directly related  The rest of the paper is organized as follows. Section 2 de-
to consistency. Table 1 shows the different URLs computed by scribes work related to the problem under study, which is formally
the MIN model and the durable query. DURIIN (MIN —DUR) defined in Section 3. Section 4 presents a baseline approach to
contains the URLs which exist in the durable (MIN model) result  so|ve durable togk queries. Our optimized technique is described
but not in the MIN model (durable) result. Note that the URL iy section 5. Section 6 describes an indexing technique that im-
www.asgoodasnews.cois a news magazine website and it dis-  proves performance. Section 7 empirically evaluates our proposed

cussedealthyandpolicy at some time in 2004 but not consistently.  so|ytion using Wikipedia data. Finally, Section 8 concludes the pa-
Therefore, it is not in the result of the durable query. On the other per and discusses future research directions.

hand, the durable top+esults are consistently relevant to the query
within the given time interval, and exclude noisy outliers.
The main challenge in processing durable togueries is that 2. ) BAC_:KG ROL_JND A_ND RELA_TE_D WORK
they are based on an ad-hoc set of multiple keywords. This means!n this section, we review previous work which is closely related to
that the rankings of the document versions that overlap with the our problem, such as topsearch, indexing versioned documents,
query interval are not pre-defined and can only be determined from and time-travel queries in document databases.
the inverted lists of the query keywords. For example, the con-
tent of Figure 2(a) is not pre-computed, but dynamically derived

http://directory.google.com/



2.1 Top+ Queries classic implementation, which enables multi-way merging when

Fagin et al. [11] proposed and analyzed methods forktaperg- processing a query with multiple keywords. The sizes of inverted
ing of ranked lists, based on sorted and random accesses. In ariSts can be reduced by storing the difference (i.e., gap) between
Information Retrieval (IR) system, the relevance scores of a key- consecutive ids. If the inverted lists are stored in this way, a simple
word to all documents (or document versions) are precomputed Solution could be used to compute durable fogueries. First, we
we can apply the methods of [11] to find the most relevant doc- the query interval into a temporary array. Next, each record in the
uments (or versions) to a given set of keywords. As random ac- temporary array is splitinto a start and end event and all events are
cesses at inverted lists are significantly more expensive comparedSorted by time. The durable tdpresult is computed by running a
to sorted ones, we describe the “no-random accesses” (NRA) al-Simple scanline algorithm from computational geometry. The scan-

gorithm (Algorithm 1), which computes top+esults using sorted line is run on a heap of sizke maintaining the current top; with
accesses On|yl NRA iterative'y retrieves Objegfsom the ranked an additional data structure for elements that have been in thie tOp-
inputs and maintains the uppel® and lower bounds/?® of their but are currently not. Such an approach is not efficient in practice,
aggregate scores. Boung® and~'’ are the atomic scores of due to the large overhead of generating, sorting, and scanning a
seen so far plus the highest and lowest possible score from the listsP0tentially huge number of document versions. o
which have not been seen. L, be the set of thé objects with The second approach used in [1] keeps document entries in the
the largest/'?. If the smallest value ifiV’,, is at least the largest:® inverted lists ordered by scores and uses Algorithm 1 to terminate
of any objecto not in Wy, thenWW, is reported as the top-result list intersection early. However, the inverted lists cannot be easily

and the algorithm terminates. LARA [18] is an efficient implemen- compressed, since the scores may be in floating point format. In
tation of NRA, which manages the candidate results in a lattice and View of this, a hybrid approach is proposed in [2, 26], which uses

minimizes redundant bound computations and checks. a two level structure. The documents in a list are decomposed into
different segments based on their scores and the documents in one
Algorithm 1 NRA Algorithm segment are sorted by ids to facilitate compression. NRA used also
NRA(sorted lists L) on this data representation, but this time all segments having the
1: perform sequential accesses to eégh same score bounds are accessed in a batch and after each batch
2: for each new objeat updatey!?; > lower score bound access the termination condition is verified.
3: if less thark object have been seen so faen goto Line 1;
4: for each object seen so far computgs?; upperbound 2.2 Indexing versioned document collections
5. W}, := thek objects with the highest.?; . . . o
6: 1 := min{y% : 0 € Wy} Indexing versioned document collections has been studied in [7,
7: u:=maz{y"" : 0 ¢ W} 25, 14, 13]. Broder et al. [7] propose a technique that exploits
8: if I > w then returniWy; otherwisegoto Line 1; large content overlaps between documents to achieve a reduction
in index size. Each version is partitioned into a set of fragments,
[16] is the most relevant piece of work to durable togearch. €. an email is partitioned into two fragments, subject and body.

Given a database of time-series (spanning the same history) and a he fragments between versions are organized in a tree structure
time interval[t,, t.) (which is contained in the history), the prob- and gach child inherits the sha.red fragments from its parent. This
lem is to find the time-series that are consistently in the/its®t solution makes strong assumptions about thg_strgcture of (_Jlocument
for each timestamp of the query interval. For example, assuming aoverlaps. [25] uses content-dependent partitioning technique [21]
database of stock transactions, one might want to find stocks thatto partition a page into smaller fragments such that more fragments
are consistently in the tope by turnover, during the first three ~ @ré common between versions. More recent approaches by Herso-
months of 2009. There are certain differences between this problemVici et al. [14] and He et al. [13] exploit arbitrary content over-
to the durable topk queries that we study here. First, the contents 1aps between documents to reduce index size. [14] attempt to find
of the time-series in [16] are pre-defined (i.e., not ad-hoc), toezef ~ Subsets of terms that are contained in consecutive versions of a
the values on which the topfunction is applied are pre-computed ~document. Each subset is stored into a virtual document and the
and can be indexed. On the other hand, in our problem, ranking is total storage cost is optimized by minimizing the overall number
defined based on an ad-hoc set of keywords. Although relevance@nd size of the virtual documents. [13] propose a two-level in-
with respect to a single keyword is pre-defined, pre-processing anddex compression that improves the query processing time. This
indexing for an ad-hoc keyword combination is not possible. Sec- @pproach groups similar union-documents into clusters, where a
ond, the definition of [16] lacks the parametemhich relaxes the union-document contains all terms in the corresponding versions,
definition of durability and avoids otherwise empty query results @nd the terms are compressed locally for each cluster. This struc-
(i.e., forr = 1). Finally, the solution suggested in [16] does not tur.e gregtly reduces storage and still preserves the hierarchical re-
scale well. For each objeat a sequence of ranks foiin the whole lationship between documents and versions. _
history (e.g., 1st at the 1st timestamp, 3rd at the 2nd timestamp, All these indexing methods primarily aim at reducing the space
etc.) is pre-computed. To find consistent topbjects during a required for storl_ng_tht_e versioned document collections, taking ad-
time interval, we search within each object list for its ranks in the Vantage of the similarity between versions. However, the durable
interval and we output only those documents whose ranks in all or- top-% search problem that we study in this paper is CPU-intensive
derings in the time interval are at mdst The cost of this method ~ @nd does not benefit directly from such compression techniques,
is proportional to the number of objects (i.e., a time-interval search Since all versions may have to be accessed and reconstructed from
first should be applied at each object list, then the retrieved ranks the compressed storage scheme.
have to be accessed and compared Wwjttso the method does not . . .
scale well with the number of objects. 2.3 Time Travel Queriesin IR

Pruning strategies in IR, based on specially designed inverted There is a significant body of work on analyzing large text collec-
files, were proposed in [1, 2, 26]. The contents of the inverted lists tions over time. Bansal and Koudas [4] describe a full-fledged sys-
can be ordered by document ids or scores. The first approach is theem for searching the blogosphere. Among others, the system sup-



ports the detection of stable keyword clusters as described in [3].

Earlier work by Kleinberg [15] and Dubinko et al. [10] also fo-

3. PROBLEM DEFINITION

Problem 1 is a formal definition of the durable témuery. Al-

cuses on the analysis of text and tag streams, respectively, to detecfhough this definition is tailored for temporal keyword search in
bursty keywords or tags. However, all of the three aforementioned archives of documents with versions, we can adapt it (and the so-
approaches operate on the document collection as a whole and nofytions proposed in this paper) to apply on any type of data, with

on ad-hoc keyword query results.

different versions along arbitrary dimensions (e.g., document ver

Other work has investigated the use of temporal information as a sjons based on location, or blog items grouped by user).

means to obtain a better ranking of query results. Li and Croft [17],

for instance, propose a language modeling approach that factors in PROBLEM 1. LetD be a set ol documents. Eacli € D has
the publication of the document. Del Corso et al. [8] focus on news a number of versions, and each versianof d is characterized
and propose ranking methods that take into account when a newsby a validity time intervalvg.ty, vq.te). The time intervals of two

article was published and linked to by other news articles.

different versions of the same document may not overlapg bet

Berberich et. al. [5] proposed a temporal text indexing technique a query, consisting by a set of keyword$l” and a time interval

for web documents which supports time-travel queries. In a typical [g.ts, g.te).

inverted file, each inverted list containgasting(d, s), whered

is the document id and is the relevance of the term in document
d. To support indexing of versioned documents, in [5], the inverted
file is extended, such that each posting includes a time interval
The temporal information characterizes the validity time interval
of the indexed version of. The objective of a time-travel query
is to identify the topk documents with the highest aggregate score
during the query interval, as we explained in the Introduction.
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Figure 3: Comparison between one and multiple inverted lists

Consider a set of postings for a keywoxdand a topk time-
travel queryg on w with time interval[ts, t3) as shown in Figure

For a timestamp. € [g.ts, g.tc), the relevance of a
document! € D to q is defined by applying an IR relevance model
on the versiorwg of d for whicht € [vg.ts,va.te), usingg.W.

The relevance is zero if no such version exists. Given an integer
k,0 < k < nandarealr,0 < r < 1, the durable topk search
problem finds alld € D, such thatd appears in the set of top-
most relevant documents towithin [q.ts, g.t.) for time at least

r X (q.te — q.tp).

4. PRELIMINARY SOLUTIONS

In this section, we describe some direct adaptations of NRA for
solving the durable tog-search problem. For the ease of discus-
sion, we assume that all postings for each keyword are sorted by
their scores and materialized into a single inverted list. The use of
multiple inverted lists per keyword (as proposed in [5]) is orthogo-
nal to the presented solutions and will be discussed later.

4.1 Brute-force method

Consider a query with a set of keyword$V and a time interval
q.) = [q.ts, q.tc). Let A denote a set of sub-intervals such that (i)
no two intervals in\ overlap, (i) their union equalg.ts, ¢.t.) and
(iii) each document version either fully covers or does not overlap
with any sub-interval im\. Then, finding the tog: results in each
sub-interval suffices to compute the durable topesult. Condi-
tion (iii) ensures the uniqueness of each document in a sub-interval

3(a). The query can be processed by accessing the postings in deand conditions (i) and (ii) guarantee completeness. After collecting
creasing score order, ignoring those that do not overlap with the the top# results from all sub-intervals, we intersect them, while
query interval. While doing so, we can use upper bounds for the measuring for each documedtthe total temporal length of the
subsets of the query interval where postings have not been seersub-intervals wherd is in the topk result. If this length is at least

(i.e., run a version of NRA) and at some point confirm théocu-

r X (te — t), d is a durable topk result.

ments with the best aggregate scores. Although only four postings Algorithm 2 is a greedy method that findsincrementally, by

(a, b, ¢, andd) are valid in time]t., t3), the whole inverted list has

to be read, in the worst case. To tackle this problem, Berberich et. ¢.A = [q.tp, ¢.te).

al. [5] propose a partitioning approach, which splits the inverted
list with the entire posting set into smaller lists. For instance, we

accessing the postings that intersect with. Initially, we setA =
For each posting with interval [p.ty, p.te),
we find the subsed’ of A such that all intervals in\” intersectp
(line 1). If the begin/end timestampt of p is inside of an interval

can partition the inverted list of Figure 3(a) into three sub-lists as [ts, te) in A’, this interval is split and replaced by the two intervals

shown in Figure 3(b). Each posting is stored in all lists which it
temporally intersects (e.g., postings stored intol L' andIL?).
Now, queryq temporally intersects only with listZ?, therefore
only five postings have to be read (instead of 13 if of Figure
3(a) is used).

One strategy is to materialize sub-lists for all elementary time

intervals. For instance, we could create 7 sub-lists for the data in

[ty, p.t) and [p.t, te) (line 3). We can easily show that this algo-
rithm computes a unique correct set of (max-length) sub-intervals
that satisfy conditions (i), (ii), and (iii). We can then compute the
top-k results within each interval and the durable topesult.

Algorithm 2 Interval Set Maintenance
maintainlS(interval set A, new interval [p.tp, p.te))

Figure 3(a). This achieves excellent performance for queries with 1: A’ is a subset o that each interval intersects wifp.ty, p.te);
short intervals, but a lot of space is wasted due to replicated stor- 2 if p.ty orp.tc is inside &ty tc) € A’ then

age of postings that intersect multiple list intervals. In addition,
queries with long time intervals access multiple lists with overlap-
ping contents. In view of this, [5] study the optimization problem
of splitting the lists to a suitable set of sub-lists with or without a
constraint for the space occupied by them.

replace[ty, te) by two sub-intervals;

For example, assume that our query contains 1 keyword and the
inverted list contains four postingsb, ¢, andd, as shown in Figure
4. Postings: splits the entire intervaly = [q.ts, g.te) iNto two A\q



and 2 (A2 is the union ofAs and A4, shown in the figure). Next,
postingb intersects intervah, (i.e., A" = {\2}). A3 and)\4 are
created sincé.t, is inside ofA2. Next, posting: intersects intervals
A1, Az, and 4. The starting point ot is not inside);, so A is
not split to sub-intervals. On the other hand, the endpoint isf
contained in\4, SO\, is replaced by new sub-intervals and \s
(see Figure 4(b)). In turn, postingsplits \s and A5, ending with
6 sub-intervals in total (not shown in the figure).

Al Az A4 Al As As As
< g
g fean b S| e b
o < o > o < C >
—+d—> —td—>
time time

(a) after 2 accesses (b) after 3 accesses

Figure 4: Example of intervals maintenance

4.2 Dynamic Adaptive Algorithm

The brute-force solution is inefficient since (i) it reads all post-

ings that intersect the query interval to create the sub-intervals set
and (ii) many sub-intervals are created, which require a large num-
ber of top4 queries. For instance, we have 6 sub-intervals after

we process 4 postings in Figure 4, meaning that 6itgearches
should be executed before we can collect the durable; tagsult.
Note that some sub-intervals need not be computed at &llisf
small. For instance, ik = 1, we can terminate our search after
postingc is read since we can find the tdpresult for each time in-

terval already. As shown by Algorithm 2, the sub-intervals can be
maintained incrementally. Thus, we can maintain the sub-intervals

and execute top-aggregation simultaneously.

For each sub-interval, NRA is invoked to compute the koe-
sult. According to Algorithm 1, we have to keep the lower bound
~% and the upper boung® for every objecb seen so far. Lef’
andT'y? be the set of lower and upper bounds in intetvalespec-
tively. The usage of these bound sets will be discussed shortly.

Algorithm 3 Dynamic Adaptive Algorithm

DAA(sorted posting lists L)
1. p :=access the next posting frol
2: maintainISQ\, [p.ty, p-te));
3: forall new\ € A do
if X isfinalized goto line 3;
create or duplicat&!® andI"“® for interval A
if intersectsk, [p.ty, p.te)) then
feedp to NRA for X usingT'*® andI"?;
if NRA returns topk result, mark\ asfinalized

9: if all A € A arefinalizedthen

ONOTR

10:  compute durable top-result;
11: else
12: goto Line 1;

According to Algorithm 2, if more postings are read from the

After the setd™{? andI'}® are created for the new interva) we
use the current postingd as the next input to NRA to update the
bounds and the current tdpresults? If NRA confirms the topk
result in A, we mark interval\ as “finalized”. That is, no further
splits are performed ta, if new postings are found to intersect it
later. If all intervals are marked dimalized we merge their tog-
results to compute the durable téset. Otherwise, we get the next
posting from the inverted lists.

L Tz ]
di,0.8,[1,5) || d2,0.9,[5,8)
ds, 0.5,[1,3) || d1,0.8,[1,5)

A [ A A
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Figure 5: An example of Dynamic Adaptive Algorithm

Figure 5 demonstrates the Dynamic Adaptive Algorithm. The
postings of two keywords stored into two inverted ligts; and
I1L,, as shown at the top of the figure. Assume that 1. After
the first accessl?l{’1 andl“’;’l’ are createdd; is currently in the top-

k setW), of A1 andw is 1.8 in\; (note thatu is the highest upper
bound score of any ¢ Wy). Next, we getds from I L, and we
createl'y, andI'y. w in both intervals are 1.7 now. In order to
improve readability, we remove all data which are notliy in the
subsequent figures. After the third accessffom I'L1), A1 is split
into two intervalshs and A\, and theirl"*® andI"*® are duplicated
from \;. uin A3 is 1.4 sincels has been seen in this interval with
the upper bound;” (0.5+0.9=1.4)x in other intervals is also 1.4,
which is the highest aggregate score from all lists. Finally, after
the fourth access, we update ttigs v'* to 1.6 in A3 and \4. In
addition, v becomes 1.3 in all intervals. According to the NRA
termination condition, intervalas and )\, returnd; as their topt
result.

5. THE BAND APPROACH

During the execution of DAA, many'® andI'*® sets are cre-
ated. These affect negatively not only the execution time but also
the memory usage. In this section, we introduce a new method that
solves the durable top-problem using the shared execution para-

lists, more sub-intervals are created. Therefore, we propose a tech-digm based on the observation that two neighbor intervals usually

nigue, called Dynamic Adaptive Algorithm (DAA), to terminate

our search as early as possible (see Algorithm 3). This is possible
if the postings in the lists are sorted in descending score order. First

have similar topk results. In a nutshell, our method performs simi-

'lar splits as DAA, however, we do not maintdiff andl'? at each
'sub-interval. Instead, we maintain (in a compressed representation)

we access the postings sequentially and the sub-intervals are mainzg, aachi 1 < i < k. the band (i.e., boundary) for thigth worst-

tained by Algorithm 2. If an existing interval is split into two new

ones, because it contains one endpoint of the currently processed

postingp, then for each of the two new intervalsI'y andI'y® are
replicated from the old split interval.

case score at each time unit in the query interval. In addition, we

%In case of a split, the new posting is fed to only one of the two
intervals: the one that intersects the posting.



maintain in acandidates banthe best-case score of all objects cur-
rently not in the topk set for each time unit. If the candidates band
drops below the:-th band at all time units, we can guarantee that
the top# results are found at all timestamps and we can terminate.

5.1 Top Bands Computation

First, we define the concept of tdpband. Consider the finest

granularity unit of the time dimension (e.g., days) and assume that

postingp spansu units of this granularity (i.e., the time interval
[p.ts,p.te) includesu basic time units). Therp can be modeled
as a sequence of postingsp = 7,,7,...,7,, each spanning
a single time unit. Note that the other attnbutes (i.e., document

id and score) are common to all unit-postingspof Assuming a

representation, where each posting is replaced by its unit-postings,i%f

Definition 1 formally defines the top-band.

DEFINITION 1. The topk band is a sequence of unit-postings,
one for each time unitin [g.t,, ¢.t.), wherer, is the unit-posting
among all those valid at timewith thek-th highest score.

10 a2 >—b—< 200 =T - —— -
t+—oc—> | Ll S o
o> —d—> Z eﬁﬁrﬁ
P p—red> Tty T
—F ‘_j_’ ‘top 1 band—T- ‘ ‘tap 2 band---i’----‘

time time

(a) 10 Postings (b) top-1 and top2 bands
Figure 6: An example of top+ bands

Figure 6 shows an example of tépbands. Consider a keyword
with 10 postings ¢ to j), as shown in Figure 6(a). The tdpand

top-2 bands are shown in Figure 6(b). The postings that are not re-

lated to the topt and top2 bands are removed. For simplicity, we
overload the notation;, to denote segments of consecutive unit-
postings from the same postipgand use to distinguish between
segments from the same postipg The top-l band consists of 3
segmentg 7., 72, 74 }. Note thatr} andr; are the same as post-

Algorithm 4 Top-k Bands Insertion

insertBand(top-i band T;°”, set of segmentd™*™*, int k)

1: setTnewt .= ()
2: for 7 € T do
3 foreachr?P € T}°P, decompose if 7 N 7P # 0, such thatr
is decomposed int¢r!, ..., 7"}
4 for each % do
5: if not intersectt?,7t°P) then
6: insert |nt0T“”’
7. else ifrtoP s 2 T'.s then
8: insertr? into 7=,
9: else > intersect at
10: uset to decompose’°P into rt°Pl andrtor?
11: # assuming thatt°PL \ = 72\
replacerteP by rt°P2 andr?
insertrterl into Tmevt;
14: Tins = Tnezt;
15: if i < k then
16:  return |nsertBanthj:‘1’, T k);
17: else
18:  return T%"s;

Based on their scores; and 2 are inserted into the top-band
andr? is stored inT™“** to be processed at the next call of the
algorithm (line 16), which computes the next band.

-t 1
——d— TIJ__rf,__rfﬂ

1
|__T[17.__|' Tc— rf, .........

(a) insertion ofd

N

(b) new top1 band
Figure 7: Insertion in top- k£ band

This process guarantees that the topesults at all timestamps
are equivalent to the results of the top bands. Once we collect all
top bands, we process to compute the durable:togsult.

So far, we have discussed how to maintain the top bands for sin-
gle keyword queries. If we have multiple keywords, we read the

ingsa andb respectlvely since there is no other segment better than postings from each keyword (in parallel) and insert each of them

a or b in their valid intervals. Posting is decomposed into three
segments and onky? appears on the top-band. By removing all
segments in the top-band (i.e.,7}, 72, andy), the top2 band
becomes the top-band of the remaining segments. This important
property helps us to maintain the bands iteratively.

Algorithm 4 shows a recursive method that maintains the set of
top-k bands for single keyword queries (multiple keywords queries
will be discussed shortly) T;°? denotes the top-band and it is
modeled by a set of segments. &' be a set of new segments
that should be used to update the top bands. Eaeh T is
decomposed into a set of small segments- {r' U ... U 7"},
according tor’s intersections Witin"p. For instance, in Figure 7,
postingd is decomposed into 3 segmedts], 72, 5 }.

After we collect the set of segmenfs’, ..., 7"}, we compare
them with the top-band77°” one at a time. 1§ does not intersect
with any segment ifT/°? (line 5), 7* is inserted intdl}°* since it
fills a current gap in the topband. Suppose that there is&”
intersecting withr? at¢. If the score ofrt°? is not worse than the
score ofr?, 7% is moved toT™*** to be processed in the next band
(line 7). For instancer; in Figure 7(b) will be processed in the
top-2 band. Ifr¢ has a higher score thari°?, we decompose‘°?
at timet, which is the endpoint of* insider'°?. Consider again
the example of Figure 7(b). Segmertintersects withr and its
score is lower than the scorewgf. Therefore, itis decomposed into
{72,72}. 73 andr? have the same validity intervat{.\ = 72.)).

into the top bands using Algorithm 4. If the document version in
the current posting has been seen at some other keyword list before
and it is in the top:-band, we remove it from the band and reinsert

it considering its updated relevance score (which is increased com-
pared to its previous partial score). Note that the removal process
does not require to access any data outside thé: topads. More
precisely, this does not require any change at the(top-1) to

top-k bands since the relevance score is only increasing.

5.2 Candidate Band Computation

The simplest way to compute tdpbands is to read all post-
ings from each keyword once and exhaustively, while updating the
bands at each reading. However, we would like to terminate the
accesses to the inverted lists as early as possible. Therefore, we in-
vestigate an appropriate access plan and termination condition for
our band approach. If we access the postings in decreasing order of
their scores (i.e., like DAA), a termination condition can be derived
with the help of a typical top aggregation approach. Before we
discuss our solution, we define the conceptsasfdidate container
C andcandidate bandn Definitions 2 and 3.

DEFINITION 2. The candidate containgr' stores the segments
of document versions which have been seen so far but they are not
included in top bands.



DEFINITION 3. The candidate band contains the segments that bands. Next, we recompute our candidate band, as the sco}g of
are the topi band of the candidate containét. becomed).5 + 0.8 = 1.3. Note that topt result in interval[1, 5)
has been confirmed since the conditiof&°p >01,5) 7" and

Note that the upper boundin NRA is computed by the highest — 7tor >n,5) V) become true. The algorithm will terminate later,

possible scores“® from the objects that are not I, (whereW, after the interval5, 8) is confirmed.

contains thet objects with the highesi’?). Similarly, we store all 2o ol

segments that are not in our top bands to our candidate container ) ¥=1.8 ' w=1.7

C. For each segment in C, its score is set to be the upper bound g [ S

~“ of 7*. We compute a top-band fromC and this is ourcan- “ -

didate band After every access, if we have the téband and the [op 10ar0 — — | [candbars —]  [fop-tband — = ] [canabard —]

candidate band, it is possible to terminate retrieval if the conditions By fime o e

of Lemma 1 are satisfied for every timestamp in the query interval. (a) afterl™ access (b) after2™" access

LEMMA 1. The topk result at timestamp has been stored in P [P

the top bands if and only if the score of theh band at timet is o 1______'T§Z__ T W:’_'fz;“_'

not worse than (1) the score of the candidate b&hdt timet¢ and o

(2) the sum¥ of the last seen scores at all lists. Condition (2) is [top-1 band — — | [cand band —— [top-1 band — — | [cand band ——]

checked if there is no elementdhthat intersects. time time
(c) after3"? access (d) after4™ access

Algorithm 5 shows the pseudocode of our band approach. We
use a set operatiorry,’ to denotedcomparisons over a time inter-
val \. For instanceT®°? >y, T°“"% means that at any timestam A .
tin X the segments ifi"*°? that are valid at are not Woryse than thep 5.3 Optlmlzatlons
segments i"“*"? that are valid at. Similarly, T*? >y U de- Note that the main difference between tbp bandsind thecan-
notes that the segmentsTri°” are not worse than the line defined ~ didate bands that the lower bound'” is used in théop bandsbut
by . For the current posting, if a segment has been inserted into We use the upper bound” in the candidate bandUnlike the seg-
the top bands or the candidate container, we remove it and reinserthents intop bands the entirecandidate banctould be changed

Figure 8: Examples of Band Based Algorithm

it with an updated score (lines 2-4). Then, subroutireertBand ~ When a new posting is read from a list due to the changes of upper
is called (Algorithm 4), which updates the top bands incrementally bounds. Consequently, tiandidate bands recomputed at each
by insertingl"* and returns the already-seen set of segnigfits loop of Algorithm 5. The recomputation of theandidate band

that are outside the top bands (line 5). Next, we insert all segmentsMight be very expensive when contairiébecomes very large. To
in 7! into the candidate contain€¥ and compute the candidate ~ reduce this cost, we use a powerset-based approach to support in-
band (lines 6-9). Finally, if all imestamps meet the conditions of cremental updates at teandidate bandin addition, we propose a
Lemma 1, we terminate our search and proceed to find the durabledrid-based index to manage the data in the candidate container.

top-k result using the top bands. 5.3.1 Lattice Based Containers

Similar to LARA [18], we create a set of containers, one for
each combination of the: inputs{L1, ..., L., } (recall that each
input is the inverted list of a keyword). For each segmerin C,
7% is stored inta”,, if 7 has been seen exactly in thénputs. The

Algorithm 5 Band Based Algorithm
BBA(sorted lists L)
1: p :=access the next posting from
2: forall 7* € pdo

3. remover® from top band / candidate container; practical difference betweefi and the collection of”,’s is that

4:  setr’.stoits~'* and insert intal""; > use lower bound we maintain the lower boundg® of the segments in eadfi,, as

5: T’“efzzinsertBand(“f"p, T8 k); > top bands opposed to maintaining the upper bounds of all segmends in

6: forall 77 € T do As for the top bands, the topband 7}’ for eachC, can be

7 insertr? intointo C; computed incrementally. That is, when we insert a new segnient
8: setr) st itsy“*, V17 € C; _ >use upperbound into C, if this segment has been seen by other lists, we remove it
9: i :=compute topt band fromC; > candidate band from its previous containet’, and TICy. (Note that after the re-

10: if TP >yq.a T and TP >y, 5 U then i X .
11° Eheck durable to;kresuft; a moval of 7* from Cy, C, should be updated appropriately. This

12 else will be discussed in next subsection.) Finally, we insértvith an
13:  gotoLine1; updated score'” into C,, and call subroutin@nsertBancdto main-
tain the top1 band ofC...

Now, let us see how we can derive tt@ndidate bandn C' and
use it in BBA. This can be easily done by merging the candidate
bands of allC,’s. We concurrently traverse these bands in time-
order and for eacl’, we add to the score of its top-band segment
and the sum of the last scores from the listswhered ¢ x. Then
we dynamically derive an upper bound for the segment§’pf
The dynamically derived upper bounds for ed¢hare compared

We use the data from Figure 5 to demonstrate our band approach
for k = 1. The first two postings (in round-robin order from the
lists) are inserted into the topband using line 5 an@ becomes
0.8 + 0.9 = 1.7. When we insert the third posting, it fails to enter
the topd band since its lower boung/® = 0.5 is not better than
they'* = 0.8 of 7;,. Therefore, subroutinésertBandreturns

{7i,}. After that, we insert it into the candidate contairfer= to compute the globally highest upper bound in@ll's at each
{74, }, and we setj,'s score to upper boung*’ = 0.5 + 0.9 = timestamp. This is equivalent to teandidate banaf C.

1.4. The candidate band is then computed, as shown in Figure .

8(c). When the fourth posting is read, we remavye from the 5.3.2 Grid-Based Segments Management

top-1 band since the score ofj, is updated by this access. We If we do not manage the segmentsdh properly, we might

update its score 0.8 + 0.8 = 1.6 and reinsert it into the top have to access all segmentsGh each time a segment frodl,



has to be moved to another candidate set (because it has been sedypical indexing techniques as shown in our experiments. In ad-
at a new input) and the candidate band &r has to be updated.  dition, we propose a technique that decomposes a durablk top-
To perform this operation efficiently, we use a grid index to divide query into multiple simple top-queries and a simpler durable top-
the two dimensional time/score space for edthinto cells. A k query. This decomposition can further improve performance.
segment is assigned to a cell if it intersects it. An example is shown

in Figure 9(a). For instance, segme} is inserted into 6 cells of 6.1 Transformed R-tree

the first row. If a segment is deleted fromC,, it is removed from There are different possible approaches for organizing the con-
the corresponding cells. ¥ was part ofC,’s top band, we must tents of an inverted list in order to minimize the access of postings
seek for a replacement in the band. To do this, we first check the which are irrelevant to the query interval, and still allow access
cells that intersect, if they are empty the cells below, etc. in decreasing score order for the relevant ones (to facilitate:top-
aggregation). These approaches include adaptations of interval in-
dexes, such as the interval tree [9], the segment tree [9], and the

[ 1 [ S
S o g i —tar— R-tree [12], and data duplication with multiple inverted lists [5].
@ @ In this section, we propose an adaptation of the R-tree for this
= = — indexing problem. In Section 7, we compare our proposal to al-
ﬁnTe ﬁm_e ternative indexes, including the proposal of [5]. The R-tree is a

classic spatial access method, which divides the space with hierar-
(a) Rectangle Grid (b) Striped Grid chically nested, possibly overlapping, minimum bounding rectan-
gles (MBRs). Figure 10(a) shows an example to build a R-tree in-
dex for an inverted list containing time-relevant document versions.
In our implementation, in order to avoid the replication of seg- Ve have 4 leaf nodesi(; —m.), 2 intermediate nodes\{y, 12),

ments to multiple cells, we use a grid with only horizontal stripes and a root node/() in this tree and each MBR looks like a flat
such as that shown in Figure 9(b). As segments are horizontal, no'ectangle. Note that it is hard to avoid the high degree of over-
segment is replicated. Updates are also more efficient in this case [2PPing in the R-tree when we have line segments in a 2D space
In order to support fast search during top band updaté, atve (time-score). Because of the overlapping, there is higher chance to

order the segments within each cell in order to locate fast the oneshavefalse hits, which degrade performance. For instance, assume
that overlap the removed segment. that we have a query, as shown in the shaded area of Figure 2(a).
This query intersects all leaf MBRs of the tree, meaning that all

5.4 Optimized Band Based Algorithm postings have to be examined in this example, although only 60%

An optimized version of BBA, which includes all optimizations ~ ©f them are actually relevant to the query interval.
of Section 5.3, is shown in Algorithm 6. The main changes from

Figure 9: Examples of different Grid Indices

. ) i . ) o1.0F .,
BBA to OBBA are lines 3-5 r_:md 9-12. Once a segmehts re _ ] = = fe
moved from candidate containél,, we access the corresponding "‘0 5 taptT—d—F ms
grid cell of C, to update its band (lines 4-5). Line 11 calls sub- Tohe PN —— a
routineinsertBandto compute the tog-band ofC,, wherer® is i é'é d’ﬂ M,
inserted. Finally, the complete candidate band is computed by the 0123456 728 o i J
set of candidate bands (line 12). ‘b
M14m1‘7 my M
1
Algorithm 6 Optimized Band Based Algorithm M | s (6.3)
OBBA(sorted lists L) M m m; M
1: p :=access the next posting frofy; v 5 4 5 6 7§
2: forall 7t € pdo ]
3:  remover’ from top band / candidate band; (a) Raw data and classic R-tree (b) Transformed R-tree
4:  if 7¥isin candidate containe?, then : e ;
5 remover and replace interval of? usingC, grid; Figure 10: Different R-tree representations
6 Stetfz's to itS’Ylbtf;‘d insert intdl™"*; > use lower bound Since grouping line segments is not effective for time-travel queries,
T :=insertBand(; ™%, T, k); > top bands we transform our data into a begin/endpoint space that supports bet-
g; for a”tTji EtT_t %’ | bound ter grouping. Now, point is the basic indexed unit, making grouping
10: Siﬁsgrif—ic;r:t?)?ntéc _ > use fower boun of data to nodes more effective. For each posting, we use a point
11: insertBand('C®, Tt 1); > top-1 band ofCy; (;t]b, te) to rep;res_ent |L|n ?ZE_spaci.ovge V\rl]l|| explain how tlo hefa[ndlc?1
12: computereand using{T°C1, ..., TC2m }; > candidate band the score ordering shortly. Figure 1 ( _) shows an example after the
13: same as lines 10-13 of Algorithm 5; transformation. For instance, postiagyith interval[5, 7) is repre-

sented by point5, 7). After the transformation, our query result is
located in the shaded area. Although the shaded area is larger than
the one in Figure 10(a), it intersects only 6 nod&s, (M1, M2,

6. POSTINGS MATERIALIZATION ma, ms, andms) and there are fewer false hits.

Typical document archives cover a long period (e.g., 10 years), T_o facilitate access of the postings t_hat intersect the query inter-
while user queries may apply to a relatively short period only (e.g., \{al in decreasing score order (as required by our aggregation algo-
June 2005). If we use a single inverted list for each keyword, we thm), we pre-compute an aggregate scerg.. for each MBR,
might have to scan a large number of irrelevant postings to the WNe€résma. stores the maximum score for all child MBRs. In ad-
query interval. To minimize the number of redundant accesses, dition, if the MBR is a leaf node. ... stores the maximum score
in this section, we propose a specially designed R-tree for materi- 3a false hitis an accessed posting that does not intersect the query
alizing the postings in each inverted list, which outperforms other interval




of the postings inside. This scheme supports prioritized access of (as in line 1 of Algorithm 6), it is read either from (i) the
the MBRs that intersect the query intergah by decreasing order transformed R-tree excluding arkaor (ii) the next result of
of their aggregate scores. Starting from the root of the tree, each the constrained NRA (using incremental search).

entry that intersects. )\ is inserted to a priority queue. The entry

with the highest score is deheaped and the process is repeated fofhoosing the maximum last seen score

its children. When a posting (i.e., leaf node entry) is deheaped, Note that we have two sets of last seen scores. For each
we know that this corresponds to the next posting that intersects keyword, the maximum last seen score is chosen from area
¢.X and has the highest score among all remaining such postings. A —1 orarea .

Thus, the transformed R-tree elegantly combines temporal search
based ony.\ and decreasing-score access order of the results.

6.2 A Partitioning-Based Approach

In this section, we investigate a query decomposition technique
that further improves the performance of the band approach using
the transformed R-tree. This technique aims at reducing the num-
ber of band maintenance operations. Recall that the exact score of a
document versiod; at timet is unknown until it has been seéh|
times from the inverted lists, wheté| is the number of keywords

Revised termination condition :
Corollary 1 is an extended version of Lemma 1.

COROLLARY 1. The topk result at timestamp is that
stored in the top bands if and only if the score of #h
band at timel is not worse than items (1) and (2) in Lemma
1, and (3) the next result from the constrained NRA.

With the above modifications, we can access the posting arbitrarily

in the query. Assume that is the unit posting of; at timestamp from (i) or (i) without affecting the correctness. In order to mini-
+. For each new access df at timet, = is first removed from mize the number of accesses, in our implementation, we define this
existing band structures (e.g., top bands/candidate band/candidat@"der based on the best score (edg). of the partial durable query
container) and then reinserted into the band structure with an up-2nd the next element score in the constrained NRA. _
dated score. Suppose that there is a method to determine the exact Ve enrich the example in Figure 8(d) with more data to illustrate
score ofr* before the first insertion; therf is processed only one  the partitioning-based approach. Note that the last seen scare of
time instead of/L| times. Based on this idea, we could further (L2) 18 0.7 = max{0.5,0.7} (0.8 = max{0.8,0.6}). Currently,
improve the performance of the proposed algorithms. U is set to 1.5(=0.7+0.8). Accordmg to t_he information in Figure
Looking at the postings distribution in the transformed R-tree, 11(0), we know that the next postingds with score 1.3 and inter-
we observe that the order of some postings can be computed easilyY@ [0; 8), which is computed by the constrained NRA. When we
using a simple NRA query. Figure 11(a) shows an example that de- |nslert tQIS posting into the top bands, itis split into twolunlt.postlngs
composes the space, based on query intébv8l), into four areas:  17ds» 74, } With intervals[0, 5) and[5, 8) respectively.r,, fails to

[,11,111,andVl . Note that are& contains all postings thélly enter the top-1 band bufj, successes to replacg, and enters the
cover the entire query interval, which arandd in our example. top-1 band. Therefore, subroutiiesertBandreturns{r,, , 74, }.
In the next loop, the constrained NRA is called to find the next top
Next posting in A-T Next result in area T posting in ared . Suppose that the constrained NRA only reads
ds0.7 [0,5) ds1.3[08) one posting from each index and the next posting-isn area
T od I b ei 08115 4,00 15.9) | deor108) donios | . The last seen score @f; (L») becomeg).5 = max{0.5,0.3}
s 4-0.541,3)| ¢,0.811,5)|| 4,03 [0,8)| d501[0,8) (0.8 = max{0.8,0}) and ¥ is updated to 1.3. After this update,
g [3:6) ds 047N dOTILTY) we can terminate the search since now our top band is not worse
S P 2.0F p than (1) ¥, (2) the candidate band, and (3) the next result of the
b T Ymg B P constrained NRA (see Corollary 1). Note thatis inserted only
100 Tas =TT T once into the top bands while it would be inserted twice using the
e 63) original band approach.
o [top-1 band — — | [cand band ——] The partitioning-based approach can be extended to further re-
0 1 2 3 4 5 6 7 8time duce the area where the band approach is applied. Note that area
() Query decomposition (b) Next access L'l (I'11) contains all postings that intersect, (¢.t.) but not in-
tersectq.t. (g.t»). Based on our observation for areawe can
also add two constrained NRA in arelak andl | | . Finally, we

Figure 11: Example of partitioning-based approach decompose the original durable query into three constrained NRA

Our partitioning-based approach excludes aréam the durable ~ queries plus one partial durable query only in dr¥a
query; we only issue a constrained NRA query to compute the top-
k result in this area. The results of this query should be merged 7. EXPERIMENTS
with the results of the band approach in the remaining space. A

L S In thi ion we empirically eval h rforman f our
trivial way to do this is to compute the exact tépresult of the this section we empirically evaluate the performance of ou

. L . algorithms on the Wikipedia revision history, which is freely avail-
constrained NRA, and then merge it with thartial durable top- able atwww.wikipedia.org The total size of the dataset used in our

k sgarch in area — 1, whereA represents the entire query area. experiments is 0.7 TBytes, containing the full editing history from
While this approach guarantees correctness, we may have poor per:]anuary 2001 to December 2005 of the entire English Wikipedia
formance as more postings may be accessed compared to a singlﬁ;h ; hni . . I
durable query in the whole area. A better approach is to integrate e compression technique proposed in [5] is used to group simi

th nstrained NRA rv with our band maintenan lqorithm lar consecutive versions of the same document, reducing the total
€ constrane query with our ba antenance algortnm. ;, o f the data to 0.15 TBytes. The resulting dataset contains a
In order to support such a partitioning-based approach, we revise

Algorithm 6, based on the following lines: total of 892,255 documents (i.e., topics) with 13,976,915 versions,
’ ) so there is a mean of 15.67 versions per document and a standard
New accessing approach deviation of 59.18. Okapi BM25 [20] is used to normalize the term
Instead of reading the next posting from the inverted lists frequency with the length normalization paramétet 1.2 and the



tf-saturation parametdrn, = 0.75. Inverted lists store postings of . . L .

the form [doc-id, begin-time, end-time, score]. I T Tatl>|le ‘21' ITesguItldlv§rs]|tyén ?llffezrerllt q:erlles4 5]
We selected the most frequent keyword queries (of 2 to 5 key- By I X = 60days I X = 120 days |

words) from a search engine log that yield a Wikipedia article as a —5gr=—miN 1T 0% 1 22% | 6% 1 2% 1| 26% | 3206 | 12% | 14%

web-search result. This guarantees that all keywords are relevant tg DUR—MAX || 14% | 20% | 10% | 4% || 20% | 14% | 24% | 28%

Wikipedia articles. We classify a quegybased on the total number DUR—AVG || 34% | 44% | 10% | 40% || 36% | 58% | 16% | 34%

of postingsV/(q) in the inverted lists of its keywordg W and the

correlation between the keywords. The correlation is defined by
the set difference between the results of the durable and the MIN
o | mwquJ/V D(wz)‘ H ‘ ’
= wisem S aggregate query. The queries are selected from class ‘HH’ (we
| Vweq.w D(wi)] found similar results when using other query classes) and we tested

whereD(w; ) denotes the set of documents containing keyword ~ two query interval values). The query lengthiV| varies from 2

For instance, if a query hasV (¢) and lowR(q), it is classified as to 5 keywords. There is a significant differen(_:e in the c_iurablekiop- _
high volume andow correlation (‘HL' class in short). Accord-  results, compared to other models and the difference increases with

ingly, we have 4 classes in total, ‘HH’, ‘HL’, ‘LH’, and ‘LL’. Some A, as larger intervals enclose more document versions. This shows

statistics for these classes are shown in Table 2: average numbethat the durable query provides different and potentially more in-
of postings per keyword, average interval length of postings, av- teresting results than simpler aggregation models.
erage number of distinct documents in postings of a keyword, and .. -
number of querie$?)| in class. The space of an inverted list (un- 7.2 Efficiency and Scalability
compressed) can be derived by multiplying the number of postings We now compare the durable tépalgorithms in terms of ef-
with the posting size (16 bytes). In addition, the average number ficiency and scalability. Figure 12 shows the response time and
of postings in class ‘HH’ is 64K, 202K, 713K, and 1.98M in years peak memory usage with respect to the number of keywdidls
2001, 2002, 2003, and 2004 respectively: more versions aredrea  when keyword queries are selected from two classes: ‘HH’ and
in more recent years. ‘HL'. The optimized band approach (OBBA) always outperforms

In the experiments, we evaluate the scalability of our algorithms, the other two methods, being 1-2 order of magnitudes faster in
including DAA (Section 4), BBA (Section 5.2), OBBA (Section most cases. All methods become more expensive when there are
5.3), and the partitioning-based approach (PBA) (Section 6.2). We more keywords in the query. This is consistent to the observations
use LARA [18] (an optimized implementation of NRA) for NRA  in [18]. All methods perform better for queries in class ‘HH’ than
computations in DAA and PBA. Unless otherwise specified, in all queries in class ‘HL, since the correlation between keywords in
experiments we selected queries from the ‘HH’ ctags.each ex- class ‘HH' is high; document versions of high scores in all key-
perimental instance, 5 queries from the chosen class are used anavords are found faster, assisting early termination of search.
the results are averaged.

R(q)

1.0e4 1.0e5

DAA ——

1.0e3 1.0e4

Table 2: Statistics of test queries in the four classes

[ class || avg. postings perw | [Q] | avg. length | avg. doc | Loz

10e3 |

1.0el 1.0e2

Response time (sec)
Response time (sec)

HH 2.95M 61 | 45.79 days| 41370.34 Lok Lout
HL 3.32M 42 | 53.12 days| 44873.87 Loen S R ——
LH 0.92M 39 | 36.45days| 13087.85 Loep b o oot
LL 0.77M 58 | 46.35days| 17117.49 2 3 4 2 3 4
Number of keywords Number of keywords
All methods were implemented in C++ and the experiments were (a) Response time ‘HH’ (b) Response time *HL
performed on an Intel Core2Duo 2.66GHz CPU machine with 4~ _ 1600
GBytes memory, running on Ubuntu 8.04. Table 3 shows the ranges 7 ¢, P60  DAA ——
of the investigated parameters, and their default values (in bold). & sew 8 1300
In each experiment, we vary a single parameter while setting the a0 z 1000
remaining ones to their default values. 8% 5 oo
e
Table 3: Ranges of parameter values 0 o e
Parameter Values ’ Number of3keywords ) ’ Number ofakeywords !
Number of Ilieyword$W| 2 ;1304205 70 (c) Peak memory ‘HH’ (d) Peak memory ‘HL’
Query length (in days) 15, 30,60, 120, 240 Figure 12: Effect of ||
Query begin timet,, (in year) || 2001, 20022003 2004
Query class HH, HL , LH, LL

Note that we skipped the cafd’| = 5 in Fig. 12. The reason
is that DAA in this case consumes the physical memory of our sys-
7.1 Difference to Other Queries tem. In Figures 12(c) and 12(d), we show the peak memory usage
of the methods during the query execution. DAA is more sensitive
to the number of keywords in the queries than the band approach.
The reason is that it rur@(m) NRA top-k queries simultaneously,
wherem is equal to the number of postings that have been read.
Each query consumé&3(m) space in the worst case [18], therefore
“typical searches include correlated keywords; we used keywordsthe space requirements of DAA are huge. On the other hand, the
with a large number of postings to evaluate scalability. band approach stores oriiyop bands, one candidate band, and one

First, we study how different the results produced by the durable
top-k query are, compared to simpler aggregation models. Table 4
shows the percentage of the durable tosults that are not gener-
ated by other aggregate queries. For example, BWIRN denotes




candidate container. The worst case complexit®{&m) which indexes the intervals instead of their transformation. The simple R-
is much smaller tha® (m?) typically. As shown in Figure 12(d), tree also stores aggregate score information at the MBRs and uses
DAA uses more than 1.6 GBytes memory. BBA is not included in the same prioritized traversal as the TR-tree. We do not include the
this comparison, as it consumes similar memory to OBBA. interval tree and segment tree in our experiments; according to our
The next experiment studies the effect of different parameters in findings, they do not scale well since the versioned postings have a
queries of three keywords, all taken from class ‘HH'. Figure 13(a) high overlap. Moreover, we split an IL into MIL using the method
shows the response time of the methods as a function of the queryproposed by [5] by setting the space budget equal to the size of our
length\. We use two months as our default query length. When  TR-tree® OBBA is used as the durable tdpalgorithm in all cases.
becomes larger, all methods become more expensive since we hav®ur system uses a 4Kb page size. In order to measure the exact I/O
more topk rankings while the query length becomes longer. Again, cost, we assume no memory buffer is available.
OBBA is 1-2 orders of magnitude faster than BBA and DAA. More- Figure 14(a) shows the page accesses of the methods as a func-
over, OBBA accesses only 0.8%, 1.4%, and 2.4% of all intersected tion of the number of keywords. We set IL to be a baseline. MIL
postings for queries in class ‘HH’ with query lengtt60, 120, and accesses fewer pages than IL but is at least 3 times worse than the
240 days respectively. This shows that our best method can com-TR-tree. The runner-up method R-tree is 2 times worse than the
pute the durable tog-result by scanning only a small prefix of TR-tree. Moreover, the TR-tree is less sensitive to the number of
the inverted lists. Figure 13(b) plots the response time as a func- keywords. Figure 14(b) shows the page accesses of the methods
tion of k. The effect is similar to\; the size of the tog: ranked as a function of the query length The trend is similar to Figure
lists increase linearly witl, and the overhead of maintaining the 14(a). The TR-tree accesses at least 3 times fewer pages than the
lists/bands increases proportionally. runner up method. Note that MIL performs better when the query
Figure 13(c) plots the response time of the methods as a functionlength fits in one/few small inverted list(s). Therefore, if the query
of query begin timeg;. Performance is sensitive tg, since more length is small (15 days or smaller), MIL has higher chances to
editors joined Wikipedia, creating more versions in the more re- achieve good performance.
cent years. For instance, topic “Ryan Giggs” was modified only 28
times in 2004, but it has been modified more than 572 times in this 7 7
year up to November. As more versions enter the system, the prob- §
lem itself becomes harder. The figure also demonstrates that our
best method OBBA scales better than the other approaches. Fig-
ure 13(d) plots the response time of the methods as a function of & 2o
all four query classes. As expected, when correlation increases all 1w =
methods perform better, and when volume increases they become © %% et A
worse. OBBA is 1-3 orders of magnitude faster than BBA and
DAA in all cases. In conclusion, OBBA consistently outperforms
BBA and DAA by a wide margin at all tested cases and it has a low
response time, making it practical in real scenarios.

Pages accesses (thousands)

Number of keywords

(a) Page accesses|o¥ |

(b) Page accesses bf

Figure 14: Page accesses of different system parameters
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In the last experiment, we compare the direct use of the best
durable topk algorithm, OBBA, with the partitioning-based ap-
proach (PBA) that decomposes a single durable query into multi-
ple constrained NRA queries plus one partial durable query (Sec-
tion 6.2). Figure 15 demonstrates the effectiveness of this strategy.
As the number of keywords grows, PBA increasingly outperforms
OBBA as shown in Figure 15(a). Whei’| = 5, PBA is three
times faster than OBBA. PBA maintains an advantage over OBBA
also in the experiment of Figure 15(b), where the number of key-
words is fixed to 3 and the query intervalchanges. We note that

goo ég’%’éA g 10e EEJQAQA although PBA performs better than OBBA in terms of response
g 100 2 1.0e time, it may access more pages from the TR-tree. The reason is
9 10 g 10e that the same tree node may be accessed more than once by the
s 1 g 1.0e constrained NRA queries and the partial durable query. In our ex-
go1 81.0e- periments, PBA accesses around 10%-20% more 1/O pages than
0.00—5001 2003 200 1.0e- HH OBBA. In practice, this does not affect the overall performance of
Query begin fime Query class PBA since these queries are clustered and the pages that are ac-
(c) Effect oft, (d) Effect of query class cessed more than once are already buffered.
Figure 13: Effect of different system parameters In summary, the propoged TR-tree inde_xing scheme outperforms
alternative approaches with respect to various parameters and greatly
7.3 Postings Materialization and Partitioning improves the 1/0O performance of OBBA. Moreover, it facilitates

: i the application of the partitioning-based approach, which further
In the subsequent experiments, we test the effectiveness of the,gqyces the response time of OBBA.

proposed storage and access scheme for the inverted lists (Section
6), comparing it with alternative approaches. We denote our trans- 5
formed R-tree indexing scheme by TR-tree, and we include in the
comparison (i) a singlewverted listIL where postings are ordered
by score only and is used for post-filtering them, (ii) thaultiple
inverted listsMIL approach of [5], and (iii) a simple R-tree, which

The sizes of IL and the TR-tree are very similar, since point data
are handled in a space-efficient way by the MBR structure. MIL
also has similar size to the TR-tree due to the space budget setting.
The simple R-tree occupies 25% more space than other methods
since the postings highly overlap as shown in Figure 10(a).
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