
Towards Proximity Pattern Mining in Large Graphs

Arijit Khan
Dept. of Computer Science
University of California at

Santa Barbara, CA
93106-5110, USA

arijitkhan@cs.ucsb.edu

Xifeng Yan
Dept. of Computer Science
University of California at

Santa Barbara, CA
93106-5110, USA

xyan@cs.ucsb.edu

Kun-Lung Wu
IBM T. J. Watson Research

Center
19 Skyline Drive, Hawthorne

NY 10532, USA
klwu@us.ibm.com

ABSTRACT
Mining graph patterns in large information networks is crit-
ical to a variety of applications such as malware detection
and biological module discovery. However, frequent sub-
graphs are often ineffective to capture association existing
in these applications, due to the complexity of isomorphism
testing and the inelastic pattern definition.

In this paper, we introduce proximity pattern which is
a significant departure from the traditional concept of fre-
quent subgraphs. Defined as a set of labels that co-occur
in neighborhoods, proximity pattern blurs the boundary be-
tween itemset and structure. It relaxes the rigid structure
constraint of frequent subgraphs, while introducing connec-
tivity to frequent itemsets. Therefore, it can benefit from
both: efficient mining in itemsets and structure proximity
from graphs. We developed two models to define proximity
patterns. The second one, called Normalized Probabilistic
Association (NmPA), is able to transform a complex graph
mining problem to a simplified probabilistic itemset min-
ing problem, which can be solved efficiently by a modified
FP-tree algorithm, called pFP. NmPA and pFP are evalu-
ated on real-life social and intrusion networks. Empirical
results show that it not only finds interesting patterns that
are ignored by the existing approaches, but also achieves
high performance for finding proximity patterns in large-
scale graphs.

Categories and Subject Descriptors
H.2.8 [Database Applications]: data mining; I.5.1 [Pattern
Recognition]: Models—statistical

General Terms
Algorithms, Performance

Keywords
Graph, Association, Pattern, Mining

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

1. INTRODUCTION
Graph patterns are building blocks for several key graph

applications, including graph indexing, graph search, graph
classification and clustering [37, 13, 12, 40]. Existing graph
pattern mining algorithms, like those developed in [19, 22,
23, 32, 9, 20, 28], achieved great success using strategies that
efficiently traverse the pattern space. However, the defini-
tion of frequent subgraphs might not be appropriate for new
application scenarios present in social and information net-
works. First, the definition is not elastic enough to capture
fuzzy patterns existing in massive attributed graphs. Figure
1 shows one example, where each node is attached with a
set of labels. These labels can be movies recommended by
a user, functions carried by a gene, or intrusions initiated
by a computer. As illustrated in Figure 1, a, b, c often occur
together and formulate an association pattern, while d, c are
not associated together. However, {a, b, c} is neither a fre-
quent subgraph, nor a frequent itemset if we treat each node
as a transaction. Pattern {a, b, c} has three characteristics:
(1) Proximity, these three labels are tightly connected; (2)
Frequency, they appear many times; (3) Flexibility, they are
not always connected in the same way. Due to these char-
acteristics, we can not apply the traditional frequent graph
mining algorithms such as FSG [23] and gSpan [36] to find
them. On the other hand, frequent itemset mining [4, 16]
can not be used either, since {a, b, c} do not appear in the
same set of nodes.

ab

e

a

a

ab

c

bc
d

d

b c
f

Figure 1: Proximity Pattern {a, b, c}
Secondly, for small graphs such as chemical structures,

isomorphism checking is never a problem as demonstrated
by the existing frequent graph mining algorithms. However,
for large graphs like intrusion networks and social networks,
there can be a huge set of isomorphic embeddings existing for
frequent subgraphs. It becomes costly to generate all kinds
of frequent subgraphs. To overcome the above two issues,
we propose a new graph pattern concept, called Proximity
Pattern. A proximity pattern is a subset of labels that re-
peatedly appear in multiple tightly connected subgraphs in

G. {a, b, c} in Figure 1 is an example. Proximity pattern
is an itemset. However, it has a connectivity requirement:
the labels must be associated tightly and frequently in the
graph. For example, in a social network, it can be a set of
movies that are watched by multiple groups of users. That
is, in order to find proximity patterns among movies, one
should not only consider the collection of movies watched
by each person (in this case, it is a traditional itemset min-
ing problem); instead, one should also consider the movies
watched by his or her friends and friends of friends. In this
case, labels associated with two different nodes are related
due to the connection between these two nodes. The same
mining problem also exists in finding associations of intru-
sions on the Internet, where each node corresponds to an
IP address and there is a directed edge between two IP ad-
dresses if an intrusion attack takes place between them. It is
interesting to find the association of different attack types,
which can be used to analyze intrusions.

In this paper, we first introduce an intuitive neighbor as-
sociation model to define and allocate proximity patterns by
identifying the embeddings of these patterns in a graph and
then finding a weighted maximum independent set among
these embeddings. Although this approach is intuitive, it is
inefficient to find patterns in large graphs due to the com-
plexity of embedding enumeration and maximum indepen-
dent set finding. Therefore, we redefine proximity patterns
from an influence point of view, using a probabilistic infor-
mation propagation model. Based on this model, we pro-
pose novel techniques for finding proximity pattern within
a large graph, which consider conditional probabilistic asso-
ciation of the labels at each vertex. In the end, a statistical
test is developed to measure the significance of discovered
proximity patterns.

Our Contributions. To the best of our knowledge, this is
the first paper introducing the concept of proximity patterns
in large graphs.

We model the problem of determining the proximity among
labels in two distinct approaches, neighbor association and
information propagation. While the neighbor association
model is a direct approach of finding the association among
labels based on their distance across the edges of the graph,
we have shown that this method is not efficient for large scale
graphs. In the information propagation model, we develop
novel probabilistic techniques to determine the proximity
among labels in a graph database, based on the Markov
model [29]. We justify that they will be efficient as well as
consistent under interpretations of “relation between trans-
actions” and the “association of labels”. The propagation
model is able to transform a complex graph mining problem
to a simplified probabilistic itemset mining problem, which
can be solved efficiently by a modified FP-tree algorithm,
called pFP(probabilistic FP-growth). Furthermore, for the
discovered patterns, we define an objective function that will
measure their interestingness using randomized test.

In summary, we propose a complete pipeline to define
and mine proximity patterns in massive graphs in a scalable
manner. As tested in real-life social networks and intrusion
networks, proximity patterns turn to be interesting and are
able to capture patterns missed by frequent itemsets and
frequent subgraphs.

The rest of the paper is organized as follows. In Section
2, we define the abstract problem formulation and prelimi-
naries. Our models are introduced in Sections 3 and 4. The

l1 l2,l4

l1,l5

l1,l3

l2,l4

l2,l5

v1

v2

v3

v4

v6

v5

Figure 2: Frequent Itemset vs Proximity Pattern

probabilistic frequent itemset mining algorithm is described
in Section 5. We analyze the experimental results in Sec-
tion 6, and discuss related work in Section 7, followed by
conclusions in Section 8.

2. PRELIMINARIES
An attributed graph G = (V, E) has a label set L and

each node is attached with a set of labels. The label set of
a node u in G is L(u). Let I be a subset of labels such that
the labels in I tightly connect and appear repeatedly in G.
I is named as “Proximity Pattern”. Proximity patterns are
degenerated to frequent itemsets, if we drop all the edges in
G. In this work, we focus on bidirectional and unweighted
graphs. However, the proposed models and algorithms can
be applied to directed graphs as well. Some modifications
are required for weighted graphs, which we shall discuss later
in Section 4.3.

Let D = {t1, t2, . . . , tm} be a set of independent transac-
tions (in the context of attributed graphs, the set of nodes).
Each transaction contains a subset of items in L.

Definition 1 (Support). The support sup(I) of an
itemset I ⊆ L is the number of transactions in the data set
that contain I. Sometimes, we also use the percentage to
represent support.

An itemset is called frequent if its support is greater than
a user-defined minimum threshold. Nearly all the classical
frequent itemset mining algorithms apply the property of
Downward Closure [4] to prune the pattern search space.

Definition 2 (Downward Closure). For a frequent
itemset, all of its subsets are frequent; and thus for an in-
frequent itemset, all of its supersets must be infrequent.

Unfortunately, since frequent itemset mining does not con-
sider the connections in an attributed graph, it might miss
interesting patterns. Figure 2 shows an example. If we con-
sider each node as an independent transaction, {l1, l2} will
not be reported as a frequent itemset. The two items do
not occur together in any of the nodes. However, a care-
ful examination of Figure 2 reveals that they always occur
within one-hop distance of each other. {l1, l2} is a proximity
pattern: l1 is associated in the proximity of l2.

For a proximity pattern I , we need to identify locations
of this pattern in G. Each of these locations shall contain
all of labels in I .

Definition 3 (Embedding and Mapping). Given a
graph G and a subset of vertices π, π ∈ V (G), Let L(π)
be the set of labels in π, i.e., L(π) = ∪u∈πL(u). Given a
label subset I, π is called an embedding of I if I ⊆ L(π).
A mapping φ between I and the vertices in π is a function

φ : I → π s.t., ∃ l, φ(l) ∈ π and l ∈ L(φ(l)). A mapping is
minimum if it is surjective, i.e., ∀v ∈ π,∃l s.t. φ(l) = v.

In Figure 2, {v1, v2, v3} forms an embedding of {l1, l2, l5}.
There can be two possible mappings in this embedding: (1)
φ1 maps l1 to v2, l2 to v1, and l5 to v3, and (2) φ2 maps
l1 to v2, l2 to v3, and l5 to v3. In these two mappings,
φ1 is minimum, φ2 is not. The vertices in π might not be
connected. For example, {v1, v3} is an embedding of {l4, l5}

Given an itemset I and a mapping φ, we need a function
f(φ) to measure its association strength: how tightly the
mapped labels in π are connected. For example, f(φ) could
be the inverse of diameter of φ or the inverse of

∑
u,v∈V (φ)

d(u, v), where d(u, v) is the shortest distance between u and
v. Since there could be multiple mappings in π, we always
choose the mapping that has the highest value of f(φ). To
simplify the presentation, we also denote the strength of an
embedding as f(π).

In the next section, we are going to investigate two models
to define the support of proximity patterns.

3. NEIGHBOR ASSOCIATION MODEL
The complexity of proximity patterns rises from the in-

terconnections of labels in a graph. One has to perform the
following three steps to identify proximity patterns:

Step 1. Find all the embeddings, π1, π2, . . . , πm of an item-
set I in the graph,

Step 2. For each embedding π, measure its strength f(π),

Step 3. Aggregate the strength of the embeddings, F (I) =∑m
i=1 f(πi). Take F (I) as the support of I .

In order to find the support of a proximity pattern, one
has to first enumerate all the embeddings of the pattern.
Unfortunately, due to graph connections, there could be an
exponential number of redundant embeddings. First, the
boundary between the embeddings of a pattern is not ob-
vious. When two embeddings overlap, the overlapped part
might be double counted. The support derived from multi-
ple embeddings will violate the downward closure property
(Definition 2). That is, the support of a pattern I might
be less than a pattern I ′, even though I ⊆ I ′, which makes
it difficult to design fast mining algorithms. Secondly, any
subset of vertices, π, could be an embedding of a pattern
I as long as I ⊂ L(π), though for those loosely connected
embeddings, their strength might be negligible.

In order to solve the above two issues, we introduce two
models in this paper, neighbor association model and infor-
mation propagation model.

Let π1, π2, . . . , πm be the embeddings of I in G. we build
an overlapping graph: each node represents an embedding
and an edge connects two embeddings if they share at least
one common vertex. In the overlapping graph, each node
has f(π) as its weight. Figure 3 shows an example of a
partial overlapping graph derived from Figure 2.

For frequent graph mining in a single graph, Kuramochi
and Karypis [24] proposed using the maximum independent
set as the support of subgraphs, which is proved to have the
downward closure property [15]. An independent set in a
graph is a subset of vertices with no edge connecting them.
In Figure 3, embeddings π1, π4 form a maximum indepen-
dent set. This concept can be extended to the overlapping

3

4

51

2

1={v1, v2}

2={v2, v3}

3={v2, v4}

4={v4, v5}

5={v4, v6}

Figure 3: Overlapping Graph

graph with weights. For a label set I , the support of I could
be the sum of vertex weights derived by the maximum weight
independent set. It can be proved that the support defined
using maximum weight independent set has the downward
closure property too. We call this model Neighbor Associa-
tion Model.

While the neighbor association model solves the pattern
overlapping issue, it is NP-hard in general with respect to
the number of embeddings for a given pattern [38]. Since
the number could be huge, in practice, it is not feasible to
generate all the embeddings of proximity patterns and then
find their maximum weight independent set. Thus we resort
to the second model, Information Propagation Model.

4. INFORMATION PROPAGATION MODEL
The neighbor association model examines the association

from a graph structure perspective. For example, for two
labels l1, l2, in a graph, how closely they are connected and
how often they are connected. It is possible to examine the
same problem from a network influence perspective. Take a
movie recommendation social network as an example, where
users could recommend movies to their friends. Assume G0

is the initial graph. Based on the recommendations, users
might watch more movies and generate a new graph G1 with
updated watched movie lists. This process iterates until it
reaches a stable graph where the movie list for each user
does not change any more.

G0 → G1 → . . . → Gn.

In an ideal situation, it is meaningful to mine frequent
itemsets in Gn. However, in reality we only have an in-
complete snapshot between G0 and Gn. Proximity patterns
in Gi could be interpreted as an approximation to frequent
itemsets in Gn. With that being said, if we are able to

simulate the influence process by generating G̃ from Gi to
approximate Gn, we can instead use frequent itemsets mined

from G̃ to represent proximity patterns in Gi. This is the
main idea of the information propagation model.

We model the influence process using a first order Markov
model. The given graph is considered as the present state,
and the association among labels in the future state will be
reached through an iterative stochastic process. Let L(u) be
the present state of u, denoted by the labels present in u,
and l be a distinct label propagated by one of its neighbors
and l 	∈ L(u). Hence, the probability of observing L(u) and
l is written as

P (L ∪ {l}) = P (L|l)P (l), (1)

where P (l) is the probability of l in u’s neighbors and P (L|l)
is the probability that l is successfully propagated to u.

For multiple labels, l1, l2, . . . , lm, the joint probability of
observing L∪ {l1, . . . , lm} can be written as, assuming each
label is propagated independently,

P (L∪{l1, . . . , lm}) = P (L|l1)∗. . .∗P (L|lm)∗P (l1)∗. . . P (lm).
(2)

The propagation model captures an important character-
istic in social graphs where nodes can influence each other.
As the distance increases, the influence decreases [1], which
is exactly what proximity patterns would like to capture.
In the next two subsections, we introduce two distinct ap-
proaches to assign values to the aforementioned conditional
probabilities, P (L|l), along with the detailed algorithms.
These two approaches handle the situation when the same
label is propagated by multiple nodes, with different dis-
tances.

4.1 Nearest Probabilistic Association
According to the exponential decay model of transmis-

sibility [34], the transmissibility decays as a power of the
distance from the initial source. In the Nearest Probabilis-
tic Association model (NPA), the conditional probability
P (L(u)|l) of Eq. 1, Au(l), is defined as follows.

Definition 4 (Nearest Association). Let l be a la-
bel present in v which is the nearest one to u, where l 	∈ L(u).
Au(l) = P (L(u)|l) = e−α·d, where d is the distance from v
to u, and α is the decay constant (α > 0).

Au(l) decays to zero as d approaches to ∞. For an un-
weighted graph, we assume d = 1 for each edge. The al-

gorithm to find the stable propagated graph G̃ is outlined

in Algorithm 1. G̃ is like a classical transaction database,
where each node represents a transaction and each label rep-

resents an item. However, unlike transactions, in G̃, items
could have values 0, 1 or a fraction between them due to
the probabilistic property of our model. Similar to classical
transactions, 1 denotes full association and 0 no association;
whereas a proper fraction indicates partial association of the
labels at that vertex. The association value should decrease
as the distance between a vertex and a label increases [25,
14]. Therefore, we have an input cut-off parameter ε in Al-
gorithm 1. We do not propagate a label when the nearest
association value for that label is less than ε.

Note that Au(l) = 1 when u itself has the label l; Au(l) =
0 when l is considerably away from u, or there is no path
from u to any of the vertices having l. Since the association
of a label at a vertex is determined by the nearest occurrence
of the label, we call it “nearest association”. Once the inter-
mediate dataset is formed, following the joint distribution
of Eq. 2, we shall define the support of a proximity pattern.

Definition 5 (Probabilistic Support). Given an in-

termediate dataset G̃ derived by the Nearest Probabilistic As-
sociation model, the support of I = {l1, l2, . . . , m}, sup(I) =
1

|V |
∑
u∈V

Au(l1) · · ·Au(lm), where Au(l) represents the prob-

ability of observing l at u.

The support definition in NPA has the downward closure
property. That is, sup(I) ≥ sup(J) if I ⊆ J . This is due
to the fact that Au(l) ≤ 1. Let I = {l1, l2, . . . , m} and

Algorithm 1 Generate Intermediate Dataset G̃

Input: Graph G, cut-off parameter ε.

Output: Intermediate Dataset G̃.

1: i = 0 // iteration
2: for all vertex u of G do
3: Let L0(u) be the label set of u
4: ∀l ∈ L0(u), Au(l)=1; otherwise Au(l)=0
5: end for
6: for all vertex u of G do
7: for all label l in Li(v) \ Li(u), v is u’s neighbor do
8: update Au(l) using Definition 4 (choose the maxi-

mum one)
9: If less than ε, do not propagate l to u

10: end for
11: Li+1(u) = {Li(u) ∪ {l}|Au(l) > 0}
12: end for
13: if Li+1 = Li for all vertices in G then
14: Output Au for all u ∈ V (G)
15: else
16: i = i + 1, goto step 2
17: end if

J = {l1, l2, . . . , lm, lm+1 . . . , n}. Since

m∏
i=1

Au(li) ≥
m∏

i=1

Au(li)
n∏

i=m+1

Au(li),

we have

sup(I) ≥ sup(J).

1

2 2

1

2

1

2

11

2

l1, l2

l1, l2 l1, l2

l1, l2l1, l2 l1, l2 l1, l2

l2 l2
(a) (b) (c) (d) (e)

(a) sup(l1, l2) = 1
(b) sup(l1, l2) = 1
(c) sup(l1, l2) = 0.69
(d) sup(l1, l2) = 0.57
(e) sup(l1, l2) = 0.50

Figure 4: Consistency: NPA and Frequent Itemset

The definition is also consistent with the support defini-
tion of frequent itemsets, where Au(l) can only be 0 or 1.
Figure 4 shows the connection, where the decay constant α
is set at 1. NPA rightly assigns the highest support value
(= 1) for {l1, l2} in Figure 4(a) and 4(b), which is consis-
tent with frequent itemsets. The support value gradually
decreases in Figure 4(c), 4(d), and 4(e). The decreasing
order of support reflects the association strength of l1, l2 in
different structures. Figure 4(c) has a higher support for
{l1, l2} than Figure 4(d) since there are two l2’s close to l1.
Note that, we assume α = 1 for all these examples.

The NPA support is both commutative and associative. It
can also tell slight difference between structures. Table 1(a)
and 1(b) show the intermediate dataset for two different
substructures in Figure 5(a) and Figure 5(b) respectively.
Rightly this approach assigns higher support for {l1, l2, l3}
in Figure 5(a).

Complexity. Let |V | be the total number of vertices in
G, the average degree of each vertex be d, and the average

l1 l1 l2

l3l3

l2
1 12

3

2

3

(a) (b)

Figure 5: Support vs Structure Difference

Table 1(a)
l1 l2 l3

node 1 1 0.37 0.37
node 2 0.37 1 0.37
node 3 0.37 0.37 1

sup(l1, l2, l3) = 0.14

Table 1(b)
l1 l2 l3

node 1 1 0.37 0.14
node 2 0.37 1 0.37
node 3 0.14 0.37 1

sup(l1, l2, l3) = 0.08

Table 1: NPA Intermediate Dataset for Fig. 5

number of labels in each vertex be s. If there are total t
iterations in Algorithm 1, the time complexity of generating

the intermediate dataset G̃ is O(|V | · dt · s). Since t << |V |,
the complexity is almost linear in the number of vertices.
The parameter t is a measure of the maximum depth where
we may look for a label. The depth will be determined by
the decay constant α and ε. In social networks, the mutual
interaction and social influence usually decays quickly with
distance t [18, 10, 27, 1]. The influence is negligible when
t > 3. In NPA, the probabilistic association value of a label
at a distance t is given by e−α·t. Since we ignore the value

less than ε, t ≤ 1

α
ln

(
1

ε

)
.

1 1

2 2 3

l1l1

l2l2l2
(a) (b)

Figure 6: Problem with NPA

The NPA model is fast to calculate. However, there is a
potential issue: For each vertex, it only considers the near-
est neighbor of each label. Thus it cannot differentiate the
situations when there are more than one nearest vertices
with the same label. Figure 6 shows two graphs. In both
cases, sup(l1, l2) = 0.37 according to NPA. In order to dif-
ferentiate them, we propose the second model, Normalized
Probabilistic Association, to take into account all the near-
est occurrences of the same label.

4.2 Normalized Probabilistic Association
In the normalized probabilistic association model (NmPA),

we try to normalize the association by the number of neigh-
bors who have the same label.

Definition 6 (Normalized Association). Given an
attributed unweighted graph G and a node u, if the number

of neighbors of u is n and there are m neighbors having the
label l, the normalized probabilistic association of l at u is

NAu(l) = P (L(u)|l) =
m

n + 1
e−α.

The normalizing factor Z =

(
m

n + 1

)
will give more as-

sociation strength for the labels that are contained by many
neighbors. In order to differentiate the two cases in Figure
6, we choose n + 1 rather than n as the denominator. Since
NAv(l) ≤ 1, the downward closure property is maintained.
For weighted graphs, the modified version of NmPA will be
discussed in Section 4.3.

For an itemset I , the support of I under NmPA could be
calculated similar to NPA (see Definition 5), by following the
joint distribution in Eq. 2. The supports in NmPA shall be
smaller than those in NPA.

NmPA has two advantages over NPA. We have the follow-
ing lemmas.

Lemma 1. Given two nodes u and u′, assume u and u′

have the same number of neighbors, label l 	∈ L(u), l 	∈ L(u′),
we have NAu(l) > NAu′(l) if more neighbors of u contain
l.

Lemma 2. Given two nodes u and v, assume u has more
neighbors than v, label l 	∈ L(u), l 	∈ L(v), we have NAu(l) >
NAv(l) if the percentage of u’s neighbors that contain l is
no less than that of v’s.

Lemmas 1 and 2 show that the NmPA could break the tie
situations when there is an equal number of neighbors or
an equal number of neighbors having l. NmPA favors the
case when more neighbors contain l. These are desirable
properties over NPA.

For the two substructures shown in Figure 6. The normal-
ized association of l2 at vertex 1 is 0.37

2
≈ 0.19 for Figure 6(a)

and 0.37×2
3

≈ 0.25 for Figure 6(b). Therefore, NmPA assigns
a higher support for {l1, l2} in Figure 6(b) than that in Fig-
ure 6(a). It can be verified that the sup(l1, l2) values will be
1.0, 1.0, 0.59, 0.52, 0.50 for the substructures shown in Fig-
ure 4(a), (b), (c), (d) and (e) respectively. Therefore, simi-
lar to NPA, the NmPA support of {l1, l2} decrease gradually
from Structures (a) to (e) in Figure 4.

Next we apply Algorithm 1, as before, to find the inter-
mediate dataset. The only change will be in Line 8 of Algo-
rithm 1. We shall use the following equation to update the
probability,

NAu(l) =
1

n + 1

∑
v∈N(u)

e−α ∗ NAv(l), (3)

where NAv(l) is the association strength of l at v and N(u)
is the neighbor set of u. Since l could be a label propagated
from another vertex, NAv(l) could be less than 1.

Complexity. NmPA has the same complexity as NPA. How-
ever, in practice the propagation decays much faster since
we normalize the probabilistic association with respect to
the number of neighboring nodes at every iteration. Using
NPA and NmPA, the set of all proximity patterns can be de-
termined efficiently from the intermediate dataset, as they
follow the downward closure property. In addition to NPA
and NmPA, other influence models could be adapted here.
As long as the probabilistic association is calculated by Def-
inition 5, the same mining algorithm could be applied.

4.3 Modification for Weighted Graphs
It is easy to verify that NPA and NmPA are also applicable

to weighted graphs. In NPA, we consider only the nearest
vertex of any label among all the neighboring vertices. Sup-
pose, the nearest occurrence of a label l is at distance d from
vertex u. Then, the NPA probabilistic association of l at u is
given by Nu(l) = e−α·d. If there are total n neighbors from
vertex u, and among them m neighbors, each at distance di

from u, have the label l. The NmPA probabilistic association
of l at u is given by NAu(l) =

∑m
i=1 e−α·di/(n + 1). The

procedure of generating the intermediate dataset remains
the same.

5. PROBABILISTIC ITEMSET MINING
Given an attributed graph G, the proposed information

propagation models such as NPA and NmPA will generate a
large set of probabilistic itemsets, whose number is equal to
|V (G)|. Each itemset has tuples 〈I,Aid(I)〉, where id is the
vertex id and Aid(I) is the probabilistic association of label I
to this vertex. To be consistent with the terminology used in
frequent itemset mining, we also call vertex as transaction.

In the existing frequent itemset mining algorithms such as
Apriori [5] and FP-growth [4, 16], the support of an item-
set is the number of occurrences of all the items together
in that itemset. Our problem setting is inherently differ-
ent since it has to multiply the fractional support values
of all the constituent items to determine the joint support
of an itemset. In the following discussion, we will first de-
scribe an algorithm to mine all the proximity patterns from
the intermediate dataset generated by the NPA or NmPA
model described earlier. Next, we provide an approximate
version that will improve efficiency and reduce memory con-
sumption. Finally, in addition to the support definition, we
introduce an objective function to measure the “interesting-
ness” of a proximity pattern and make the algorithm more
efficient and effective to generate only the top-k interesting
patterns.

5.1 Exact Mining
Algorithm 2 describes an exact mining algorithm, called

pFP(Probabilistic FP-Growth). pFP is derived from FP-
Growth in [16]. It first removes the infrequent 1-itemsets and
constructs the FP-tree, where transactions share the same
upper path if their first few frequent items are the same.
We briefly introduce FP-tree here. For details, readers are
referred to [16]. FP-tree is a prefix tree. The root of an FP-
tree is a NULL node, since each transaction can be prefixed
by a NULL item. In the original FP-growth algorithm, each
node v in the tree is labeled by an item I and also associated
with a count, denoted by count(v), representing the number
of transactions that pass through the node. At the same
time, a header table is built. For an entry (I,H(I), ptr) in
the header table, H(I) denotes the count of nodes in FP-
free containing the item I and ptr records the list of nodes
containing the item I . This is also known as the side-link
of I . Now, for each frequent length-1 pattern I present in
the header table, the following technique is applied. The
FP-growth algorithm starts from a frequent length-1 pat-
tern, say I , and for each node u attached to the side-link of
I , it follows the path till the root of the tree. These paths
are called the conditional pattern base of I . Then, an FP-
tree on this conditional pattern base (conditional FP-tree)
is constructed, which acts as a transaction database with

respect to I . Next, the algorithm recursively mines this re-
sulting FP-tree to form all possible combinations of itemsets
prefixed with I .

Algorithm 2 pFP: Probabilistic Itemset Mining

Input: Intermediate transaction dataset; and the minimum
support threshold: minsup.
Output: frequent itemsets above the minsup.
Method: build the FP-tree; then call mine tree(∅,H)
procedure mine tree(X,H)

1: for all entry I (top down order) in H do

2: if [H(I)
DBSIZE

] ≥ minsup then
3: output {I} ∪ X;
4: create a new header table HI by calling

build subtable(I);
5: mine tree({I} ∪ X, HI);
6: end if
7: end for

procedure build subtable(I)

1: for all node v on the side-link of I do
2: walk up the path from v to the root once;
3: if encounter a node u with label J then
4: add/update the entry for J in HI as below:
5: insert u as a side-link of J for that entry;

6: HI(J) = HI(J) +
∑

id∈B(v)∩B(u)

{Aid(J) · Aid(I)};

7: add {id, Aid(J) · Aid(I)} in B(vu) for all id ∈
B(v)

∧B(u)};
8: end if
9: end for

In our problem setting, labels are probabilistic and we
need to multiply these probabilistic association values to
determine the joint association of multiple labels. To han-
dle probabilistic itemsets, in our algorithm, each node v in
the FP-tree is associated with a bucket B(v) consisting of
the probabilistic association values of all single items con-
tained in that node, which is a set of tuples 〈id : Aid(I)〉,
where v is in the side-link of item I and id is the transac-
tion id contained in v. The buckets can be stored in the
disk and accessed when the corresponding nodes are pro-
cessed. As we move up the tree, the buckets corresponding
to the composite itemsets in the sub-header table can be
formed recursively by the intersection of the buckets of its
constituent items. For example, consider an intermediate
dataset given in Table 2. Assume, the minimum support
threshold is set at 0.06. Thus, the infrequent item l5 having
support=0.15/3 = 0.05 can be removed first. The remain-
ing items are then arranged in a decreasing order of their
frequency as l2, l1, l3, l4. The corresponding FP -tree is de-
picted in Figure 7. Note that, although l1 has higher support
than that of l2, it is placed below l2 in the FP -tree, since
frequency of l1 is lower than that of l2 in the dataset.

transaction id l1 l2 l3 l4 l5
1 1 0.3 0 0 0.1
2 0.5 0.2 0.5 1 0
3 0 0.2 0.5 0 0.05

Table 2: Intermediate Dataset

The exact algorithm is given in Algorithm 2. Here, H(I)

Root

l2

l1

l3 l3

l4

l2: 0.7

l4: 1.0

l3: 1.0

l1: 1.5

1: 0.3
2: 0.2
3: 0.2

2: 0.5

1: 1.0
2: 0.5

3: 0.5

2: 1.0H

Figure 7: FP-Tree for Table 2

in the header table denotes the sum of the probabilistic as-
sociation values for item I . For example, while processing l3
from the original header table H , we start moving upwards
from l3 following two distinct paths l3 → l1 → l2 → root
and l3 → l2 → root. The first node encountered is l1,
so it will be added in the sub-header table Hl3 of l3 with
Hl3(l1) = 0.5 × 0.5 = 0.25 > minsup × DBSIZE (see Fig-
ure 8). So, l3l1 is a frequent pattern. The corresponding
bucket will contain only the entry 2 : 0.25, which can be
formed as an intersection of buckets of l3 and l1. The algo-
rithm now recursively considers the sub-header table Hl3l1

by moving upward from l1 along the path l1 → l2 → root.
It calculates Hl3l1(l2) = 0.25 × 0.2 = 0.05 < minsup ×
DBSIZE. So, l3l1l2 is not a frequent pattern. Now, the
control comes back to Hl3 , where the next entry is l2, with
Hl3(l2) = 0.5× 0.2 + 0.5× 0.2 = 0.2 > minsup×DBSIZE.
So, l3l2 is also frequent. Its bucket will contain two entries
2 : 0.1 and 3 : 0.1; which can be determined by the intersec-
tion of buckets of l3 and l2. Note that, it cannot be extended
further and this also finishes the processing of l3 from the
original header table H . So, the algorithm starts processing
l4, which is next to l3 in H .

l2: 0.7

l1: 1.5

l3: 1.0

l4: 1.0

l1: 0.25

l2: 0.2
l2: 0.05

H

H l3
H l3 l1

Figure 8: pFP applied on Table 2

The problem with the exact algorithm (Algorithm 2) is
that, the running time increases compared to that of the
original FP-growth algorithm [33], because we need to access
the bucket whenever the corresponding node is processed.
However, the arguments in support of this exact algorithm
can be as follow.

1. Each bucket size is small compared to the original in-
termediate dataset size. Therefore, pFP is still effi-
cient compared to apriori based approaches, where the
whole dataset needs to be scanned every time.

2. During the execution of pFP, we need only two recent
buckets in the main memory. Therefore, the buck-
ets used before can be removed from the main mem-
ory. Since the buckets for the composite itemsets are
formed by intersection of its constituent itemsets, the
bucket of a large itemset usually gets smaller than that
of its constituent itemsets.

5.2 Approximate Mining
The exact mining algorithm needs to maintain a bucket

with a list of transaction ids, since we have to multiply the
fractional association values to determine the joint support
of multiple items. However, is it possible to compress buck-
ets so that they can be accommodated in the main mem-
ory along with the FP-tree? The compact representation of
buckets must be sufficient enough to generate an approxi-
mation to the joint association of multiple items. Here, we
propose that, instead of maintaining a long bucket list of
〈id, Aid(l)〉 for each node in the FP-tree, we can associate
two variables, sum and occurrence, with each node.

Suppose lx and ly are two distinct labels appearing at
nodes vx and vy respectively in the FP-tree, where vx is
the parent of vy. Let, the buckets B(vx) and B(vy) in
the exact algorithm have the association values A1(lx) =
x1, A2(lx) = x2, . . . , An(lx) = xn and A1(ly) = y1, A2(ly) =
y2, . . . , An(ly) = yn for transactions 1, 2, . . . , n respectively.
Note that some of yi can be zero. We define sum for vx and

vy as sum(vx) =
n∑

i=1

xi and sum(vy) =
n∑

i=1

yi. The variable

occurrence is defined as the number of all non-zero occur-
rences of that label in the corresponding node of the FP-tree.
Clearly, occurrence(vx) = n and occurrence(vy) ≤ n. The
approximate algorithm associates these two variables sum
and occurrence with each node while forming the FP-tree.
Now, we define the approximate joint association of lx and
ly as given in Eq. 4.

Ã(lx, ly) =
sum(vx) · sum(vy)

max{occurrence(vx), occurrence(vy)}

=
1

n

n∑
i=1

xi ·
n∑

i=1

yi

(4)

The exact joint association of lx and ly is given by A(lx, ly) =
n∑

i=1

{xi · yi}. Therefore, the absolute error E due to the ap-

proximation can be expressed as follow.

E = A(lx, ly) − Ã(lx, ly)

=
n∑

i=1

[xi · (sum(vy)

n
− yi)]

=
n∑

i=1

[yi · (sum(vx)

n
− xi)].

(5)

The error E is small compared to A(lx, ly) when all the
xi’s or all the yi’s are very close to each other. For ex-
ample, if we consider the nodes of the FP-tree correspond-
ing to l2 and l1 in Figure 7, the exact joint association

A = 0.40, whereas the approximate joint association Ã =

0.35, and the absolute error E = 0.05. Using this sum-
marization technique, we develop aFP(approximate prob-
abilistic FP-Growth), an approximation to pFP. Only the
build subtable procedure needs to be changed from the ex-
act mining algorithm described earlier (see Algorithm 2).
The new build subtable procedure is given in Algorithm 3.

Algorithm 3 aFP, Approximate Itemset Mining

procedure build subtable(I)

1: for all node v on the side-link of I do
2: walk up the path from v to root once;
3: if encounter a node u with label J then
4: add/update the entry for J in HI as below:
5: insert u as a side-link of J for that entry;

6: calculate Ã(u, v), the approximate joint association
of nodes u and v as mentioned in Section 5.2;

7: HI(J) = HI(J) + Ã(u, v);

8: sum(vu) = Ã(u, v);
9: occurrence(vu) = occurrence(u);

10: end if
11: end for

5.3 Top-k Interesting Patterns
The support value defined by our probabilistic associa-

tion model only tells the association strength of a proximity
pattern in a given graph. In order to measure its real “in-
terestingness”, we need to compare the support value with
the one generated by a randomization test.

Randomization Test. Given an attributed graph G, where
each node has a set of labels, we conduct the following ran-
dom permutation: Randomly select two nodes u, v and one
of their labels, lu, lv, respectively, then swap these two labels
so that u has lv attached, and v has lu attached. The per-
mutation is repeated until all the labels are swapped. Let Q
be the result graph.

Assume that p and q be the support value of an itemset I
in G and Q respectively, using our probabilistic association
model. If I is not found in the permutated graph Q, i.e.,
q = 0, we replace q with the product of support values of
all its constituent labels. Now, we consider I as interesting
if the difference between p and q is high. Note that, the
higher difference between p and q indicates that the individ-
ual items in I truly formulate a pattern. If we only consider
the p value of I , it might be high since some of its members
occur very frequently, in which case, q value will also be
high. Thus, by considering the difference between p and q,
we can eliminate those uninteresting patterns from the result
set. We propose to apply G-test score [31] as an objective
function to measure the interestingness of a pattern.

p · ln p

q
+ (1 − p) · ln 1 − p

1 − q
(6)

We developed a pruning method similar to the vertical
pruning approach proposed by Yan et al. [35] and integrate
it with pFP and aFP to mine interesting patterns using the
probabilistic FP-tree built from G and Q.

Proximity Patterns vs Frequent Itemsets. It is also
possible to compare the proximity patterns mined from a
graph G with the frequent itemsets mined from the node

label sets if one ignores the connection between nodes. One
can run the above test by replacing q with the support of fre-
quent itemsets. The result will tell the new patterns that are
missed by the classic frequent itemset mining approaches. In
the experiment section, we will demonstrate such patterns.

6. EXPERIMENTAL RESULTS
In this section, we present experimental results which il-

lustrate the effectiveness of the information propagation model
NmPA and the efficiency of our approximate itemset mining
framework aFP on a number of real-life graph datasets. We
are not going to experiment neighbor association model due
to its time complexity. In order to evaluate the effectiveness,
we report the top-k interesting patterns discovered by our
approaches. We shall also analyze the effectiveness and ef-
ficiency of the approximate itemset mining algorithm (aFP)
over the exact one (pFP). Finally, we provide a comparison
of our result with that of frequent itemset and subgraph
mining. The experiments are performed using a single core
in a 32GB, 2.50GHz Xeon server.

6.1 Graph Datasets
Our models and mining algorithms are tested on a variety

of real graph data sets including Last.fm, Intrusion network,
and DBLP.

LAST.FM We crawled a local network consisting of 6, 899
users from www.last.fm. Last.fm is a music web site where
users listen to their favorite tracks and communicate with
each other based on their choice of music. For each user,
we crawled the most recent communications among them.
These communications recommend songs. We treat them
as edges. There are total 58, 179 edges. For each user, we
also crawled the name of 3 artists (or musical bands) of
the most recently listened tracks by that user. There are
total 6, 340 artists and musical bands crawled. We mined
proximity patterns among these artists and musical bands
by using the social network graph that we built.

Intrusion Alert Network This network contains the anony-
mous log data of intrusion alerts in a computer network. It
has 200, 858 nodes and 703, 020 edges where each node is
a computer and an edge means a possible attack such as
Denial-of-Service and TCP Service Sweep. Each node has
25 labels (computer generated alerts in this case) on average.
There are around 1, 000 types of alerts. We aim to find the
association of alerts in this graph data, which could reveal
multi-step intrusions.

DBLP Collaboration Graph The DBLP graph is down-
loaded from www.informatik.uni-trier.de/∼ley/db/. There
are 684, 911 distinct authors and 7, 764, 604 collaboration
edges among them. We consider the keywords present in the
paper titles as the labels corresponding to these authors. We
select 130 important keywords to determine the association
among them. Each node has around 9 labels on average in
this graph.

6.2 Effectiveness
We present the top-5 interesting patterns for the Last.fm

data set in Table 3. We applied the NmPA propagation
model and the aFP mining algorithm. For the NmPA model,
we set the decay constant α = 1 and cut-off parameter ε =

Proximity Patterns Score

1 Tiësto, Armin van Buuren , ATB 0.62
2 Katy Perry, Lady Gaga, Britney Spears 0.58
3 Ferry Corsten, Tiësto, Paul van Dyk 0.55
4 Neaera, Caliban, Cannibal Corpse 0.52
5 Lacuna Coil, Nightwish, Within 0.47

Temptation

Table 3: Top-5 Proximity Patterns (Last.fm)

0.12. These parameters ensure that we propagate a label at
most two hops. A label is propagated to a node only when at
least one third of its immediate neighbors contain that label.
The patterns are ranked by the G-test score defined in Eq.
6. Also, we report only the top-5 patterns after eliminating
their smaller sub-patterns.

These patterns are practically interesting, i.e., ATB and
Paul van Dyk are popular German DJ; whereas Tiësto, Ferry
Corsten and Armin van Buuren are Dutch trance produc-
ers and DJ. Britney Spears, Lady Gaga, Katy Perry are
American female pop singers and entertainers. Lacuna Coil,
Nightwish and Within Temptation are Gothic metal bands
from Italy, Finland and Netherlands respectively. Neaera
and Caliban are death metal bands from Germany; while
Cannibal Corpse is an American death metal band.

Proximity Patterns Score

1 Tiësto, Armin van Buuren , ATB 0.62
2 Katy Perry, Lady Gaga, Britney Spears 0.58
3 Ferry Corsten, Tiësto, Paul van Dyk 0.55
4 Neaera, Caliban, Cannibal Corpse 0.52
5 Lacuna Coil, Nightwish, Within 0.47

Temptation

Table 4: Proximity Patterns minus Frequent Item-
sets (Last.fm)

Table 4 illustrates the proximity patterns discovered by
our algorithms but ranked low by the classic frequent item-
set mining algorithm. It shows that the top-5 patterns in
Table 3 and 4 are the same. That is, none of these top-5
‘interesting’ patterns are reported by the classical frequent
itemset mining algorithm, since the items of these patterns
do not co-occur frequently in individual nodes.

Interesting Patterns Score

1 Ping Sweep, Smurf Attack 2.42
2 TFTP Put, Audit TFTP Get Filename, 2.32

ICMP Flood, Ping Flood
3 TCP Service Sweep, Email Error 1.21
4 HTML Outlook MailTo Code Execution, 1.15

HTML NullChar Evasion
5 SQL SSRP Slammer Worm, 0.88

SQL SSRP StackBo

Table 5: Top-5 Proximity Patterns (Alerts)

The top-5 proximity patterns for the Intrusion Network
data set are given in Table 5. The first one describes a Smurf
denial of service attack. The ICMP echo request (Ping)
packets addressed to an IP broadcast address cause a large
number of responses, which might consume all available net-
work bandwidth. The second one describes a TFTP (Trivial

File Transfer Protocol) attack, which allows remote users to
write files to the target system without any authentication.
The fifth one is an attack to Microsoft SQL Server 2000
which is vulnerable to a stack-based buffer overflow in the
SQL Server Resolution Service. The discovered proximity
patterns show that multiple attacks are often coupled to-
gether to complete one intrusion.

Interesting Patterns Score

1 ICMP Flood, Ping Flood 0.94
2 Email Error, SMTP Relay

Not Allowed, HTML Null 0.94
Char Evasion

3 Image RIFF Malformed, 0.90
HTML NullChar Evasion

4 TFTP Put, Ping Flood, 0.80
Audit TFTP Get Filename

5 Email Command Overflow,
Email Virus Double Extension, 0.75
Email Error

Table 6: Proximity Patterns minus Frequent Item-
sets (Alerts)

Table 6 illustrates the proximity patterns discovered by
our algorithms but ranked low by the classic frequent itemset
mining algorithm on the intrusion network dataset. The first
one is related to ICMP DOS Attack. The second one could
be triggered by spammers who use an open relay to send
unsolicited email to a number of email accounts. The fifth
one could indicate an attacker’s attempt to overflow a buffer
using a command that is longer than 512 characters.

Interesting Patterns Score

1 Association, Rules, Mining 1.17
2 Distributed, Network, Architecture 0.84
3 Sensor, Video, Network 0.80
4 Channel, Allocation, Network 0.67
5 Vector, Machine 0.45

Table 7: Top-5 Proximity Patterns (DBLP)

Table 7 shows the top-5 interesting patterns mined from
the DBLP data set. Itemsets 1 and 5 are related to Data
Mining and Machine Learning. Itemsets 2 is from distributed
systems. The remaining patterns are from sensor and net-
work fields.

6.3 Efficiency and Scalability

Steps Last.fm Intrusion DBLP

NmPA 2.0 5.0 187.0
FP-tree 1.0 10.0 89.0
Formation
Top-k Pattern 4.0 2.0 254.0
Mining

Table 8: Runtime (sec)

We present the running time for our algorithms on the
three above mentioned data sets in Table 8. It can be ob-
served that each component runs pretty fast. For example,
the DBLP collaboration graph with about 0.7 million nodes
requires less than 9 minutes to be processed.

Next, we analyze the influence of different parameters on
the running time of information propagation, FP-tree build-
ing and Top-k pattern mining. We use the DBLP graph
for these experiments. Figure 9(a) shows the variation of
running time with respect to the number of nodes present
in the graph. In order to vary the number of nodes, we
randomly delete some nodes and the corresponding edges
from the graph. We set the decay constant α = 1 and vary
the depth of propagation from 1 to 3 for this experiment.
The cut-off parameter is set at ε = 0.36, 0.12 and 0.04 re-
spectively. Figure 9(a) shows that the NmPA running time
increases linearly with the increasing number of nodes. How-
ever, the slope of the lines increases as we increase the depth
of propagation.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 100 200 300 400 500 600 700

R
U

N
N

IN
G

 T
IM

E
 (

SE
C

)

NUMBER OF NODES (K)

DEPTH=1
DEPTH=2
DEPTH=3

(a) # of Nodes

 0
 100

 500

 1000

 1300

 0 1 2 3 4

R
U

N
N

IN
G

 T
IM

E
 (

SE
C

)

PROPAGATION DEPTH

n=400K
n=500K
n=600K
n=685K

(b) Propagation Depth

Figure 9: NmPA Time (DBLP)

Figure 9(b) shows the variation of running time with re-
spect to the propagation depth using NmPA method. We
set α = 1. In order to achieve a propagation depth at 1, 2, 3
and 4, we set the cut-off parameter ε = 0.36, 0.12, 0.04 and
0.01 respectively. Experiments are performed for different
values of n. Figure 9(b) shows that the NmPA running time
increases exponentially with the increasing depth of prop-
agation; which can be explained as the number of h-hop
neighbors increases exponentially as we increase the depth
h.

Next, we show the variation of running time with respect
to the total number of labels in Figure 10. We use the
complete DBLP graph and labels are selected randomly
for this experiment. Similar to the previous case, we set the
decay constant α = 1 and vary the depth of propagation
from 1 to 3. It can be observed that the running time of
NmPA on the DBLP data set increases linearly with the
increasing number of labels.

 0
 60

 120
 180
 240
 300
 360
 420
 480
 540

 100 300 500 700 1000

R
U

N
N

IN
G

 T
IM

E
 (

SE
C

)

NUMBER OF LABELS

DEPTH=1
DEPTH=2
DEPTH=3

Figure 10: NmPA Time vs. # of Labels (DBLP)

In Figure 11, we analyze the running time of FP-tree for-
mation and top-k pattern mining using aFP with respect to
the number of nodes. The propagation is done using NmPA
with α = 1 and ε = 0.12. Note that, as we increase the

 0

 50

 100

 150

 200

 250

 100 200 300 400 500 600 700

R
U

N
N

IN
G

 T
IM

E
 (

SE
C

)

NUMBER OF NODES (K)

FP-TREE FORMATION
TOP-K PATTERN MINING

Figure 11: Mining Time vs. # of Nodes (DBLP)

number of nodes, the running time for the FP-tree forma-
tion increases almost linearly. However, the running time
for mining levels off after a certain value of n. This can be
explained as follow. If there are s labels, each transaction
requires at most s scans to form the complete FP-tree. So,
the time complexity of building the FP-tree is almost linear
in the number of nodes present in the graph. However, once
the FP-tree is built, the mining depends on the size of the
FP-tree and not on the actual size of the database. Hence,
the running time for mining levels off after a certain value
of n.

In Figure 12, we plot the running time of FP-tree forma-
tion and top-k pattern mining using aFP with respect to the
number of labels. Note that, the latter increases at a higher
rate compared to the former as we increase the number of
labels.

6.4 Exact vs. Approximate Mining
We compare the effectiveness of our two mining algo-

rithms, i.e. pFP (exact) and aFP (approximate) on Last.fm
data set. Table 9 reports the top-5 proximity patterns minus
frequent itemsets reported by the pFP mining algorithm. If
we compare these patterns with those reported by the aFP
in Table 4, the top-5 patterns remain the same. Only the
score values differ slightly and therefore, the rank is a little
bit different for some patterns. However, if we consider the
running times given in Table 10, it is easy to conclude that
the aFP is very efficient compared to the pFP . Moreover,
this difference in running time grows very fast as the size
of the database increases. For the DBLP graph data, the
pFP mining algorithm requires about 8 hours, whereas aFP
reports the top-k patterns in less than 9 minutes.

Proximity Patterns Score

1 Katy Perry, Lady Gaga, Britney Spears 0.58
2 Ferry Corsten, Tiësto, Paul van Dyk 0.55
3 Tiësto, Armin van Buuren, ATB 0.55
4 Neaera, Caliban, Cannibal Corpse 0.51
5 Lacuna Coil, Nightwish, Within 0.46

Temptation

Table 9: Proximity Patterns minus Frequent Item-
sets using Exact Mining Algorithm (Last.fm)

6.5 Frequent Subgraph Mining
Subgraph patterns are a subset of proximity patterns, if

we collapse their structure. For Last.Fm, the top-5 signif-
icant patterns discovered by LEAP search [35], are given

Steps aFP(approximate) pFP(exact)

FP -tree Formation 1.0 3.0
Top-k Pattern Mining 4.0 21.0

Table 10: Runtime Comparison (sec) (Last.fm)

in Table 11. These top-5 patterns are also discovered by
our probabilistic association method. If the support thresh-
old is set at 1%, there are 67 frequent subgraphs, while our
approach discovers 5, 444 proximity patterns. If we raise
the support threshold further, our approach could still find
interesting patterns, while the existing subgraph mining al-
gorithm cannot. For Last.Fm(≈ 6K nodes), the running
time of subgraph mining is comparable with ours. But for
the Intrusion Alert Network (≈ 200K nodes), it needs about
4 hours, while our algorithm terminates within 17 seconds.
Our approach avoids subgraph isomorphism testing.

LEAP Patterns

1 Nirvana, Arctic Monkeys, Muse
2 Radiohead, Arctic Monkeys, Muse
3 Red Hot Chili Peppers, Arctic Monkeys, Metalica
4 Radiohead, Placebo, Depeche Mode
5 Radiohead, Cold Play, Arctic Monkeys

Table 11: Significant Patterns via LEAP (Last.fm)

7. RELATED WORK
Finding graph patterns is an active research topic in data

mining. In the area of mining a set of graphs, efficient fre-
quent subgraph mining algorithms have been proposed, in-
cluding AGM [22],FSG [23], gSpan [36], followed by Path-
Join, MoFa, FFSM, GASTON, etc. Recently, techniques
were developed to mine maximal graph patterns [21] and
significant graph patterns [17]. These methods adopt sub-
graph isomorphism testing as a way to count the support of
graph patterns in multiple graphs.

In the area of mining single massive graphs, [24, 11, 15]
developed techniques to calculate the support of graph pat-
terns, i.e., how many times we should count a subgraph in
one graph, when there are overlapping embeddings. Ku-
ramochi and Karypis [24] proposed using the maximum in-
dependent set as the support of subgraphs, which is proved
to have the downward closure property by [15]. [7] proposed
a support measure that is computationally less expensive
and often closer to intuition than other measures. Since
subgraph isomorphism is still used in these methods, they
cannot handle the proximity patterns discussed in this work,
where strict isomorphism is not desired.

Discovering rules from transactions has been extensively
studied. The concept of association rules was first intro-
duced in [3, 5], where the authors proposed an Apriori based
approach to determine all frequent itemsets. [30] describes
a hash-based algorithm which is an improvement over the
Apriori approach. In [39], Zaki proposed a depth-first search
algorithm using set intersection. FP-growth was introduced
by Han et al. in [16], which uses an extended prefix-tree
(FP-tree) structure to store the database in a compressed
form. In [6], Au and Chan introduced fuzzy association
rules based on the fuzzy set theory. Here, each item is as-
signed a non-binary weight according to its significance with

 100

 500
 1000

 5000
 10000

 100 300 500 700 1000

R
U

N
N

IN
G

 T
IM

E
 (

SE
C

)

NUMBER OF LABELS

FP-TREE FORMATION
TOP-K PATTERN MINING

Figure 12: Mining Time vs. # of Labels (DBLP)

respect to a user defined criterion. In [26], Mangalampalli
and Pudi have shown how the existing algorithms like Apri-
ori and FP-growth can be modified to mine data in a fuzzy
environment. Very recently, Bernecker et al. [8] and Charu
et al. [2] proposed techniques for mining frequent itemsets
from uncertain databases. Their techniques could also be
applied. However, to the best of our knowledge, no previous
work targets the problem of finding proximity patterns in
the context of massive graphs.

8. CONCLUSIONS
We introduced a new pattern concept in graphs - proxim-

ity pattern, which is a significant departure from the tradi-
tional concept of frequent subgraphs and frequent itemsets.
Proximity pattern blurs the boundary between itemset and
structure. It relaxes the rigid structure constraint of fre-
quent subgraphs, while introducing structure association to
frequent itemsets. We discussed the weakness of a neighbor
association model and proposed an information propagation
model that is able to transform a complex mining prob-
lem to a simplified weighted itemset mining problem, which
was solved efficiently by a modified FP-tree algorithm. Fur-
thermore, for the discovered patterns, we defined an objec-
tive function that could measure their interestingness using
randomization test. In summary, we proposed a complete
pipeline to define and mine novel proximity patterns in mas-
sive graphs in a scalable manner. This pipeline was evalu-
ated on real-life social and intrusion networks. Empirical
results show that it not only finds interesting patterns that
are ignored by the existing approaches, but also achieves
high performance for finding proximity patterns in large-
scale graphs.

9. ACKNOWLEDGEMENTS
Research was sponsored in part by the U.S. National Sci-

ence Foundation under grant IIS-0847925, and by the Army
Research Laboratory under Cooperative Agreement Num-
ber W911NF-09-2-0053 (NS-CTA). The views and conclu-
sions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Gov-
ernment purposes notwithstanding any copyright notation
here on.

10. REFERENCES
[1] L. A. Adamic and E. Adar. Friends and neighbors on

the web. Social Networks, 25(3):211–230, 2003.

[2] C. C. Aggarwal, Y. Li, J. Wang, and J. Wang.
Frequent pattern mining with uncertain data. In
KDD, pages 29–38, 2009.

[3] R. Agrawal, T. Imielinski, and A. Swami. Database
mining: A performance perspective. IEEE Trans.
Knowledge and Data Engineering, 5:914–925, 1993.

[4] R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large
databases. In SIGMOD, pages 69–84, 1993.

[5] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In VLDB, pages 487–499, 1994.

[6] W. Au and K. C. C. Chan. Farm: A data mining
system for discovering fuzzy association rules. In
FUZZY-IEEE, pages 1217–1222, 1999.

[7] S. Nijssen B. Bringmann. What is frequent in a single
graph? In PAKDD, pages 858–863, 2008.

[8] T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and
A. Zuefle. Probabilistic frequent itemset mining in
uncertain databases. In KDD, pages 119–128, 2009.

[9] C. Borgelt and M. R. Berthold. Mining molecular
fragments: Finding relevant substructures of
molecules. In ICDM, pages 211–218, 2002.

[10] N.R. Buchan, E.J. Johnson, and R.T.A. Croson. Lets
get personal: An international examination of the
influence of communication, culture and social
distance on other regarding preferences. Journal of
Economic Behavior and Organization, 60(3):373–398,
2006.

[11] J. Chen, W. Hsu, M.-L. Lee, and S.-K. Ng.
NeMoFinder: Dissecting genome-wide protein-protein
interactions with meso-scale network motifs. In KDD,
pages 106–115, 2006.

[12] J. Cheng, Y. Ke, W. Ng, and A. Lu. FG-Index:
Towards verification-free query processing on graph
databases. In SIGMOD, 2007.

[13] M. Deshpande, M. Kuramochi, N. Wale, and
G. Karypis. Frequent substructure-based approaches
for classifying chemical compounds. IEEE Trans. on
Knowledge and Data Engineering, 17:1036–1050, 2005.

[14] S. Feld. The focused organization of social ties.
American Journal of Sociology, 86:1015–1035, 1981.

[15] M. Fiedler and C. Borgelt. Support computation for
mining frequent subgraphs in a single graph. In MLG,
pages 25–30, 2007.

[16] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In SIGMOD, pages
1–12, 2000.

[17] H. He and A. Singh. Efficient algorithms for mining
significant substructures in graphs with quality
guarantees. In ICDM, page 163Ű172, 2007.

[18] E. Hoffman, K. McCabe, K. Shachat, and V. Smith.
Social distance and other-regarding behavior.
American Economic Review, 86:653–666, 1996.

[19] L. B. Holder, D. J. Cook, and S. Djoko. Substructure
discovery in the subdue system. In KDD, pages
169–180, 1994.

[20] J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink,
J. Prins, and A. Tropsha. Mining spatial motifs from
protein structure graphs. In RECOMB, pages
308–315, 2004.

[21] J. Huan, W. Wang, J. Prins, and J. Yang. Spin:

Mining maximal frequent subgraphs from graph
databases. In KDD, pages 581–586, 2004.

[22] A. Inokuchi, T. Washio, and H. Motoda. An
apriori-based algorithm for mining frequent
substructures from graph data. In PKDD, pages
13–23, 1998.

[23] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In ICDM, pages 313–320, 2001.

[24] M. Kuramochi and G. Karypis. Finding frequent
patterns in a large sparse graph. In SDM, 2004.

[25] P. Lazarsfeld and R. Merton. Friendship as a social
process: A substantive and methodological analysis. In
Freedom and Control in Modern Society, pages 18–66.
Van Nostrand, 1954.

[26] A. Mangalampalli and V. Pudi. Fuzzy logic-based
pre-processing for fuzzy association rule mining.
Technical report, International Institute of
Information Technology Hyderabad, India, 2008.

[27] S. Milgram. The small world problem. Psychology
Today, 6:62–67, 1967.

[28] S. Nijssen and J. Kok. A quick start in frequent
structure mining can make a difference. In KDD,
pages 647–652, 2004.

[29] A. Papoulis. Probability, Random Variables, and
Stochastic Processes. NY: McGraw Hill, 1991.

[30] J. S. Park, M. S. Chen, and P. S. Yu. Mining
association rules with adjustable accuracy. In IBM
Research Report, 1995.

[31] R. Sokal and F. Rohlf. Biometry: the principles and
practice of statistics in biological research. W. H.
Freeman and Co., 1994.

[32] N. Vanetik, E. Gudes, and S. E. Shimony. Computing
frequent graph patterns from semistructured data. In
ICDM, pages 458–465, 2002.

[33] K. Wang, L. Tang, J. Han, and J. Liu. Top down
fp-growth for association rule mining. In PAKDD,
pages 334–340, 2002.

[34] F. Wu, B. A. Huberman, L. A. Adamic, and J. R.
Tyler. Information flow in social groups. Physica A,
337:327–335, 2004.

[35] X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining
significant graph patterns by leap search. In SIGMOD,
pages 433–444, 2008.

[36] X. Yan and J. Han. gSpan: Graph-based substructure
pattern mining. In ICDM, pages 721–724, 2002.

[37] X. Yan, P. S. Yu, and J. Han. Graph indexing: A
frequent structure-based approach. In SIGMOD, pages
335–346, 2004.

[38] Guizhen Yang. Computational aspects of mining
maximal frequent patterns. Theor. Comput. Sci.,
362(1):63–85, 2006.

[39] M. J. Zaki. Scalable algorithms for association mining.
IEEE Trans. Knowledge and Data Engineering,
12:372–390, 2000.

[40] P. Zhao, J. Yu, and P. Yu. Graph indexing: tree +
delta >= graph. In VLDB, pages 938–949, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

