
INFORMATION-THEORETIC METHODS
FOR ANALYSIS AND INFERENCE IN ETYMOLOGY

Hannes Wettig1, Javad Nouri1, Kirill Reshetnikov2 and Roman Yangarber1

1Department of Computer Science, University of Helsinki, Finland, First.Last@cs.helsinki.fi
2Academy of Sciences, Institute of Linguistics, Moscow, Russia.

ABSTRACT

We introduce a family of minimum description length mod-
els which explicitly utilizes phonetic features and captures
long-range contextual rules that condition recurrent cor-
respondences of sounds within a language family. We
also provide an algorithm to learn a model from this fam-
ily given a corpus of cognates, sets of genetically related
words. Finally, we present an imputation procedure which
allows us compare the quality of alignment models, as
well as the goodness of the data sets. Our evaluations
demonstrate that the new model yields improvements in
performance, as compared to those previously reported in
the literature.

1. INTRODUCTION

This paper introduces a family of context-aware models
for alignment and analysis of etymological data on the
level of phonetic features. We focus on discovering the
rules of regular (or recurrent) phonetic correspondence
across languages and determining genetic relations among
a group of languages, based on linguistic data. In this
work, we use the StarLing database of Uralic, [1], based
on [2], restricted to the Finno-Ugric sub-family, consisting
of 1898 cognate sets, as well as Suomen Sanojen Alku-
perä (SSA), “The Origin of Finnish Words,” a Finnish et-
ymological dictionary, [3], which contains over 5000 cog-
nate sets. Elements within a given cognate set are words
posited by the database creators to be derived from a com-
mon origin, a word-form in the ancestral proto-language.

One traditional arrangement of the Uralic languages—
adapted from Encyclopedia Britannica—is shown in Fig-
ure 1; alternative arrangements found in the literature in-
clude moving Mari into a separate branch, or grouping it
with Mordva into a branch, called “Volgaic”.

We aim to find the best alignment at the level of single
sounds. The database itself only contains unaligned sets
of corresponding words, with no notion of which sounds
correspond, i.e., how the sounds align. We learn rules
of phonetic correspondence allowing only the data to de-
termine what rules underly it, using no externally sup-
plied (and possibly biased) prior assumptions or “univer-
sal” principles—e.g., no preference to align vowel with
vowels, a symbol with itself, etc. Therefore, all rules we
find are inherently encoded in the corpus itself.

Uralic tree

Figure 1. Finno-Ugric branch of Uralic language family

The criterion we use to choose a model (class) from
the family we define is the code-length needed to com-
municate the complete (aligned) data. The learned min-
imum description length (MDL) models provide the de-
sired alignments on the sound level, but also the underly-
ing rules of correspondence, which enable us to compress
the data. Apart from looking at the code-length, we also
evaluate our models using an imputation (reconstruction
of held-out data) procedure and by building phylogenies
(family trees). We release the suite of etymological soft-
ware for public use.

Most closely related to this work is our own previous
work, e.g., [4], and work conducted at Berkeley, e.g., [5,
6]. The main improvement over these lies in awareness of
a broader phonetic context of our models. We build deci-
sion trees to capture this context, where irrelevant context
does not increase model complexity.

2. ALIGNING PAIRS OF WORDS

We begin with pairwise alignment: aligning pairs of words,
from two related languages in our corpus of cognates. For
each word pair, the task of alignment means finding ex-
actly which symbols correspond. The simplest form of
such alignment at the symbol level is a pair (σ : τ) ∈
Σ×T , a single symbol σ from the source alphabet Σ with
a symbol τ from the target alphabet T . We denote the
sizes of the alphabets by |Σ| and |T |.

To model insertions and deletions, we augment both

alphabets with a special empty symbol—denoted by a dot—
and write the augmented alphabets as Σ. and T.. We can
then align word pairs such as vuosi—al (meaning “year”
in Finnish and Xanty), for example as any of:

v u o s i
| | | | |
a l . . .

v u o s i
| | | | |
. a . l .

etc...

The alignment on the right then consists of the symbol
pairs: (v:.), (u:a), (o:.), (s:l), (i:.).

3. FEATURE-WISE CONTEXT MODELS

Rather than encoding symbols (sounds) as atomic, we code
them in terms of their phonetic features. To this end, the
corpus has been transcribed into feature vectors, where
each sound is represented as a vector of five multinomi-
als, taking on two to eight values, where the first entry
is its type (consonant or vowel) and the remaining four
entries are as listed in Figure 2. We also encode word
boundaries (denoted by #) and dots (deletions/insertions)
as extra types, with no additional features.

Consonant articulation
M Manner plosive, fricative, glide, ...
P Place labial, dental, ..., velar, uvular
X Voiced – , +
S Secondary – , affricate, aspirate, ...

Vowel articulation
V Vertical high—mid—low
H Horizontal front—center—back
R Rounding – , +
L Length 1—5

Figure 2. Phonetic features for consonants and vowels.

We employ the MDL Principle [7] for model class se-
lection and the MDL cost consists of two parts. First, we
encode the model class C, which is determined by a set of
18 decision trees, one for each feature (type plus four con-
sonant and four vowel features) on both levels—source
and target language. These trees query some context at
each inner node, and their leaves provide the distribution
to be used to encode the corresponding feature of a sound.
More precisely the model (class) is allowed to query a
fixed, finite a set of candidate contexts. A context is a
triplet (L,P, F), where L is the level (source or target),
P is a position relative to what we are currently encoding,
and F is one of the possible features found at that position.
An example of allowed candidate positions is given in Fig-
ure 3. In this setup, we have 2 levels × 8 positions × 2–6

Context Positions
I itself, possibly dot

-P previous position, possibly dot
–S previous non-dot symbol
–K previous consonant
–V previous vowel
+S previous or self non-dot symbol
+K previous or self consonant
+V previous or self vowel

... (other contexts possible)

Figure 3. Context positions that a feature tree may query.

features ≈ 80 candidate contexts, one of which defines an
inner node of a feature tree. We can therefore encode each
tree using one bit per node to indicate whether it is a leaf
or not, plus about log 80 bits for each inner node to spec-
ify the context on which it splits. For a model class C, we
need to encode all of its 18 trees in this way, the resulting
total code-length we denote L(C).

The second part of the code-length comes from en-
coding the aligned data using model class C. We encode
the feature in some fixed order, type first for it determines
which other features need to be encoded. For each sound
and each feature, we take a path from the root of the corre-
sponding tree of C to a leaf, following at each inner node
the branch that corresponds to the current context which
is being queried. For example, when encoding feature X
(voicedness) of a symbol σ in the source language we may
arrive at a node given by (L,P, F) = (target,−K,M)
querying the manner of articulation of the previous con-
sonant on the target level. This value (any manner of ar-
ticulation or ’n/a’ if there is no consonant on the target
level between the current position and the beginning of
the word) determines the edge we follow down the tree.

Each path from the root of a tree to a low-entropy leaf
can be interpreted as as rule of phonetic correspondence.
The path describes a contextual condition, the leaf gives
the correspondence itself. High-entropy leaves represent
variation that the model cannot explain.

In this way, all features of all symbols arrive at some
node in the corresponding tree. We encode this data at
each leaf independent of all other leaves using the normal-
ized maximum likelihood (NML) distribution [8]. As the
data at each leaf is multinomial, with cardinality |F |—the
number of values feature F can take on—the correspond-
ing code-length can be computed in linear time [9].

When C = {T L
F } consists of trees T L

F for level L and
feature F , and D is the aligned corpus such that D|L,F,`

is the portion arriving at a leaf ` ∈ T L
F , then the overall

code-length for D using C is

L(D, C) = L(C) +
∑
L

∑
F

∑
`

LNML(D|L,F,`). (1)

As implied, LNML(D|L,F,`) is the multinomial stochas-
tic complexity of the restricted data D|L,F,`. This code-
length is the criterion to be minimized by the learning al-
gorithm.

4. LEARNING

We start with an initial random alignment for each pair of
words in the corpus. We then alternatively re-build the de-
cision trees for all features on source and target levels as
described below, and re-align all word pairs in the corpus
using standard dynamic-programming, an analog proce-
dure to the one described in [4]. Both of these operations
decrease code-length. We continue until we reach conver-
gence.

Given a complete alignment of the data, for each level
L and feature F we need to build a decision tree. We

want to minimize the MDL criterion (1), the overall code-
length. We do so in a greedy fashion by iteratively split-
ting the level-feature restricted data D|L,F according to
the cost-optimal decision (context to split upon). We start
out by storing D|L,F at the root node of the tree, e.g., for
the voicedness feature X in Estonian (aligned to Finnish)
we store data with counts:

+ 801
- 821

In this example, there are 1622 occurrences of Estonian
consonants in the data, 801 of which are voiced. The best
split the algorithm found was on (Source, I, X), resulting
in three new children. The data now splits according to
this context into three subsets with counts:

+
+ 615
- 2

-
+ 135
- 764

n/a
+ 51
- 55

For each of these new nodes we split further, until no fur-
ther drop in total code-length can be achieved. A split
costs about log 80 plus the number of decision branches in
bits, the achieved gain is the drop in the sum of stochastic
complexities at the leaves obtained by splitting the data.

5. EVALUATION

We present two views on evaluation: a strict view and an
intuitive view. From a strictly information-theoretic point
of view, a sufficient condition to claim that model (class)
M1 is better thanM2, is thatM1 yields better compression
of the data. Figure 4 shows the absolute costs (in bits) for

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

se
pa

ra
te

-n
or

m
al

-p
re

qu
en

tia
l

CB + kinds prequential

1x1 Compare costs

est
fin

khn_dn
kom_s
man_p
mar_kb
mrd_e
saa_n
udm_s

unk

Figure 4. Comparison of code-lengths achieved by con-
text model (Y-axis) and 1-1 baseline model (X-axis).

all language pairs1. The context model always has lower
cost than the 1-1 baseline presented in [4]. In figure 5,
we compare the context model against standard data com-
pressors, Gzip and Bzip, as well as models from [4], tested
on over 3200 Finnish-Estonian word pairs from SSA [3].
Gzip and Bzip need not encode any alignment, but neither
can they exploit correspondence of sounds. These com-

1The labels appearing in the figures for the 10 Uralic lan-
guages used in the experiments are: est=Estonian, fin=Finnish,
khn=Khanty, kom=Komi, man=Mansi, mar=Mari, mrd=Mordva,
saa=Saami, udm=Udmurt, unk/ugr=Hungarian.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000 3500

C
om

pr
es

se
d

si
ze

 x
10

00
 b

its

Data size: number of word pairs (average word-length: 5.5 bytes)

Gzip
Bzip2

1-1 model
2-2 model

Context model

Figure 5. Comparison of compression power

parisons confirm that the new model finds more regularity
in the data than the baseline model does, or an off-the-
shelf data compressor, which has no knowledge that the
words in the data are etymologically related.

For a more intuitive evaluation of the improvement in
the model quality, we can compare the models by using
them to impute unseen data. For a given model, and a lan-
guage pair (L1, L2)—e.g., (Finnish, Estonian)—hold out
one word pair, and train the model on the remaining data.
Then show the model the hidden Finnish word and let it
impute (i.e., guess) the corresponding Estonian. Imputa-
tion can be done for all models with a simple dynamic
programming algorithm, very similar to the one used in
the learning phase. Formally, given the hidden Finnish
string, the imputation procedure selects from all possible
Estonian strings the most probable Estonian string, given
the model. Finally, we compute an edit distance (e.g., the
Levenshtein distance) between the imputed string and the
correct withheld Estonian word. We repeat this procedure
for all word pairs in the (L1, L2) data set, sum the edit dis-
tances, and normalize by the total size (number of sounds)
of the correct L2 data—giving the Normalized Edit Dis-
tance: NED(L2|L1,M) from L1 to L2, under modelM .

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.2 0.3 0.4 0.5 0.6 0.7

se
pa

ra
te

-n
or

m
al

-p
re

qu
en

tia
l

CB + kinds prequential

NFED

est
fin

khn
kom
man
mar
mrd
saa

udm
unk

Figure 6. Comparison of NED of context model (Y-axis)
and “two-part 1-1” model (X-axis).

The NED indicates how much regularity the model has
captured. We use NED to compare models across all lan-
guages, Figure 6 compares the context model to the “two-
part 1-1” model from [4]. Each of the 10 · 9 points is a
directed comparison of the two models: the source lan-
guage is indicated in the legend, and the target language is
identified by the other endpoint of the segment on which
the point lies. The further away a point is from the di-
agonal, the greater the advantage of one model over the
other.

The context model always has lower cost than the base-
line, and lower NED in 88% of the language pairs. This is
an encouraging indication that optimizing the code length
is a good approach—the models do not optimize NED di-
rectly, and yet the cost correlates with NED, which is a
simple and intuitive measure of model quality.

A similar use of imputation was presented in [5] as
a kind of cross-validation. However, the novel, normal-
ized NED measure we introduce here provides yet an-
other inter-language distance measure (similarly to how
NCD was used in [4]). The NED (distances) can be used
to make inferences about how far the languages are from
each other, via algorithms for drawing phylogenetic trees.
The pairwise NED scores were fed into the NeighborJoin
algorithm, to produce the phylogeny shown in Fig. 7.

Figure 7. Finno-Ugric tree induced by imputation and nor-
malized edit distances (via NeighborJoin)

To compare how far this is from a “gold-standard”,
we can use, for example, a distance measure for unrooted,
leaf-labeled (URLL) trees found in [10]. The URLL dis-
tance between this tree and the tree shown in Fig. 1 is 0.12,
which is quite small. Comparison with a tree in which
Mari is not coupled with either Mordva or Permic—which
is currently favored in the literature on Uralic linguistics—
makes it a perfect match.

6. DISCUSSION AND FUTURE WORK

We have presented a feature-based context-aware MDL
alignment method and compared it against earlier models,
both in terms of compression cost and imputation power.
Language distances induced by imputation allow building
of phylogenies. The algorithm takes only an etymological

data set as input, and requires no further assumptions. In
this regard, it is as objective as possible, given the data
(the data set itself, of course, may be highly subjective).

To our knowledge, this work represents a first attempt
to capture longer-range context in etymological modeling,
where prior work admitted minimum surrounding context
for conditioning the edit rules or correspondences.

Acknowledgments
This research was supported by the Uralink Project of the
Academy of Finland, and by the National Centre of Excel-
lence “Algorithmic Data Analysis (ALGODAN)” of the
Academy of Finland. Suvi Hiltunen implemented earlier
versions of the models.

7. REFERENCES

[1] Sergei A. Starostin, “Tower of Babel: Etymological
databases,” http://newstar.rinet.ru/, 2005.

[2] Károly Rédei, Uralisches etymologisches Wörter-
buch, Harrassowitz, Wiesbaden, 1988–1991.

[3] Erkki Itkonen and Ulla-Maija Kulonen, Suomen
Sanojen Alkuperä (The Origin of Finnish Words),
Suomalaisen Kirjallisuuden Seura, Helsinki, Fin-
land, 2000.

[4] Hannes Wettig, Suvi Hiltunen, and Roman Yangar-
ber, “MDL-based Models for Alignment of Ety-
mological Data,” in Proceedings of RANLP: the
8th Conference on Recent Advances in Natural Lan-
guage Processing, Hissar, Bulgaria, 2011.

[5] Alexandre Bouchard-Côté, Percy Liang, Thomas
Griffiths, and Dan Klein, “A probabilistic approach
to diachronic phonology,” in Proceedings of the
2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Nat-
ural Language Learning (EMNLP-CoNLL), Prague,
June 2007, pp. 887–896.

[6] David Hall and Dan Klein, “Large-scale cognate re-
covery,” in Empirical Methods in Natural Language
Processing (EMNLP), 2011.

[7] Peter Grünwald, The Minimum Description Length
Principle, MIT Press, 2007.

[8] Jorma Rissanen, “Fisher information and stochas-
tic complexity,” IEEE Transactions on Information
Theory, vol. 42, no. 1, pp. 40–47, January 1996.

[9] Petri Kontkanen and Petri Myllymäki, “A linear-
time algorithm for computing the multinomial
stochastic complexity,” Information Processing Let-
ters, vol. 103, no. 6, pp. 227–233, 2007.

[10] D.F. Robinson and L.R. Foulds, “Comparison of
phylogenetic trees,” Math. Biosci., vol. 53, pp. 131–
147, 1981.

