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ABSTRACT
We discuss a nonparametric estimation method of the mix-
ing distribution in mixture models. We propose an ob-
jective function with one parameter, where its minimiza-
tion becomes the maximum likelihood estimation or the
kernel vector quantization in special cases. Generalizing
Lindsay’s theorem for the nonparametric maximum like-
lihood estimation, we prove the existence and discrete-
ness of the optimal mixing distribution and devise an al-
gorithm to calculate it. Furthermore, we show the connec-
tion between the unifying estimation framework and the
rate-distortion problem. It is demonstrated that with an
appropriate choice of the parameter, the proposed method
is less prone to overfitting than the maximum likelihood
method.

1. INTRODUCTION

Mixture models are widely used for clustering and den-
sity estimation. We discuss a nonparametric estimation
method of mixture models where an arbitrary distribution,
including a continuous one, is assumed over the compo-
nent parameter. It was proved by Lindsay [1] that the
maximum likelihood estimate of the mixing distribution
is given by a discrete distribution whose support consists
of distinct points, the number of which is no more than the
sample size. This provides a framework for determining
the number of mixture components from data. The mix-
ture estimation algorithm developed in [2] can be consid-
ered as a procedure for estimating such discrete distribu-
tions. However, it is vulnerable to overfitting because of
the flexibility of the nonparametric estimation.

In this study, we propose a nonparametric mixture es-
timation method defined by minimization of an objective
function with one parameter β. With specific choices of
β, the proposed method reduces to the maximum likeli-
hood estimation (MLE) and the kernel vector quantiza-
tion (KVQ) [3]. Generalizing Lindsay’s theorem for the
nonparametric MLE, we prove the existence and discrete-
ness of the optimal mixing distribution. Then, we provide
an algorithm to calculate the optimal discrete distribution,
that is specifically tailored to the proposed objective func-
tion from the procedure in [2]. Numerical experiments
demonstrate that there exists an appropriate choice of β

in terms of the average generalization error. Furthermore,
we relate the proposed mixture estimation method to the
rate-distortion problem [4] to build insight into the selec-
tion of the width of the component density.

2. MIXTURE MODELLING

Given n training samples, {x1, · · · , xn}, xi ∈ Rd, con-
sider nonparametric estimation of the mixing distribution
q(θ) of the following mixture density of the model p(x|θ)
with parameter θ ∈ Ω,

r(x) = r(x; q) =
∫

p(x|θ)q(θ)dθ. (1)

Let ri = r(xi; q) =
∫

p(xi|θ)q(θ)dθ. We choose q(θ) as
the optimal function of the following problem,

q̂(θ) = argmin
q

Fβ(q),

where

Fβ(q) =

{
1
β log

(
1
n

∑n
i=1 r−β

i

)
, (β ̸= 0)

− 1
n

∑n
i=1 log ri (β = 0).

(2)

The objective function Fβ(q) is continuous with respect
to β ∈ R. This estimation boils down to the MLE when
β = 0 [1]. As β → ∞, it becomes the minimization
of maxi(− log ri), that is, KVQ with the kernel function,
K(x, θ) = p(x|θ) [3]1.

For β ̸= 0, it is also expressed as

Fβ(q) = − 1
β

min
p∈∆

{
β

n∑
i=1

pi log ri +
n∑

i=1

pi log
pi

1/n

}
,

(3)
where ∆ = {p = (p1, p2, · · · , pn)|pi ≥ 0,

∑n
i=1 pi =

1}. This expression is verified through the fact that the
minimum is attained by

pi =
r−β
i∑n

j=1 r−β
j

, (4)

and will be used for deriving a simple learning procedure
in the next section.

1The original KVQ restricts the possible support points of q(θ) to
the training data set {x1, · · · , xn}. That is q(θ) =

∑n
i=1 qiδ(θ−xi),

qi ≥ 0,
∑n

i=1 qi = 1.



3. OPTIMAL MIXING DISTRIBUTION

3.1. Discreteness of the Optimal Mixing Distribution

We can show the convexity of Fβ with respect to r =
(r1, · · · , rn) for β ≥ −1.

Therefore, for β ≥ −1, there exists a unique r that
minimizes Fβ at the boundary of the convex hull of the
set {pθ = (p(x1|θ), · · · , p(xn|θ))|θ ∈ Ω} where Ω is
the parameter space. From Caratheodory’s theorem, this
means that the optimal r is expressed by a convex com-
bination,

∑k
l=1 qlpθl

, with ql ≥ 0,
∑k

l=1 qk = 1 and
k ≤ n, indicating that the optimal mixing distribution is
q(θ) =

∑k
l=1 qlδ(θ − θl), the discrete distribution whose

support size is no more than n.

3.2. Learning Algorithm

The KKT condition for the optimal q(θ) is given by µ(θ) ≤
1 for all θ where

µ(θ) =
n∑

i=1

αip(xi|θ), (5)

and

αi =
r−β−1
i∑n
j=1 r−β

j

. (6)

Hence the mixing distribution q(θ) can be optimized by
Algorithm 1 which sequentially augments the set of the
support points until the maximum of µ(θ) approach 1 [2].

Algorithm 1 Decoupled Approach to Mixture Estimation

1: Initialize k = 0 and αi = 1/n and prepare a small
positive constant ϵ.

2: repeat
3: Let θ̂k = argmax

θ
µ(θ) and k = k + 1, where µ(θ)

is given by eq.(5).
4: Define the discrete distribution, qk(θ) =∑k

l=1 πlδ(θ − θ̂l). Optimize {πl, θ̂l}k
l=1 by

minimizing Fβ(qk).
5: Compute {αi}n

i=1 by eq.(6) with ri =∑k
l=1 πlp(xi|θ̂l).

6: until maxθ µ(θ) < 1 + ϵ holds.

3.3. EM Updates for Finite Mixtures

Eq.(3) is equivalent to a weighted sum of negative log-
likelihood and an EM-like algorithm is available for the
optimization of {πl, θ̂l}k

l=1 in Step 4. Its updating rule is
obtained as follows,

π
(t+1)
j =

n∑
i=1

p
(t)
i νij , and θ̂

(t+1)
j =

∑n
i=1 p

(t)
i νijxi∑n

i=1 p
(t)
i νij

,

where p
(t)
i = r

(t)−β
i∑n

j=1 r
(t)−β
j

, r
(t)
i =

∑k
l=1 π

(t)
l p(xi|θ̂(t)

l )

and

νij =
π

(t)
j p(xi|θ̂(t)

j )∑k
m=1 π

(t)
m p(xi|θ̂(t)

m )
(7)
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Figure 1. Example of the estimated mixture for β = −0.2
and σ2 = 1. Corresponding mixing distributions are illus-
trated in the x-y planes where the location and the height
of the red lines are respectively the mean parameter θ̂l and
the weight π̂l of each component.

is the posterior probability that the data point xi is as-
signed to the cluster center θ̂l.

We can prove for β ≤ 0 that the above update mono-
tonically decreases the objective Fβ since this minimiza-
tion is expressed by the double minimization over {πl, θ̂l}k

l=1

and {pi}n
i=1 from eq.(3). However, the similar proof does

not apply for β > 0. Hence, we switch to another update
rule for β > 0, which is omitted in this paper.

4. EXPERIMENTS

In this section, we demonstrate the properties of the esti-
mation method by a numerical simulation focusing on the
case of 2-dimensional Gaussian mixtures where

p(x|θ) =
1

2πσ2
exp

(
−||x − θ||2

2σ2

)
. (8)

We generated synthetic data by the true distribution,

p∗(x) =
1
2
N(x|θ∗1 , I2) +

1
2
N(x|θ∗2 , I2), (9)

where θ∗1 = (0, 0)T , θ∗2 = (4, 4)T and N(x|θ, σ2I2) =
1

2πσ2 exp
(
− ||x−θ||2

2σ2

)
is the Gaussian density function.

We assumed that the kernel width σ2 in eq.(8) was
known and p(x|θ) was set to N(x|θ, I2). Let q̂(θ) be an
estimated mixing distribution. The optimal mixing distri-
bution q(θ) is given by 1

2δ(θ−θ∗1)+ 1
2δ(θ−θ∗2) in this case.

An example of the estimated mixture model for β = −0.2
and σ2 = 1 is demonstrated in Figure 1.

Figure 2(a) and Figure 2(b) respectively show the train-
ing error, 1

n

∑n
i=1 log p∗(xi)∫

p(xi|θ)q̂(θ)dθ
, and the generaliza-

tion error, 1
ñ

∑ñ
i=1 log p∗(x̃i)∫

p(x̃i|θ)q̂(θ)dθ
, for test data {x̃i}ñ

i=1

generated from the true distribution (9). All results were
averaged over 100 trials for different data sets generated
by (9). The number of training data is n = 50 and that of
test data is ñ = 200000. We also applied the original ver-
sion of the algorithm in [2], where only {πl} are updated
by the EM algorithm with the weight pi in eq.(4) for each
sample in Step 4. These results are indicated as “means
fixed”. We see that the average training error takes the
minimum at β = 0 as expected while the average gener-
alization error is minimized around β = −0.2.
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(a) Training error
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(b) Generalization error
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(c) Maximum error

Figure 2. Training error (a), generalization error (b) and maximum error (c) against β. The error bars show 95% confidence
intervals.

Figure 2(c) shows the average of the maximum er-
ror, maxi

(
− log

∫
p(xi|θ)q̂(θ)dθ

)
−maxi (− log p∗(xi)),

which corresponds to the objective function of the KVQ.
As expected, the monotone decrease of it with respect to
β implies the estimation approaches the KVQ as β → ∞.

In Figure 3, we show the number of estimated compo-
nents remaining after the elimination of components with
sufficiently small mixing proportions (less than 1

n2 ). Since
it strongly depends on ϵ, we also applied hard assignments
to cluster centers for each data point and counted the num-
ber of hard clusters, which is also plotted in Figure 3.
Here, each point xi is assigned to the cluster center θ̂l that
maximizes the posterior probability (7). The number of
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Figure 3. Number of components (cross) and number of
hard clusters (asterisk) against β.

components k̂ as well as that of hard clusters increase as
β becomes larger. This reduces the average generaliza-
tion error when β takes slightly negative value as we just
observed in Figure 2(b).

5. CONNECTION TO RATE-DISTORTION
PROBLEM

The rate-distortion (RD) problem encoding the source ran-
dom variable X with density p∗(x) to the output Θ is re-
formulated to solving the following optimization problem

[4, 5],

inf
q
−

∫
p∗(x) log

∫
q(θ) exp(sd(x, θ))dθdx. (10)

Here d(x, θ) is the distortion measure and s is a Lagrange
multiplier. It provides the slope of a tangent to the RD
curve and hence has one-to-one correspondence with a
point on the RD curve. This problem reduces to the MLE
(Fβ(q) when β = 0) with p(x|θ) ∝ exp(sd(x, θ)) if
the source p∗(x) is replaced with the empirical distribu-
tion. In the case of the Gaussian mixture with d(x, θ) =
||x − θ||2, s specifies the kernel width by σ2 = − 1

2s .
For general β, the expression (3) and the optimal out-

put distribution q̂(θ) =
∑k̂

l=1 π̂lδ(θ − θ̂l) imply the RD
function of the source,

∑n
i=1 piδ(x − xi), with the rate

n∑
i=1

k̂∑
l=1

piνil log
νil∑n

j=1 pjνjl
,

and the average distortion

n∑
i=1

k̂∑
l=1

piνild(xi, θ̂l),

where νil is the posterior probability defined by eq.(7).
Since the rate is the mutual information between X and Θ,
it is bounded from above by the entropy, −

∑k̂
l=1 π̂l log π̂l

and further by log k̂. However, the source depends on pi,
which depends on q(θ) as in eq.(4) and hence the above
pair of rate and distortion does not necessarily inherit prop-
erties of the usual RD function such as convexity.

Figure 4 demonstrates examples of RD functions ob-
tained by the minimization of Fβ(q) for β = −0.2, β = 0
and β = 0.5 in the case of the Gaussian mixture used in
Section 4.

The three curves show similar behavior such as a mono-
tone decreasing trend although only that for β = 0.5 loses
convexity. This suggests the usage of the RD curve for
determining the kernel width σ2, e.g., by prespecifying a
desired rate or average distortion. If we keep the desired
rate or distortion to determine σ2 for different choices of
β, then β can be chosen among them for example by CV.
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(a) Rate-distortion curve for β = −0.2.
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(b) Rate-distortion curve for β = 0.0.
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(c) Rate-distortion curve for β = 0.5.

Figure 4. Examples of rate-distortion curves. The lines with slope s passing through the point corresponding to s (cross)
are also illustrated for s = −0.5 (magenta) and s = −2.0 (blue). The rate is scaled by log 2 to yield bits.

6. EXTENSION TO OTHER CONVEX
OBJECTIVE FUNCTIONS

The proposed algorithm in Section 3.2 is based on the
decoupled approach developed in [2]. The general ob-
jective function considered in [2] includes the MLE and
the KVQ to estimate q(θ). We proved in Section 3.1 by
extending Lindsay’s theorem that the estimated q(θ) is a
discrete distribution consisting of distinct support points
no more than n, the number of training data. This state-
ment can be generalized to other objective functions as
long as they are convex with respect to r = (r1, · · · , rn)
and hence to q(θ). More specifically, the following four
objective functions are demonstrated as examples in [2].
Here, ρ = mini ri and C is a constant.

1. MLE: −
∑n

i=1 log ri

2. KVQ: −ρ

3. Margin-minus-variance:
−ρ + C

n

∑n
i=1 (ri − ρ)2

4. Mean-minus-variance:
− 1

n

∑n
i=1 ri + C

n

∑n
i=1

(
ri − 1

n

∑n
j=1 rj

)2

The objective function Fβ in eq.(2) combines the first two
objectives by the parameter β. The other two objectives
above are convex with respect to r as well and hence can
be proven to have optimal discrete distributions q(θ) with
support size no more than n. Note that since r is a linear
transformation of q(θ), the convexity on r is equivalent to
that on q(θ) as long as q(θ) appears in the objective func-
tion only with the form of ri =

∫
p(xi|θ)q(θ)dθ. Fur-

thermore, we have developed a simple algorithm for finite
mixture models to minimize Fβ in Section 3.3. Note that,
to apply the general framework of Section 3.2 to specific
objective functions, we need learning algorithms for opti-
mizing them for finite mixture models.

7. CONCLUSION

We proposed an objective function for learning of mixture
models, which unifies the MLE and the KVQ with the

parameter β. We proved that the optimal mixing distribu-
tion is a discrete distribution with distinct support points
no more than the sample size and provided a simple al-
gorithm to calculate it. We discussed the nature of the
objective function in relation to the rate-distortion theory
and demonstrated its less proneness to overfitting with an
appropriate choice of the parameter.
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