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ABSTRACT

Models can be seen as mathematical tools aimed at pre-
diction. The fundamental modeling question is: which
model best generalizes the available data? We discuss the
central ideas of a recently introduced principle for model
validation: Approximation Set Coding (ASC). The prin-
ciple is inspired by concepts from statistical physics and
it is based on information theory. There exists a central
analogy between communication and learning which can
be used to evaluate informativeness by designing codes
based on sets of solutions. These sets are called approx-
imation sets; they should be small enough to be informa-
tive and large enough to be stable under noise fluctuations.
We present the application of ASC to two tasks: cluster-
ing and learning of logical propositions. The two model-
ing tasks highlight the generality of the principle and its
main properties. Experimental results are discussed in the
biological application domain.

1. INTRODUCTION

In the context of modeling, validation constitutes a funda-
mental step. The central question is: which model should
be selected given the data? A justified answer to this ques-
tion requires a precise assessment of the predictive capa-
bility of candidate models.

Our problem definition explicitly considers the case
in which models are defined in terms of cost functions.
This setting is in contrast to the more restrictive (yet still
interesting) one in which a specific cost is given a priori
and the estimation process solely consists of selecting the
best parameters from a set. In our case, model selection
consists of finding the most informative cost. To do that,
we must define and estimate informativeness.

Let us start by introducing cluster model selection as
a motivating example. We define a solution of a cluster-
ing analysis as an assignments of labels to samples. Clus-
tering, hence, produces partitions of the available sample
points. Alternative partitions are evaluated and selected on
the basis of a cost function. The cost function (that is, the
model) is often made explicit, but may also be implicitly
defined in terms of outputs of an algorithmic process. In
applications, the cost function is typically chosen accord-
ing to human intuition and remains fixed for the analysis.
For simplicity, let us now consider a clustering procedure
based on an explicit cost function R(·|X), which evalu-

ates solutions on the basis of the dataset X . Given X ,
the learning process terminates as soon as a (globally or
locally) optimal solution is found. At this point, two im-
portant issues remain open. Is the result informative? Is
the model justified? In order to answer these questions,
we need a precise definition of the modeling goal in terms
of predictive capabilities. There already exist theoretical
and practical answers to these questions. At present, the
set of established principles and procedures for predictive
modeling include Minimum Description Length [1], Kol-
mogorov Structure Function [2], BIC [3] & AIC [4], Min-
imum Message Length [5], Solomonoff’s Induction [6,
7], PAC [8] and PAC-Bayesian generalization bounds [9].
These approaches are based on convincing justifications
from information theory, algorithmic information theory,
probability and statistical learning theory.

The discussion of the individual merits of these ap-
proaches is certainly of great interest and value but goes
beyond the scope of this contribution. We focus on the re-
cently introduced idea of Approximation Set Coding [10].
ASC shares the spirit of the mentioned approaches, but
with a rather different goal: selecting models by mea-
suring the informativeness of equivalence classes of so-
lutions.

2. APPROXIMATION SET CODING

ASC selects the optimal quantization of the hypothesis
class to find the set of hypotheses constituting the best
tradeoff between informativeness and stability. The in-
formal justification is the following. On the one hand,
selecting very few solutions exposes the modeler to the
danger of instability with respect to fluctuations induced
by noise [11]. On the other hand, selecting many solu-
tions yields stable but rather uninformative results. With
minimalistic assumptions about the nature of the noise, it
is possible to select the set of solutions which provides the
best tradeoff between informativeness and stability. This
optimal set constitutes the best approximation available
for a model. Models are then compared in terms of their
informativeness, finally yielding the optimal approxima-
tion set.

Let us now start by formalizing the central concepts.
Consider a cost model R(c|X), which evaluates the cost
of choosing solution c ∈ C(X) to generalize the given
dataset X ∈ X . As conventional in statistical learning



theory, the smaller the cost, the better is the quality of
the solution. The set of all candidate solutions is defined
as the hypothesis class C(X), which is given to the mod-
eler. Depending on the application, individual solutions
might be parametric (with variable parameters) or simple
elements from a set. In both cases, each element c of the
hypothesis class indicates a particular and fixed candidate
solution. Different cost functions define different models
(for instance R1(c|X) and R2(c|X)); for the rest of the
manuscript, we identify models with their respective cost
function. Our task is then to evaluate a set of models and
select the best one, that is the most predictive. For each
cost model R(·|X) and a given dataset, the optimal solu-
tions are provided by the set of empirical minimizers

C⊥(X) = arg min
c∈C(X)

R(c|X). (1)

Since costs are evaluated as a function of the data, we must
take into account the variability with respect to X . In or-
der to perform this step, we consider the minimal case
in which two datasets (each of size n) are available to the
modeler. The extension to settings with a larger number of
sample sets is straightforward and exhibits analogous re-
sults. We assume that two datasets X1 and X2 are drawn
independently from the same distribution. Since the hy-
pothesis class might also depend on the dataset, we need
a way to map solutions from C(X1) to C(X2). Transfer-
ring solutions between instances is a necessary require-
ment to evaluate the generalization properties from train-
ing to test data. For that, we introduce the mapping func-
tion ψ : C(X1)→ C(X2).

By mapping the solutions from one dataset to another,
ψ allows the modeler to map solutions across instances
(for instance, by mapping to the nearest neighbor). For ev-
ery subset of solutionsA ⊆ C(X1), we denote the mapped
subset as

ψ ◦A = {ψ(a), a ∈ A} ⊆ C(X2). (2)

In case of noise, the set of mapped empirical minimizers
do not necessarily coincide with the solutions induced by
the second dataset. The intersection ψ◦C⊥(X1)∩C⊥(X2)
might be small or even empty. In fact, fluctuations in the
data might induce perturbations in the empirical minimiz-
ers, which will tend to diverge from each other as the noise
level increases. Instead of taking the two sets of empiri-
cal minimizers (to avoid inconsistency due to instability),
we consider larger sets of solutions. These sets are called
approximation sets and are defined as a function of a pa-
rameter γ so that

Cγ(Xi) = {c ∈ C(Xi) : R(c|Xi) ≤ R⊥(Xi) + γ} (3)

for i = 1, 2. These sets are γ-close to the solution costs
R⊥(Xi) := R(c⊥i |Xi) of the respective empirical mini-
mizers c⊥i ∈ C⊥(Xi), i = 1, 2. At this point, the question
is which γ should we select? For γ = 0 we get only the
empirical minimizers. If γ is too small, the results are
unstable. For too large γ, the selection tends to include
all the entire hypothesis class (thus yielding uninformative

results). The communication analogy is introduced to ad-
dress this question. It is based on the sender-receiver sce-
nario in which distinguishing individual solutions based
on data corresponds to transmitting messages over a noisy
channel. The communication capacity reflects the ability
to discriminate solutions through the applied transforma-
tions. Ultimately, the success of the communication de-
pends on noise level and coding strategy.

The communication process for a certain γ is described
by the following procedures:

• Coding:

1. Sender and receiver agree on R and share X1.

2. They both calculate the γ-approximation sets.

3. The sender generates a set of transformations
Σ = {σ : X → X} which define a set of
training optimization problems R(·|σ ◦ X1)
and their respective γ-approximation sets.

4. The sender sends Σ to the receiver which cal-
culates the approximation sets for each trans-
formation.

• Transmission:

1. The sender is a stationary source: it selects a
transformation σs as message without directly
revealing it to the receiver.

2. The transformation σs is applied by the sender
to X2.

3. The transformed dataset σs ◦X2 is sent to the
receiver.

4. The receiver has to reconstruct the transforma-
tion σs from the approximation set of σ ◦X2

without directly knowing X2 and σs.

Each transformation σs generated by the sender is es-
timated by the receiver through the decoding rule

σ̂ = arg max
σ∈Σ

|ψ ◦ Cγ(σ ◦X1) ∩ Cγ(σs ◦X2)| . (4)

Decoding is possible because, in contrast to σs and X2,
σs ◦X2 is known to the receiver. It can be used to calcu-
late the approximation sets used to uniquely identify σs.
The aim is the following: achieving optimal communica-
tion (which is reliable and informative). Approximation
sets define codebook vectors; while large γ correspond to
small sets of distinct vectors for coding, small γ might
correspond to higher error rates for decoding.

Communication errors are due to wrong decoding, that
is when σ̂ 6= σs. The probability of a communication error
is hence given by

P (σ̂ 6= σs|σs) = P

(
max

σj∈Σ\{σs}
|∆Cjγ | ≥ |∆Csγ |

∣∣∣∣σs) ,
(5)

where, for all σj ∈ Σ,

∆Cjγ = ψ ◦ Cγ(σj ◦X1) ∩ Cγ(σs ◦X2) (6)



Figure 1. Comparison of the informativeness of pairwise clustering (left) and correlation clustering (right) in terms of
AC for gene expression data. The former is approximately four times more informative than the latter. For correlation
clustering, the mutual information is estimated by mean-field approximation and Gibbs sampling for comparison.

denotes the intersection between the j-th approximation
set and that of the test set.

The direct evaluation of the error probability can be
bounded through the union bound as follows:

P (σ̂ 6= σs|σs) ≤
∑

σj∈Σ\{σs}

P

(
|∆Cjγ | ≥ |∆Csγ |

∣∣∣∣σs) ,
(7)

Furthermore, one has that

P (σ̂ 6= σs) ≤ (|Σ| − 1) exp (−nIγ(σs, σ̂)) , (8)

where Iγ(σj , σ̂) is the mutual information

Iγ(σs, σ̂) =
1
n

log
( |Σ| |∆Csγ |
|Cγ(X1)| |Cγ(X2)|

)
. (9)

The optimal γ is found solving

γ∗ = arg max
γ∈[0,∞)

Iγ(σs, σ̂). (10)

This procedure provides to the modeler:

• a set of γ-optimal solutions, as well as

• a measure of the informativeness of the selected ap-
proximation set for the model R: the Approxima-
tion Capacity (AC) I∗γ(σs, σ̂).

This selection criterion enables the comparison of differ-
ent models R for the cost of selecting solutions c given
training and test.

3. APPLICATIONS AND RESULTS

Recently, ASC has been applied to perform model se-
lection in clustering [12], yielding results consistent with
BIC in the analysis of biological data. In clustering, Σ
corresponds to the set of permutations of cluster labels. It
is worth noting that in the case of clustering the cardinal-
ity of the hypothesis class grows exponentially with the
sample size. This is because solutions are defined as label
assignments in this application.

Experimental results in the context of gene expression
analysis show that pairwise clustering [13] yields superior

amounts of reliable information in comparison to corre-
lation clustering [14]. Relational clustering problems are
often defined with respect to an attributed graph (V, E)
with vertex set V and edge set E . The vertices have to be
clustered into groups Gu := {i : c(i) = u}, 1 ≤ u ≤ K
where c is the cluster solution which assigns label u to
the i-th sample. The set of edges between elements of
group Gu and Gv is denoted by Euv := {(i, j) : c(i) =
u ∧ c(j) = v}.

In both cases, the datasets consisted of matrices of
pairwise similaritiesX . The pairwise clustering cost model
is defined as

Rpc(c,X) = −1
2

K∑
k=1

|Gk|
∑

(i,j)∈Ekk

Xij

|Ekk|
, (11)

where Xij denotes the similarity between object i and j.
The correlation clustering model is

Rcc(c,X) =
1
2

∑
1≤u≤K

∑
(i,j)∈Euu

(|Xij | −Xij)

+
1
2

∑
1≤u≤K

∑
1≤v<u

∑
(i,j)∈Euv

(|Xij |+Xij).

Figure 1 shows the application to gene expression data
with temporal structure (expression level time points for
12 consecutive months) [15]. The feature vector is split-
ted into two and the similarity matrices are constructed by
taking the Pearson correlation coefficients for each pair of
genes (295 differentially expressed genes). This dataset
has been selected because it is one of the many cases in
which the choice of a cost is challenging. The figure com-
pares the AC of the two models, showing the advantage of
pairwise clustering over correlation clustering. The result
means that under identical noise effects, pairwise cluster-
ing discovers a more predictive structure than correlation
clustering. ASC validates pairwise clustering (maxβ Iβ =
1.03, where β is the inverse computational temperature)
as approximately 3.5 times more informative than corre-
lation clustering (maxβ Iβ = 0.272). At the optimal reso-
lution (temperature), 7 clusters are discovered by pairwise



Figure 2. Calculation of mutual information and approxi-
mation sets for the Boolean case. On the left, the mutual
information is calculated exactly and with the Boltzmann
approximation (left top and bottom, respectively). The
green line identifies the optimal computational tempera-
ture (no normalization). On the right, the model is eval-
uated for the two split datasets over the hypothesis class
(decimal indexing of the Boolean outputs). The green dot
indicates the membership of the data generator.

clustering (in contrast to the 2 clusters identified by corre-
lation clustering). The number of clusters in pairwise clus-
tering is also consistent with that obtained with BIC (with
number of parameters calculated as the ratio between the
trace and the largest eigenvalue of the similarity matrix).

To learn logical propositions we define the hypothe-
sis class of Boolean functions of d literals. We consider
both the supervised and the unsupervised case. In contrast
to clustering, Σ is given by the set of distinguishable bit-
wise flips of the data (in input for the unsupervised case,
and in both input and output in the supervised case). The
set of transformations is therefore given by a set of local ¬
(NOT) operators applicable to the available sample com-
ponents. Hence, in the unsupervised case the cardinality
of the set of perturbations is smaller or equal to that of the
hypothesis class:

|Σ| ≤ |C(X)| = 22d

. (12)

The goal is the identification of predictive formulas which
generalize the available binary observations. Figure 2 com-
pares the exact solution and Boltzmann approximation with
a dataset generated by the 110-th Boolean function with
d = 3 subject to uniform sampling of the input. The bit
flipping probability is 1/8 both for input and for output.
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