
Understanding Sampling Style Adversarial Search Methods

Raghuram Ramanujan and Ashish Sabharwal and Bart Selman
Department of Computer Science

Cornell University, Ithaca NY 14853-7501, U.S.A.
{raghu,sabhar,selman}@cs.cornell.edu

Abstract

UCT has recently emerged as an exciting
new adversarial reasoning technique based on
cleverly balancing exploration and exploita-
tion in a Monte-Carlo sampling setting. It
has been particularly successful in the game
of Go but the reasons for its success are not
well understood and attempts to replicate its
success in other domains such as Chess have
failed. We provide an in-depth analysis of
the potential of UCT in domain-independent
settings, in cases where heuristic values are
available, and the effect of enhancing random
playouts to more informed playouts between
two weak minimax players. To provide fur-
ther insights, we develop synthetic game tree
instances and discuss interesting properties
of UCT, both empirically and analytically.

1 INTRODUCTION

The recent introduction of the Upper Confidence
bounds applied to Trees (UCT) method for adversar-
ial game playing significantly improved the standard of
computer Go programs (Gelly and Silver, 2007, 2008).
In fact, it now appears that we may reach human-level
performance in Go within the next decade, which is
substantially sooner than anyone had predicted just
a few years ago. The current developments are es-
pecially surprising given that the traditional minimax
game tree search, which has yielded world-class play
in Chess and many other games, does not scale to the
domain of Go. Two issues hamper the application of
minimax search to Go: a very high branching factor
and the lack of a high-quality board evaluation func-
tion. A good board evaluation function is key in game
tree search when one cannot reach terminal states in
the game tree. UCT provides an effective way to ad-
dress both these issues.

The UCT algorithm (Kocsis and Szepesvári, 2006) is
derived from a highly effective approach to solving
the multi-armed bandit problem called UCB1 (Auer
et al., 2002). The UCT sampling strategy strikes a
provably optimal balance between exploration of new
game states and exploitation, where lines of play that
appear promising are repeatedly searched to deeper
levels. This novel approach means that UCT can reach
regions of the search space that are much deeper than
the conventional iterative deepening minimax search,
which has been the “gold standard” for Chess and
other games. When UCT encounters a non-terminal
leaf node, a random (or weakly informed) playout is
typically used to provide some indication of the value
of the state. As the designers of UCT for Go have ob-
served, it is somewhat counter-intuitive that there is
any useful information to be gained from having two
weak players play out the game to completion from
some intermediate state. After all, any real game be-
tween competent players will follow a very different
overall trajectory than one between weak players.

In Go, these properties of UCT have been very useful
and clearly alleviate some of the difficulties of doing a
standard minimax search: the more focused search can
go much deeper than any kind of iterative deepening
minimax search given the high branching factor of Go,
and the playouts provide useful board evaluation in-
formation, given that a good general board evaluation
function for Go is not known.

The success of UCT in Go raises the natural question
of whether UCT is also effective in other adversar-
ial reasoning domains. We address this question by
studying UCT in the context of Chess as well as syn-
thetic instances designed to highlight the key aspects
of UCT. We chose Chess as one of our evaluation do-
mains mainly because standard minimax search works
so well for it. We can therefore study the behavior
of UCT and its two key new search concepts in detail
by comparing its performance with traditional mini-
max results as the “gold standard”. As we will see,

UCT per se is not competitive in Chess. However,
there are promising aspects of UCT that may be used
to complement more traditional search. We will also
identify what causes difficulties for UCT in Chess style
domains. Our results are applicable to any adversar-
ial reasoning domain that has the characteristics we
identify.

After discussing the basics of UCT in Section 2, we
will empirically show in Section 3 that in domain-
independent settings, UCT can easily outperform min-
imax search with a comparable amount of computa-
tional power. We will then describe in Section 4 how
the performance of UCT can be significantly boosted
when heuristic information is available and is used in
place of random playouts. The way we use heuristics is
much more direct than the “bootstrapping” approach
often used to initialize UCT leaf values. However, even
with a high-quality heuristic, UCT does not perform
well on Chess compared to a shallow minimax search.
This suggests that the different success rates of UCT
on Chess and Go is perhaps explained not so much by
the lack of good heuristics as by the intricate proper-
ties of the two underlying search spaces.

We will then return to playouts and demonstrate
that playouts between slightly more informed players
than random players can lead to discovering informa-
tion that is available only to a much deeper minimax
search. Not being able to discover such information
can lead to UCT falling into what we call soft traps; we
will show that soft traps are pervasive even in grand-
master games of Chess and will provide a concrete
example. Finally, we will turn our attention to the
case of synthetic instances designed to provide insights
into the behavior of UCT in practice, complement-
ing known theoretical results about bandit-based sam-
pling and UCT that provide worst case exponential
time convergence guarantees in the limit. We focus,
in contrast to existing analysis (e.g., Auer et al., 2002;
Gelly and Silver, 2007; Coquelin and Munos, 2007),
on simple cases such as binary trees with implanted
winning strategies of low complexity (i.e., few critical
moves) where UCT does work in practice, and pro-
vide a methodology to analyze the behavior of UCT
on such trees.

This part of the paper highlights and formalizes several
subtle aspects of UCT. For example, we show, both
empirically and analytically, that the time to conver-
gence scales exponentially with the depth of the crit-
ical choice points in a winning strategy. In fact, we
provide an expression capturing the fact that the run-
time of UCT can be decomposed additively into the
time it spends identifying certain “active” nodes at
the first critical level, then the time it needs to ex-
plore the sub-trees from these active nodes to iden-

tify active nodes at the next critical level, and so on.
We study the “averaging” backup strategy employed
by UCT and show how it can make recovering from
early poor choices very tricky and expensive. This
suggests that other backup strategies may work bet-
ter, but designing one needs further study. We also
allude to differences between single agent search as in
UCB1 (Auer et al., 2002), which has been the moti-
vation for the multi-agent UCT algorithm, and multi-
agent scenarios. For example, while single agent sam-
pling based search can easily break ties between several
good moves and “freeze” to one such good move, in
two-player minimax settings, the opponent constantly
keeps switching in the hope of finding a better move,
thus preventing the search from “freezing” onto a sin-
gle principal variation. This results in exponential
scaling of UCT in two-player games that would not
occur in single-agent search.

2 BACKGROUND

Monte Carlo sampling techniques have been success-
fully applied in the past to produce expert-level play in
games of incomplete information such as Bridge (Gins-
berg, 1999) and Scrabble (Sheppard, 2002). However,
they have seldom outperformed traditional adversar-
ial planning techniques such as the minimax algorithm
in deterministic 2-player game settings such as Chess.
This changed recently with the emergence of UCT,
which was used to produce the first program capable
of master level play in 9x9 Go (Gelly and Silver, 2007,
2008), a domain which had thus far proven to be chal-
lenging for minimax presumably due to a large branch-
ing factor and lack of good heuristics. UCT has also
proved promising in new domains such as Kriegspiel
that were beyond the scope of any traditional plan-
ning techniques (Ciancarini and Favini, 2009), and in
general game playing (Finnsson and Björnsson, 2008).

For two-player games, a single iteration of UCT start-
ing at a state s comprises the following steps:

Selection: The algorithm selects an action a that
maximizes an upper confidence bound on the action

value: π(s) = arg maxa

(
Q(s, a) + c

√
logn(s)
n(s,a)

)
where

Q(s, a) is the current estimate of the value of taking
action a at state s, n(s) is the total number of vis-
its to state s over past iterations and n(s, a) is the
number of times action a was selected in past visits to
s. If n(s, a) = 0 for any action a, it is selected before
any other actions are re-sampled. The opposing player
symmetrically selects an action that minimizes a lower
confidence bound. The constant c determines how the
agent trades-off exploiting known good moves and ex-
ploring under-sampled ones; in our experiments with
Chess, this constant was fixed at 0.4 which produced

a good balance between the two strategies.

Estimation: The selection operator is repeatedly ap-
plied until a previously unvisited state is reached. If
this state is non-terminal, a default policy is typically
used to play out the game from the current position to
a terminal state with reward R (R could alternately
be a heuristic board evaluation) and the new state is
added to the tree. Thus, on each iteration, the size
of the tree grows by 1 node. In our experiments, the
default policy selects uniformly at random from the
available actions (unless noted otherwise).

Value Backup: The reward R from the current UCT
episode is used to update the values of all state-action
pairs on the path from the root to the fringe of the tree
by incrementing both n(s) and n(s, a) by 1, and incre-
menting Q(s, a) by (R−Q(s, a))/n(s, a). This update
assigns to each state-action pair the average reward
accrued from every episode that passed through it.

3 DOMAIN-INDEPENDENT
SETTINGS

We begin by exploring the extent to which UCT-style
search methods can compete with minimax search
in a fully domain-independent setting. This situa-
tion arises, for instance, in reasoning about quantified
Boolean formulas (QBF) where all we have as input
is a formula, without any information about the se-
mantics of the variables or the specifics of the problem
domain the formula is encapsulating. This also hap-
pens in the general game playing setting (Finnsson and
Björnsson, 2008).

For our empirical exploration of the behavior of UCT
and minimax, we use the setting of Chess but modify
minimax to avoid using any Chess-specific heuristic
information, pretending that the domain is unknown.
Specifically, for k ≥ 1, MM-k-R denotes the minimax
player that performs a minimax search of depth k, uses
±1 values at a leaf if it corresponds to a terminal state,
and uses the outcome of a single random rollout if the
leaf corresponds to a non-terminal state. This pro-
duces a player that is aware of winning (losing) posi-
tions within its search horizon, but otherwise has the
same rollout style information as is available to UCT.

Experimental Setup. The results are reported in
Table 1, which gives the success rate of the col-
umn player against the row player. The success rate,
throughout this paper, is computed by assigning a
score of 0 to each game lost, 1 to each game won,
and 0.5 to each game that resulted in a draw. Note
that if m games are played between two players, the
sum of the success rates of the two players will be pre-
cisely m. Further, if each of players A and A’ wins 3/4

Table 1: UCT and a purely Random player compared
against minimax without domain knowledge. Table
reports the success rate of the column player against
the row (minimax) player.

Minimax
UCT Random

depth #nodes
MM-2-R 1,000 74% 6%
MM-4-R 10,000 94% 0%
MM-6-R 200,000 96% 0%

of the non-drawn games against B but A draws fewer
games, then the success rate of A will be higher than
A’ — a desirable property. In this and all experiments,
unless otherwise stated, we report the average success
rate over a total of 100 games played from the default
starting position of Chess, with 50 played as White
and 50 as Black. The variation amongst the games is
induced by the stochastic nature of (at least one of)
the players.

The players used for comparison are UCT with ran-
dom playouts (UCT) and the “random” player that
simply selects a legal move uniformly at random. The
UCT player is given roughly the same amount of com-
putation power, measured using the number of nodes
explored (rather than runtime, in order to discount any
implementation differences), as the minimax player it
is competing against. We observe that even though
MM-k-R acts without much information in many situ-
ations, it is far from a trivial player as evidenced by its
clear success against the random player. Also, search-
ing deeper improves the performance of MM-k-R; not
only is the success rate of MM-6-R against the random
player higher than that of MM-2-R, in a direct playoff
(not shown in the table), MM-6-R has a success rate
of 66% against MM-2-R. Finally, UCT significantly
outperforms MM-k-R, demonstrating the potential of
UCT in completely knowledge-free settings.

4 BOOSTING UCT WITH
HEURISTIC INFORMATION

We now consider the setting where we do have prior
domain knowledge. We are interested in the extent to
which this can be exploited to enhance UCT. Heuris-
tics have already provided promising results for Go.
Typically the heuristic value is used to initialize the
value of leaf nodes to bias the selection process in the
early iterations of the search. Nonetheless, since cur-
rent heuristics in Go are not very strong, UCT is set up
to fairly quickly override the heuristic value with play-
out values once the node has been visited sufficiently
many (typically a few dozen) times. In contrast, for
Chess, we have heuristics that are much more pow-

erful, and we explore how much they can boost the
performance of UCT.

To evaluate this, we consider the player UCT-H that
uses the board evaluation heuristic of gnuchess at the
leaves visited by UCT, rather than the {−1, 0,+1} val-
ues obtained from random playouts; in other words, we
fully replace playouts with heuristic evaluations. This
still preserves the convergence properties of UCT, i.e.,
with sufficiently many iterations, UCT-H will converge
to the true minimax value of each node. We care-
fully rescaled the heuristic value to fall in the range
[−1,+1] by resetting the default checkmate valuation
of gnuchess to the observed maximum heuristic value
of a non-terminal node (6, 500). Out of other candi-
date rescaling schemes including sigmoidal functions,
this simple scheme worked the best.

Against a UCT player (with random playouts) that
was given 10, 000 iterations for convergence, we found
that UCT-H had a success rate of 55.0%, 85.5%, and
96.5% with only 50, 100, and 1, 000 iterations, re-
spectively. Thus, not only is UCT-H significantly
faster then UCT per iteration (because it does not do
playouts and thus avoids relatively expensive repeated
move generation), it needs drastically fewer iterations
to be competitive with UCT.

A natural question to ask, then, is how well does UCT-
H actually compete as a player against minimax? Un-
fortunately, for games such as Chess where minimax
is the successful strategy, even UCT-H doesn’t fare
too well. We found that even with 50,000 iterations,
UCT-H is only about as powerful as MM-2, a 2-level
minimax search with the gnuchess heuristic. This sug-
gests that the difference in the performance of UCT
in Go vs. Chess is not only due to the quality of the
heuristic but perhaps more importantly, due to the dif-
ferent nature of the two underlying search spaces and
how “winning” is defined in the two settings. Any suc-
cessful sampling-based player for Chess must therefore
take these aspects into account.

5 ENHANCING RANDOM
PLAYOUTS

We now focus our attention on one of the two key as-
pects of UCT, random playouts, and ask whether such
playouts can provide useful information in domains
such as Chess where we already have well-designed
state evaluation heuristics. An interesting question in
the context of playouts is, is it at all possible to ob-
tain useful information about a strong player by doing
several playouts between two weak players? We find
that random playouts tend not to provide any more
information than Chess heuristics themselves, but a

slightly more powerful playout—namely a playout be-
tween two MM-2 players—can, surprisingly, reveal in-
formation that is often visible only to a significantly
deeper minimax player such as MM-8. We quantify
this in terms of a strong correlation between move
rankings obtained by the two players.

Such information, visible only to relatively deep and
systematic minimax searches, can take the form of
traps as recently studied by us (Ramanujan et al.,
2010), where making the “wrong” move leads to a
state from which the opponent has a relatively sim-
ple winning strategy; such traps, even at surprisingly
shallow depths, were found to be abundant even in
grandmaster games of Chess. More generally, we con-
sider here the notion of soft traps, where a wrong
move takes one to a game state from which the oppo-
nent has a guaranteed strategy for gaining significant
“advantage” in the game. This advantage could be
measured in terms of an evaluation function h for the
states. In our analysis of 50 complete grandmaster
games, we discovered that 52% of them had at least
one occurrence of a soft trap, i.e., a position where
an MM-8 and MM-2 search had a significant disagree-
ment over the valuation of the best move. We now
make the notion of soft traps precise.

As a generalization of k-move winning strategies (Ra-
manujan et al., 2010), consider a heuristic state evalu-
ation function h and a parameter ∆. Define a k-move
(h,∆) advantage strategy starting from the current
state s as a length-k action sequence that results in a
board state s′ such that h(s′) ≥ h(s) + ∆. Note that
when ∆ is sufficiently large, this becomes a k-move
winning strategy.

Definition 1. Let G be a 2-player game with a heuris-
tic evaluation function h, and ∆ > 0 be a constant.
The current player p at state s of G is said to be at
risk of falling into a soft trap if there exists a move
m from state s such that after executing m, the oppo-
nent of p has k-move (h,∆) advantage strategy. The
state of the game after executing m is referred to as a
soft level-k search trap for p.

In Figure 1, we explore how good heuristics and vari-
ous kinds of playouts are in obtaining information that
is visible to a strong player, such as a deep MM-k
player (for experimental purposes, we use MM-8 as
the gold standard). For this evaluation, we consider
boards taken from grandmaster games and compute
the ranking from best to worst (1 being the best) of
the possible moves as given by an MM-8 evaluation of
each resulting state. Note that during actual game-
play, only the relative ordering of moves matters; it is
for this reason that we choose to study the correlation
of the move rankings rather than their raw estimated
values. This also helps circumvent the problem of com-

0 5 10 15 20 250

5

10

15

20

25

MM−2 Playout Rank

M
M

−8
H

Ra
nk

Move Rank Correlation

0 5 10 15 20 250

5

10

15

20

25

Estimated Rank

M
M

−8
 R

an
k

Move Rank Correlation

Gnuchess Heuristic
10k Random Playouts
1k Heuristic Playouts

Figure 1: Correlation of move rankings of various play-
ers (x-axis) against MM-8 rankings (y-axis). Top:
playouts using MM-2. Bottom: gnuchess heuristic,
random playouts, heuristic playouts.

paring leaf value estimation methods whose outputs do
not map to the same range of values. For each kind of
estimation method, we apply smoothing by consider-
ing estimates within some ε of each other as ties and
assigning them the same rank.

Figure 1 shows the results for a typical grandmaster
board 16 moves (31 plys) deep into the play. In the
top panel, we compare for each child, its MM-8 ranking
(y-axis) against the ranking obtained based on play-
outs using two MM-2 players (x-axis). The points be-
ing almost on the diagonal shows that the two rank-
ings are very well correlated, especially in the region
of most interest—the bottom-left region, representing
moves that are considered very good by both play-
ers. In contrast, the lower pane of the figure shows
that the rankings obtained using the gnuchess heuris-
tic, random playouts, or playouts between heuristic
players (x-axis) are much more loosely correlated with
MM-8 rankings (y-axis). For example, points in the
top left corner represent moves that MM-8 thinks are
very poor but the other player thinks are quite good—
indicative of traps or soft traps missed by the weaker
player. Similarly, points in the bottom right corner
indicate good moves, as identified by MM-8, that are
dismissed as bad moves by the weaker player.

Overall, this demonstrates that playouts between
slightly informed players, namely MM-2 players in this
case, can have a strong correlation with information

Figure 2: A board where playouts with MM-2 players
are able to discover a soft trap visible at depth 9 while
complete MM-2 search misses it.

that is usually visible only to a much stronger player,
namely MM-8 in this case. A natural question to
ask at this stage, how does the ranking induced by an
MM-2 search itself compare to that induced by a play-
out between two MM-2 players? We have discovered
that there are in fact situations in which a playout of
two MM-2 players uncovers information that an MM-2
search does not. Example 1 describes a concrete oc-
currence of this phenomenon.

Example 1. Consider the Chess board shown in Fig-
ure 2. We will follow the standard algebraic chess no-
tation in our discussion, where rows (ranks) are la-
beled 1-8 and columns (files) are labeled a-h, with a1
being the bottom left corner. In the given state, the
Black king is in check with Black on move and an
MM-2 search recommends that the king be moved to
h8. However, this allows White a devastating counter-
move: moving its pawn on file f to f5 and thereby
trapping Black’s rook. Black can stall for two moves
by using its bishop to place the White king in check,
and subsequently freeing its rook to escape up file e. In
this case, White simply moves its own rook to the same
rank as the Black rook. This sets up a situation where
Black is at minimum forced to trade its queen and
rook for the White queen. Sub-optimal sequences of
play result in much costlier piece exchanges for Black.
The correct move in the original position is for Black
to move its pawn on file g to g6, thereby nullifying
White’s pawn threat—this is the move prescribed by
a complete MM-8 search, as well as an MM-2 playout.

6 INSIGHTS INTO UCT:
SYNTHETIC SEARCH SPACES

While UCT is easy to describe, it has a rich and
complex behavior on adversarial search spaces such
as those of Chess and Go. In order to better under-
stand its behavior, we consider synthetic adversarial
search spaces where we vary, in a controlled manner,
key properties that affect the performance of UCT.

0

10

20
0

5
10

15
20

0

200

400

600

800

1000

Depth of Critical Node 1 (d1)

Convergence of UCT vs. Strategy Complexity

Depth of Critical Node 2 (d2)

Ite

ra
tio

ns
 to

 C
on

ve
rg

en
ce

 (x
 1

02)

0 5 10 15 20 25101

102

103

104

105

Depth of Critical Node 2 (d2)

Ite

ra
tio

ns
 to

 C
on

ve
rg

en
ce

Depth of Critical Node 1 (d1) = 0

0 5 10 15 20

104.8

104.9

Depth of Critical Node 1 (d1)

Ite

ra
tio

ns
 to

 C
on

ve
rg

en
ce

 (l
og

sc
al

e)

Depth of Critical Node 2 (d2) = 22

Figure 3: UCT convergence time as a function of the depths of the critical nodes. left: 3-D contour; middle: slice
with a fixed depth of critical node 1, in logscale; right: slice with a fixed depth of critical node 2, in logscale.

We study game trees with implanted winning strate-
gies for the max player (denoted Max) who is on
move at the root node. The winning strategies are
parametrized by the number of critical decision nodes
and their depths. If Max makes the correct action
choice at every critical node, then regardless of the
actions chosen by either player at all other nodes, the
payoff at the end of the game is +1. If Max chooses an
incorrect action at any of the critical nodes, then the
payoff at the end of the game is drawn uniformly from
{−1, 0,+1}. This simple model captures the notion of
winning plans that exist in many tactical games like
Chess, where from a given state, a player can force a
win by executing a sequence of a few clever moves.

In these experiments, we are interested in the time
UCT takes to “discover” the winning strategy for Max,
which we define in terms of the utility assigned by
UCT to the root node. Once UCT has settled on a
winning sequence of moves for Max (i.e., a principal
variation), it will exploit it on subsequent iterations
and this will force the utility of the root node to ap-
proach +1. A subtle point is that the min player (de-
noted Min) might keep forcing Max to different prin-
cipal variations; nonetheless, the paths will be equally
good for Max and the value of the root will still ap-
proach +1.

Formally, let v(t) be the utility assigned to the root
node of the search tree after t iterations of UCT. For
a single UCT search, we define the τ-convergence
point t∗ as the smallest t such that v(t) ≥ τ for all
t ≥ t∗. We say that UCT has τ-converged if the
current iteration number is at least t∗. Unless other-
wise specified, we will simply use the term converged
to imply τ -convergence at the root with τ = 0.7.

6.1 EMPIRICAL OBSERVATIONS

Figure 3 illustrates how the time UCT takes to con-
verge in the presence of 2-step winning strategies (i.e.,

strategies with 2 critical nodes) in a 24-level binary
tree varies as a function of the depths of the two crit-
ical nodes (hereafter referred to as d1 and d2, with
d2 > d1). Note that in the mesh plot, the area of in-
terest lies beyond the d1 = d2 line, towards the back
of the plot. The middle and right-most panels depict
slices of this surface obtained by fixing d1 and d2, resp.

As seen in the middle panel, for a fixed d1, the con-
vergence time of UCT is essentially exponential in d2.
The dependence of the convergence time on d1 is more
intriguing—with a fixed d2, UCT appears to perform
best when d1 is slightly more than half of d2. This
“dip” in the curve is captured by the following expres-
sion for the runtime of UCT, which we explain below:

UCT (d1, d2) = a · Cd1/2 + b · 2d1/2 · C(d2−d1)/2 (1)

where 2 < C < 3 (empirically 2.37) and a, b > 0 are
small constants. This expression fits the mesh plot
in Figure 3 very closely and highlights a key property
of UCT in the presence of multi-step winning strate-
gies: The runtime of UCT can be decomposed addi-
tively into the time spent between consecutive critical
levels. Specifically, UCT first explores roughly 2d1/2

“active” nodes at level d1 in time O(Cd1/2) , then ex-
plores each of the roughly 2d1/2 subtrees below these
active nodes at level d1 in time O(C(d2−d1)/2) each to
identify roughly 2(d2−d1)/2 active nodes at level d2 in
each subtree, and so on down to other critical decision
levels. The quantity 2d1/2 (in general, 2(di−di−1)/2 per
subtree) representing “active” nodes is nothing but the
minimum number of nodes that Min can continually
force Max to explore until Max has figured out a win-
ning sequence from all of these nodes. In general, we
can extend this reasoning to k critical decision levels,
suggesting that the runtime of UCT is captured by:

UCT (d1, d2, . . . , dk) =

a · Cd1/2 + b · 2d1/2 · UCT (d2, . . . , dk) (2)

Note that Max takes Cd1/2 iterations, and not 2d1/2, to

A B

y2

y2

x2

x1

1-step
winning strategy

for Max

2-step
winning strategy

for Min

Figure 4: Synthetic binary trees with implanted win-
ning strategies for both Max and Min.

identify the 2d1/2 active nodes at level d1 that Min can
force it to. This is because, although Max ideally has
the choice to “freeze” to any one of its equally good
children, the exploration constant forces Max to ex-
plore to some extent the other child as well, especially
during the initial few visits to that node. Nevertheless,
the overall time is much less than the size of the full
search tree till this level, which is 2d1 or 4d1/2.

In our second experiment, we study a more complex
scenario where both Max and Min have implanted
strategies and a few initial samples provide incorrect
guidance at the root (see Figure 4). In particular, we
study binary trees of depth 20 where Max has critical
nodes at depths (x1, x2) where x1 = 0, 2 ≤ x2 ≤ 18,
and x2 is even, and Min has critical nodes at (y1, y2)
where 1 ≤ y1, y2 ≤ 19 and y1, y2 are odd. In order to
win, Max must move left at the root and again at level
x2; if Max goes right at the root, then Min can force
a win by going left at levels y1 and y2 (i.e., the right
child of the root is a trap state for Max). Let A and B
be the subtrees rooted at the left and right children of
the root node respectively. We bias the values of the
leaves that are not on a winning path for either player
such that the average of the values of the leaves in A is
0, while the average of the values of the leaves in B is
0.5. Thus, the B subtree, though ultimately a losing
proposition for Max (assuming optimal play by Min)
will look more promising with limited sampling. We
now ask the question, how do the depths of the strate-
gies for the two players influence UCT’s convergence
time?

Table 2 presents our findings based on an average of
100 UCT runs on a fixed tree. On its first few itera-
tions, UCT receives extremely noisy estimates of the
utilities of its two children at the root. In the best or
“favorable” case, these initial estimates correlate cor-
rectly with the true utilities of the children and Max
chooses to explore subtree A first. In the unfavorable
case, the child rankings are reversed and Max chooses
to explore subtree B first. Note that any ties will even-
tually resolve one way or the other, and at that point,

Table 2: Effects of the depths of Max and Min’s strate-
gies on UCT’s convergence time. ‘F’ and ’U’ denote
instances with favorable and unfavorable initial esti-
mates, respectively.

Max’s Strategy Min’s Strategy Depth
Depth Shallow Mid-level Deep

F U F U F U
Shallow 36 148 77 610 560 3800

Mid-level 950 1000 1500 1900 7900 13k
Deep 16k 16k 17k 17k 30k 33k

Table 3: Effects of the depths of Max and Min’s strate-
gies on the distribution of visits to the right subtree.

Max’s Strategy Min’s Strategy Depth
Depth Shallow Mid-level Deep

F U F U F U
Shallow 33% 21% 34% 30% 40% 36%

Mid-level 3% 4% 14% 16% 31% 31%
Deep 0.2% 0.3% 1.8% 2% 16% 16%

we fall back on one of these two cases.

There are a number of interesting trends in Table 2.
First, when estimates are unfavorable at the root,
the time to convergence is greater as UCT initially
“wastes” time in subtree B until it (at least partially)
uncovers Min’s winning strategy. Second, this gap in
convergence time is most pronounced when either Max
has a shallow winning strategy or Min has a deep win-
ning strategy. This too makes sense; in the former
case, UCT can uncover Max’s strategy very quickly if
given the chance, and hence the time “wasted” in sub-
tree B counts relatively much more; in the latter case,
UCT simply needs to work harder to uncover Min’s
winning strategy and switch to subtree A.

Finally, we note that increasing the depth of Min’s
strategy slows down UCT’s convergence even in the
favorable instances. The data in Table 3, which shows
the average percentage of time UCT spends in sub-
tree B during the runs presented in Table 2, helps
explain this phenomenon. As Min’s strategy is im-
planted deeper down in the tree, UCT spends more
time exploring subtree B. A by-product of this re-
peated sampling from B is that the estimated utility
of the root node is now heavily biased by the samples
drawn from B; when UCT eventually switches to sub-
tree A and discovers Max’s winning strategy, it needs
to work extra hard to overcome this bias and reinforce
the true utility of the root (we will formalize this in
Section 6.2, equation (3)). This is illustrated by the
fact that when both Max and Min have shallow strate-
gies, when UCT converges, the root node of subtree A

has a typical utility estimate of 0.720; when both have
deep strategies, the root node of subtree A needs to
reach a much higher target value of 0.850.

This highlights an important shortcoming of UCT,
namely that it can be overly optimistic in its estimates
of state utilities, that lead it on wild goose chases. By
the time it discovers that an action it has been explor-
ing is sub-optimal, nodes higher up the tree have been
reinforced with so many samples that it faces an uphill
task in changing these estimates. In the face of com-
putational constraints (for example, in a timed game-
playing setting such as Blitz Chess), this is particularly
troublesome for it means that UCT could easily have
spent its time exploring sub-optimal moves and thus
faces a very real risk of falling into a trap state.

6.2 ANALYTICAL INSIGHTS

While a few attempts have been made to analyze ban-
dit based sampling methods in general and UCT in
particular (e.g., Auer et al., 2002; Gelly and Silver,
2007; Coquelin and Munos, 2007), these analyses are
based on the worst case scenario and, in essence, boil
down to showing that an exponential (or even super-
exponential (Coquelin and Munos, 2007)) number of
iterations are necessary and sufficient for UCT to con-
verge to true minimax values. These exponential time
convergence results, while intricate and interesting, do
not explain the success of UCT in practice in domains
such as Go, with a practically limited number of itera-
tions available during game play. In contrast, our goal
in this section is to provide a methodology for analyz-
ing some simple scenarios where UCT does work, and
obtain insights into its runtime behavior. Specifically,
we will consider 2-step winning strategies implanted in
binary trees.

We highlight three take-away messages, some of which
have previously been observed empirically and are de-
rived here analytically: (a) the averaging backups of
UCT can make recovering from poor early choices very
costly; (b) UCT in two-player settings scales expo-
nentially with the depth of the critical choice points,
whereas in single-player settings, all that matters is the
number of critical choice points, not their depth; and
(c) the tension between exploration and exploitation
as controlled by the exploration constant.

In order to make the analysis easier while still retaining
the key aspects of UCT, we work with a modified ver-
sion of the algorithm in this section. Instead of imple-
menting the UCB1 exploration-exploitation strategy,
we will use an ε-greedy version of the algorithm, where
ε ∈ [0, 1] is a constant determining how often sub-
obtimal moves are explored. Specifically, when explor-
ing a node for the first few times, UCT simply visits

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

TRTL

T

T

all +1
+1’s

p fraction
+1

+1’s
q fraction

(b)(a)

Figure 5: Synthetic binary trees with implanted win-
ning strategies for Max. (a) 1-step winning strategy.
(b) 2-step winning strategy.

all children once (a “round”), as usual. However, after
this round, it selects an optimal branch (breaking ties
at random) with probability 1 − ε and a sub-optimal
branch (breaking ties at random) with probability ε.
Auer et al. (2002) showed that this simpler variant
of UCB1 also has similar good convergence properties
(in the limit), as long as ε decreases linearly with the
number of times the node is visited.

We make one further modification, where instead of
dealing with tie-breaking, we assume that rounds sim-
ilar to the first round are repeated (i.e., all children ex-
plored in each round) until ties are broken. For binary
trees, which will be the main focus of this section, this
modification does not make a significant difference.

6.2.1 Scenario A

For ease of illustration, we start with the simplest case
and build upon it. Consider a binary game tree T with
Max on play at the top node. Let TL and TR denote
the left and right subtrees, respectively, of T . Suppose
that all leaves of TL are labeled +1, i.e., Max has a
sure win if he makes the left move. Suppose also that
a p fraction of the leaves, where p ∈ [0, 1), of TR are
labeled +1 and the rest are labeled −1. This tree is
depicted in Figure 5(a), with bold edges corresponding
to winning strategy moves. How long does it take for
UCT to identify the left branch as the winning move?

In a given round at the root node of T , a playout from
the left child always leads to +1 while a playout from
the right child leads to +1 with probability p. There-
fore, we have a tie with probability p and it follows
that the expected number of rounds needed to break
the tie is 1/(1 − p). Hence, the total number of vis-
its needed to the root node of T in expectation equals
2/(1 − p) (as there are 2 visits per round) plus the
time it takes for UCT to converge at the left child af-
ter the tie is broken. Note that the only way for the
tie to be broken in this tree is to have all +1 playouts

on the left and exactly one −1 playout on the right,
implying that the left move will necessarily be identi-
fied as the optimal move when the tie is broken. (This
will not be the case in general, as we discuss later.)
From this point on, TL will be visited a 1 − ε frac-
tion of the times the root node of T is visited. Let
C(τ, value, iter) denote the number of visits needed to
the winning strategy node (in this case the root node
of TL) for UCT to τ -converge at the root node of T ,
where value denotes the current value of the node and
iter denotes the number of visits already made to the
node; due to the “averaging” backups of UCT, the
current state of the node significantly affects the time
to convergence even after a winning strategy has been
identified, and we will quantify this shortly. The num-
ber of visits needed to the root of T is therefore roughly
2/(1− p) + C(τ, value, iter)/(1− ε).

How do we determine C(τ, value, iter)? In the unlikely
case that the current value, value, is already at least
as good as τ (i.e., value ≥ τ for Max), this quantity is
0. Otherwise, assuming subsequent visits explore the
identified winning strategy, resulting in all +1 playout
values, the averaging nature of backups dictates that:

C(τ, value, iter)× 1) + (iter × value)

C(τ, value, iter) + iter
= τ

=⇒ C(τ, value, iter) = iter × τ − value

1− τ
(3)

In our case, iter ≈ 1/(1 − p) and value = 1 − 2/iter
as all but the very last round should result in playout
values of +1. Plugging these values in, the number of
visits to the root node of T till convergence is roughly:

2

1− p
+

1 + τ − 2p

(1− ε)(1− p)(1− τ)

Remark 1. Equation (3) points out an interesting
limitation of UCT that we have already encountered
near the end of Section 6.1, namely, that the averaging
backups of UCT can make recovering from poor early
choices very expensive. In particular, if iter is high
and value is too low (for Max), then UCT will take a
long time to make up for its mistakes before it reaches
τ . This suggests there might be other backup strate-
gies, although finding an effective alternative backup
strategy requires further study because natural choices
such as simple minimaxing tend to be very brittle.

6.2.2 Scenario B

We now explore the “tension” between having a small
value for the exploration constant, ε, and a large value.
This example will also illustrate that the depth of the
critical nodes of a winning strategy exponentially influ-
ences the number of iterations needed for convergence.

This is in stark contrast to k-step winning strategies
in single-player settings, where it is easy to argue that
the depth of the critical choice points is immaterial,
and all that matters is the number of critical choice
points. Intuitively, the difference between the single
player and two players settings is that in the former
case, since all choices look equally good (or bad) at
non-critical points, the player can arbitrarily “freeze”
on one of them and keep exploiting it, while in the two
player setting, the opponent prevents this freezing by
continually forcing the winning player to different ar-
eas of the search space in the hope of avoiding defeat.
For example, for a depth d winning strategy, the losing
player can force the other player to explore precisely
2d/2 paths.

Suppose that T is modified so that the strategy em-
bodied by TL in Scenario A is actually hidden deeper
and that Max needs to make one good move to get to
this strategy. Specifically, we now have a 2-step win-
ning strategy for Max, with critical moves at levels 0
and 2, with the subtrees at level 2 being identical to
the ones in Scenario A. Also, let us suppose that the
right subtree of the root node has a fraction q of +1
leaves, which will affect tie breaking at the root. This
is depicted in Figure 5(b).

Given the expression derived above for Figure 5(a) for
the number of times we need to visit each of these sub-
trees at level 2 in order to identify the winning strategy
from there on, how many times do we need to visit the
root node of the tree to achieve this? First, consider
a node X one level above a winning strategy at level
2. Min is on move at X, which means that as soon
as Max begins to identify the winning strategy on the
left branch of X, Min has an incentive to switch to
the right branch of X (i.e., what’s good for Max is
bad for Min). In other words, Min will keep switch-
ing between the two choices until Max has figured out
the winning strategy under both choices of Min. This
means that the number of visits to X that we need
is twice the number of visits to each of TL; in gen-
eral, when Max’s winning strategy is at depth d, the
number of visits needed will be 2d times the number
of visits to any single “winning” subtree at level d—
hence the exponential scaling with the depth of the
winning strategy.

Further, the tie at the root node of T may now be
broken in favor of the right child as well, as there are
leaves labeled −1 on both sides. If the tie breaks in
favor of the left child (the “favorable” case), then the
number of iterations needed after breaking the tie is:

D(favorable) ≈ 2

1− ε
×
(

2

1− p
+
C(τ, value, iter)

1− ε

)
the latter part of which is similar to Scenario A, mul-

tiplied by 2 for twice the work that needs to be done
due to Min’s choice at level 2, and divided by (1 − ε)
since in the favorable case we will visit the left subtree
of T this fraction of the times we visit the root node
of T .

More interestingly, when the tie at the root is incor-
rectly broken in favor of the right hand side child at
the root (the “unfavorable” case), the left subtree is
visited only an ε fraction of the time, implying that
many more visits to the root node are needed in order
to achieve the same number of visits as before to the
strategy nodes at level 2. Specifically, the number of
iterations needed after breaking the tie is:

D(unfavorable) =
2

ε
×
(

2

1− p
+
C(τ, value, iter)

1− ε

)

This illustrates, in a concrete fashion, the tension be-
tween small and large values of ε, when the goal is
to minimize the number of visits to the root node to
achieve convergence; see Figure 6 for an illustration
where p = 0.5 and the C value is taken to be 10.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.2 0.4 0.6 0.8 1

nu
m

 it
er

at
io

ns
 in

 u
nl

uc
ky

 c
as

e

epsilon

(f(x))

Figure 6: The effect of varying ε on convergence time.

Additionally, we must consider the time to break the
tie at the root node, which is slightly more complex
than in Scenario A. The fraction of +1 labeled leaves
on the right is q and on the left is p′ = 3p/4. Therefore,
the probability of a tie is p′q (when both playouts yield
+1) plus (1−p′)(1−q) (when both playouts yield −1),
giving p′+q−2p′q. Thus, the expected number of visits
before the tie is broken is 2/(p′ + q − 2p′q). Further,
when this happens, the tie is broken in favor of the
left subtree with probability p′(1 − q) and in favor of
the right subtree with probability (1 − p′)q. Putting
all this together, we have the following expression for
the rough number of visits needed to the root node:

2

p′ + q − 2p′q
+
p′(1− q)×D(favorable)

p′ + q − 2p′q

+
(1− p′)q ×D(unfavorable)

p′ + q − 2p′q

7 CONCLUSION

This work provides insights into the behavior of UCT
and extends its analysis to complement known worst
case (super-)exponential convergence results. We
studied UCT in domains such as Chess where tra-
ditional minimax search is very effective. Our re-
sults demonstrate that UCT consistently beats min-
imax in domain-independent settings, that it can be
significantly boosted by incorporating a state evalu-
ation function, and that more informed playouts can
enhance performance. Finally, our results on synthetic
instances with implanted strategies revealed an inter-
esting pattern in the convergence behavior of UCT.

Acknowledgments

Supported by NSF (Expeditions in Computing award for
Computational Sustainability, 0832782; IIS grant 0514429)
and IISI, Cornell Univ. (AFOSR grant FA9550-04-1-0151).

References

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time anal-
ysis of the multiarmed bandit problem. Machine Learn-
ing, 47(2-3):235–256, 2002.

H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus. An adap-
tive sampling algorithm for solving Markov decision pro-
cesses. Operations Research, 53(1):126–139, 2005.

P. Ciancarini and G. P. Favini. Monte Carlo tree search
techniques in the game of Kriegspiel. In IJCAI-09, 2009.

P.-A. Coquelin and R. Munos. Bandit algorithms for tree
search. CoRR, abs/cs/0703062, 2007.

R. Coulom. Efficient selection and backup operators in
Monte-Carlo tree search. In 5th Intl. Conf. on Computer
and Games, vol. 4360 of LNCS, pp. 72–83, Turin, Italy,
May 2006.

H. Finnsson and Y. Björnsson. Simulation-based approach
to general game playing. In AAAI-08, pp. 259–264.
AAAI Press, 2008. ISBN 978-1-57735-368-3.

S. Gelly and D. Silver. Combining online and offline knowl-
edge in UCT. In 24th ICML, pp. 273–280, Corvallis, OR,
June 2007.

S. Gelly and D. Silver. Achieving master level play in 9×9
computer Go. In 23rd AAAI, pp. 1537–1540, Chicago,
IL, July 2008.

M. L. Ginsberg. GIB: Steps toward an expert-level bridge-
playing program. In IJCAI-99, pp. 584–589, 1999.

L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo
planning. In 17th ECML, vol. 4212 of LNCS, pp. 282–
293, Berlin, Germany, Sept. 2006.

D. S. Nau. Pathology on game trees revisited, and an
alternative to minimaxing. Artif. Intell., 21(1-2):221–
244, 1983.

J. Pearl. On the nature of pathology in game searching.
Artif. Intell., 20(4):427–453, 1983.

R. Ramanujan, A. Sabharwal, and B. Selman. On adver-
sarial search spaces and sampling-based planning. In
20th ICAPS, pp. 242–245, Toronto, Canada, May 2010.

B. Sheppard. World-championship-caliber Scrabble. Artif.
Intell., 134(1-2):241–275, 2002.

	Introduction
	Background
	Domain-Independent Settings
	Boosting UCT with Heuristic Information
	Enhancing Random Playouts
	Insights Into UCT: Synthetic Search Spaces
	Empirical Observations
	Analytical Insights
	Scenario A
	Scenario B

	Conclusion

