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Abstract

Over the past two decades, several consis-
tent procedures have been designed to infer
causal conclusions from observational data.
We prove that if the true causal network
might be an arbitrary, linear Gaussian net-
work or a discrete Bayes network, then every
unambiguous causal conclusion produced by
a consistent method from non-experimental
data is subject to reversal as the sample size
increases any finite number of times. That
result, called the causal flipping theorem, ex-
tends prior results to the effect that causal
discovery cannot be reliable on a given sam-
ple size. We argue that since repeated flip-
ping of causal conclusions is unavoidable in
principle for consistent methods, the best
possible discovery methods are consistent
methods that retract their earlier conclusions
no more than necessary. A series of sim-
ulations of various methods across a wide
range of sample sizes illustrates concretely
both the theorem and the principle of com-
paring methods in terms of retractions.

1 Introduction

Over the past two decades, several procedures have
been designed to infer causal conclusions from obser-
vational data. However, there is an essential differ-
ence between causal conclusions based on experiments
and those inferred from non-experimental data. Con-
sider a randomized experimental trial to determine
whether X causes Y. Following the usual logic of sta-
tistical testing, one can suspend judgment regarding
the relationship between X and Y until a statistically
significant correlation is detected. If sample size is
not sufficiently large, one can safely conclude that the
missed effect is too small to be of practical consequence
even if it exists. The same cannot be said of causal

relations discovered, even unambiguously, from non-
experimental data when the underlying causal truth is
assumed to be linear gaussian or a discrete Bayes net
(Spirtes et al. 2000, p. 83). Because the orientation
of arbitrarily large causes can be retracted or reversed
as sample size increases in these cases, it is impossible
to find non-trivial interval estimates of the effect of
a policy; depending on the orientation of the relevant
causal connection, the result of the policy might either
be null or quite large (Robins et al. 1999).

In this paper, we extend the result in (Robins et al.
1999) that causal discovery cannot be reliable on a
given sample size. We prove that every causal conclu-
sion drawn by a consistent causal discovery procedure
can flip in orientation any number of times and with
arbitrarily high chance as the sample size increases, as
long as the truth might be a linear Gaussian network or
a discrete Bayes network. That is the case regardless
of the sample size at which the first conclusion in the
sequence is produced. It is also true regardless of the
strength of the causal connection between X and Y,
so the practical consequences of the flips could be im-
mense. Finally, it remains true even if the truth might
be an arbitrary, linear Gaussian or a discrete Bayes
net. One application of the causal flipping theorem
is that the two causal flips of the arrow between X
and Y as depicted in figure 1 are unavoidable, regard-
less of the parameter settings of the first network in
the sequence, if the causal discovery procedure is con-
sistent and if the networks are either linear Gaussian
or discrete. We illustrate the causal flipping theorem
by showing in simulations how four published causal
discovery algorithms perform the causal flips in figure
1 with high chance when provided with random sam-
ples of increasing size generated from a fized setting of
the free parameters in the third causal network in the
series.

We do not infer from the causal flipping theorem that
causal discovery is unjustified and should, therefore,
be abandoned. Rather, we view the unavoidability of
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Figure 1: Causal Flips

causal flipping as the proper justification for causal dis-
covery, in the sense that the best causal discovery algo-
rithms are those that minimize flipping prior to conver-
gence to the true model. It can be shown (Kelly 2010,
Kelly and Mayo-Wilson 2010, Kelly 2007b) that causal
inference methods that systematically prefer simpler
models (where simplicity is measured in terms of the
number of conditional dependencies entailed by the
model, and hence, by number of edges) are exactly
those that also minimize retractions of earlier judg-
ments. That result, called the Ockham Efficiency
Theorem, provides a theoretical justification for ex-
isting algorithms that favor simpler models; a justifi-
cation that does not depend in any way on question-
begging, simplicity-biased prior probabilities. More-
over, methods that retract their conclusions less can
be said to improve upon methods that retract more,
so retraction minimization provides an objective stan-
dard of progress in the design of causal discovery algo-
rithms. The simulations at the conclusion of the pa-
per illustrate concrete comparisons for some published
methods.

2 Statistical Questions and Consistent
Methods

Let P be a set of probability measures over a common
o-field. A statistical question with presupposi-
tion P is a partition © of P into a countable collec-
tion of mutually exclusive and exhaustive theories.
The aim is to find the theory T, in © that contains
the unknown, true probability measure p by means of
samples from p. For example, one might ask whether
the mean of an unknown, one-dimensional normal dis-
tribution of standard variance is or is not exactly 0.
In that case, let P be the set of all normal measures
of standard variance, let T,—o be the set of all such
measures with mean 0, and let T, be the set of all
measures in P with non-zero mean. Then the question

corresponds to the partition ©, = {T,—o, T 20}

Define a method for © to be a mapping M from i.i.d.
samples to theories in ©. If p € P, let p™ denote the
sampling density over i.i.d. samples of size n. Typi-
cally, as in the question whether o = 0, there is no way
to bound the chance of error at a given sample size
over all of P, but one can at least choose a method
that converges to the truth in probability. Say that
M is consistent for © if and only if for each p in P
and for each ¢ > 0, there exists sample size n such
that for each sample size m > n, it is the case that
p™(M =T,) > 1—e. Consistency is a weak property,
but it is the most that has been claimed for many
published algorithms for causal discovery (Spirtes et
al 2000). Our proposal, described in greater detail be-
low, is that such discovery procedures are motivated
and justified better if one refines the concept of consis-
tency by minimizing fluctuations in the chances of pro-
ducing alternative theories prior to convergence down
to those that are unavoidable in principle.

3 Causal Discovery

It is a familiar fact that causal questions are not nec-
essarily reducible to statistical dependency, since sta-
tistical dependency between X and Y is compatible
with X being a cause of Y, with Y being a cause
of X, or with a common cause of X and Y. One
of the bold insights of the recent literature on causal
discovery is that, nonetheless, some interesting causal
conclusions are determined entirely by probability, un-
der some plausible assumptions. In this section, we
present the most basic ideas behind the approach in
order to fix notation—extended, motivated presenta-
tions may be found in (Pearl and Verma 1991, Spirtes
et al. 2000). Let V be a fixed, finite set of random vari-
ables and let Py, denote the set of all probability mea-
sures induced by joint probability densities over the
variables in V. Let DAG denote the set of all directed
acyclic graphs on the fixed variable set V. The arrows
or directed edges in these DAGs are understood to
indicate causal influence (as distinct from mere statis-
tical dependence).

The key idea behind causal discovery is to assume some
plausible principles that connect causal structure with
the patterns of statistical dependencies. Let XIIY | S
abbreviate that X is probabilistically independent of
Y conditional on the values of variables in S, where
S CV\{X,Y}. Call such a statement a conditional
independence constraint (CIC) over V, and let CIC
denote the set of all cics over V. If p € Py, define
the ciC pattern Ip to be the set of all CiCs satisfied
by p. If G € DAG, say that p is Markov for G if and
only if for all variables X € V, it is the case that X is
independent of its non-descendants conditional on its



parents. Let the CIC pattern of DAG G be defined as
IG = N{Ip : p € Py and p is Markov for G}. When
I1G = Ip, say that p is faithful to G. Faithfulness is
the assumed connection between probability and cau-
sation. Define:

Fcic = {IG:G € DAGk;
F = {pePy:(3AecrFcic)Ip= A}

That is, F is the set of measures faithful to some DAG
over V. Let A € rFcic. Define:

Gy =
Fao =

{G € pAG : IG = A};
{peF:Ip= A}

Then ©g = {F4 : A € FcIC} is a purely statistical
question over F, since Ip is a function of p. Theory
F 4 uniquely determines A and, hence, the set of DAGs
G 4, so Og has potential causal significance. If all of
the DAGs in G 4 share a feature (e.g., the causal arrow
X —Y), then that feature is entailed by the statistical
hypothesis F 4, so the statistical question ©¢ may have
strong, causal implications.

Therefore, causal discovery decomposes naturally into
two parts, the purely empirical problem of determin-
ing Ip by sampling from p and the purely deductive
problem of recovering Gy, from Ip. Much of the re-
cent progress in causal discovery has centered on the
deductive phase of the problem, which proceeds as fol-
lows. The causal skeleton skel(G) is just the undi-
rected graph with vertices V that has a undirected
edge X —Y between X and Y if and only if G has an
edge between X and Y. A vee in G is a configuration
of form X —Y — Z such that X and Z are not adja-
cent. An unshielded collision is a vee oriented as
X =Y+ Z

Proposition 1 (Verma and Pearl 1991). IG = IG’ if
and only if skel(G) = skel(G') and G,G’ have the same
unshielded collisions.

Thus, the causal skeleton of the true G and all of
the unshielded collisions in G are recoverable uniquely
from the purely probabilistic information IG. It may
also be possible to derive further conclusions about G.
If the vee X — Y — Z results from orienting some un-
shielded collision, then it follows that X — Y — Z is
not a collision, and the only remaining possibility is
Y — Z. Also, DAGs are acyclic, so if there is a di-
rected path from X to Y and an edge X — Y, then
it is safe to conclude that X — Y. These two con-
ditions can be iterated until no more orientations can
be obtained. The resulting method is called the sGs
algorithm, after the initials of its inventors (Spirtes et
al. 2000). The same authors have produced a several
more efficient and more sophisticated variants of the

same idea, called the PC, CPC, and FCI algorithms that
will employed in the simulation studies below.

Often, the pertinent causal question concerns some
local feature of causal structure, such as whether X
causes Y or Y causes X or neither, rather than some
global causal structure, like the CIC pattern, which con-
cerns all the variables in V. Say that causal edge
X — Y is essential in G if for all G’ such that
I1G = IG’, the graph G’ contains the directed edge
X — Y. Define:

Txoy = U{Fg : X =Y is essential in G};

Txc vy U{Fg : X <Y is essential in G};

Tx_y = U{Fg:X%YorXeYisin
G non-essentially };

T (x-y) = U{Fg : X and Y are non-adjacent in G}.

Define the causal question ©x y concerning X,Y to
be

Oxy ={Txov,Txey,Tx_v,Tox-v)}

4 Causal Flipping

The preceding section focused entirely on the purely
deductive inference from Ip to Gr,. But Ip must be in-
ferred from samples. One approach is to assume that
a given CIC is true until it is rejected by a statisti-
cal test. If the significance levels of the tests are ad-
justed downward at a sufficiently slow rate, then this
procedure converges in probability to Ip. Application
of the above deductive rules computes a pattern that
uniquely determines Gy,. The resulting method M
is consistent for ©¢ (Spirtes et al. 2000).

The consistency property does not imply a non-trivial
bound on chance of error in the short run (Robbins
et al. 1999), but the situation is worse than that.
It is possible for a consistent method to produce the
causal conclusion X — Y with arbitrarily high chance
at a given sample size and then to produce the con-
trary conclusion X < Y with arbitrarily high chance
as sample size increases, and so on, any number of
times as sample size increases. Each such reversal in
chance of the inferred causal orientation is a causal
flip. Causal flips are not so surprising for the sGs
algorithm, since that algorithm bases its conclusions
entirely on the pattern of currently accepted and re-
jected null hypotheses, and the accepted null hypothe-
ses may be rejected with high chance at higher sample
sizes. The causal flipping theorem, however, asserts
the unavoidability of arbitrarily many causal flips, if
the causal discovery method is consistent and if arbi-
trary, linear Gaussian or discrete Bayes networks are



theoretical possibilities. In the linear Gaussian and
discrete Bayes net cases, it is as if every consistent
method is essentially forced to base its causal conclu-
sions on inferred patterns of conditional independence,
and the inferred independence hypotheses may always
be overturned as the sample size increases. That in-
cludes methods based on consistent scoring rules like
BIC (see the GES simulation below) or even methods
based on Bayesian posterior probabilities.

Recent work (Hoyer et al. 2009) establishes that in
some questions that ezclude linear Gaussian models
and discrete Bayes nets as possibilities, the true causal
structure can be identified without risking any retrac-
tions of earlier conclusions. However, that approach
avoids retractions by producing no causal conclusions
whatever all until the departure from the linear Gaus-
sian case is noticeable in the data. Therefore, unless
one foregoes all causal conclusions in linear Gaussian
models, causal flipping remains an unavoidable feature
of causal discovery from non-experimental data.

5 Empirical Approximation

To prove the causal flipping theorem, we introduce a
few crucial definitions. Let P be a set of probability
measures on a common o-field F, and define the total
variation distance between two measures in p,q € P
as p(p,q) = suppcr |P(E) —q(F)|. Total variation dis-
tance is a very natural measure of indistinguishability,
since it bounds the difference in chances the two mea-
sures assign to an arbitrarily chosen “acceptance zone”
for a test that distinguishes them. Total variation
space is the topology induced by open p-balls. When
p is applied to sampling densities in statistical applica-
tions, we assume that one first converts the sampling
densities to their induced, infinite product measures.

Given T, T’ C P, define the empirical approxima-
tion order with respect to P:

T<pT & T Ccl(T)

where the topological closure operation is defined with
respect to total variation space. When P is clear from
context, we write drop the subscript P on <. The em-
pirical approximation order is one of the main ideas in
this paper—it embodies the philosophical problem of
induction as it arises in statistical inference. Suppose
that T < T. Then no matter how much evidence you
think you have for concluding that the true distribu-
tion is in T, there is an essentially indistinguishable
distribution in T'. For example, recall the question
©, = {T,=0, T, z0}, which asks whether the mean of
a univariate normal distribution of standard variance
is or is not identically 0. Let p,, be the univariate nor-
mal with variance 1 and p. The unique element of
T =0, then, is po. If § > 0 is sufficiently small, then

p(po,ps) < e. Thus, T\ =g < Tz0.

Because T,—o < T,,+0, any consistent method for ©,,
can be forced to first conjecture T,,—¢, with arbitrarily
high probability, and then later conjecture T, -¢, again
with arbitrarily high probability, at some larger sample
size. Why? Suppose that M is a consistent solution
to ©,, and let € > 0 be small. Then there exists sam-
ple size n such that pg(M = T,—o) > 1 —¢/2. Since
T.—o < T,xo, there is some ps € T,o such that
p(po,ps) < pg(M =T,=) — (1 — €/2). By the defini-
tion of p, it follows that ¢ (M = T,—¢) > 1—¢/2, since
M =T, —¢ is an event in F. But then the consistency
of M in ps guarantees that py*(M = T,.0) > 1 —€/2,
for some m > n. Thus, the chance that M produces
T,—o plummets by a whopping 1 — ¢ from sample
size n to sample size m. The change of heart on in-
creasing information is not a mere matter of sampling
noise; it represents a fundamental reversal in the signal
the method sends to the user regarding theory T,
and it is a consequence of nothing more than the (de-
sirable) consistency of M and an unavoidable struc-
tural fact about the question addressed, namely, that
Tpu—0 < Tpxo.

So much is implicit in standard, textbook discussions
of statistical power, but the argument iterates as sam-
ple size increases without bound. Suppose that one is
confronted with a question © in which there is an em-
pirical approximation chain Ty < Ty < ... < Ty,
where T; € O for all i < k. As long as your method
is consistent, it can be forced to return the various
theories T, T3, and so on, with arbitrarily high prob-
ability as sample size increases. It does not matter how
clever or subtle your consistent method is at “mining”
empirical samples—in fact more sensitive and infor-
mative data-mining techniques will “leap” for the suc-
cessive theories in the empirical approximation chain
more quickly than dull, insensitive ones. Moreover,
it turns out that there is no way to bound the time
at which these theories are produced—they happen
when nature chooses, if the method is paying atten-
tion. These ideas are made precise in the following
proposition, which is the central lemma for the causal
flipping theorem:

Proposition 2. Suppose that M is consistent for ©
and that there exists chain

To<T; <...<Ty

where T; € © for alli < k. Let p € Ty and let O be
an arbitrary, open neighborhood of p in total variation
space. Let € > 0 and let d be an arbitrary natural
number. Then there exists ¢ € O N'Ty and there exist
increasing sample sizes ng < ny < ... < ng such that
for each i < k:

n;>d-(i+1) and ¢ (M =T;) >1—e



Proof: By induction on k. When k& = 0, just choose
g to be p and then ng > d = d - (0 + 1) exists by
the consistency of M. At k + 1, there exists chain
Tog<T) <...<Tgyq. Let p e Ty and let O be an
open neighborhood of p in total variation space. Since
M is consistent, there exists ng > d such that:

P (M =Ty >1—e

There exists total variation ball B, around p such that
for each p’ in B, the preceding, strict inequality holds
(again, p bounds the probabilities of arbitrary events
in the sigma field of the product measure induced by
the probability measures under consideration). Hence,
the inequality holds over all of S = O N B, which is
open. Since Tg < T4, there exists p’ € SN'T;. By the
induction hypothesis, there exists ¢ € S N Tyy; and
there exist increasing sample sizes nq,...,ni4+1 such
that n; > 2-ng - (i + 1) and:

qnl(M = Tz) > 1 — €,

for each 7 from 1 to k+ 1. Thus, n; > d - (i + 1), for
each ¢ from 0 to k 4+ 1. Since ¢ € S C B, we have
that:

an(M = To) >1—e

Finally, ¢ € S C O.

If A, B € rcic, write A < Bif F4 < Fpg. Say that P is
dependency driven if and only if for all A, B € Fcic,

BCA=A<B.

Dependency driven-ness is the second important con-
cept in this paper. When P is dependency driven,
statistical dependencies suffice to disambiguate any
causal questions that can be disambiguated. As it hap-
pens, two of the most studied applications of causal
discovery are dependency driven:

Proposition 3. The set of linear Gaussian distribu-
tions over V and the set of discrete multinomial dis-
tributions over V are both dependency driven.

The proof of the preceding proposition is presented in
(Kelly and Mayo-Wilson 2010).> Recent work (Hoyer
et al. 2009) suggests that non-dependency-driven
questions may be more commonplace than we initially
expected.

6 Retractions in Chance

In light of Proposition 2, any method M probably can
be forced, at successively large sample sizes, to pro-
duces T, then produce T, and so on, with arbitrarily

!The proof crucially employs the fact the set of unfaith-
ful linear gaussian and discrete multinomial distributions
each have Lebesgue measure zero; the linear gaussian case
is discussed in (Spirtes, et. al 2000), and the discrete case
in (Meek 1995).

high probability. These theories may be different. At
each change of heart, the chance of producing the pre-
ceding theory drops severely (by at least the amount
1 — €, where € may be chosen as small as you please).
We call that a retraction in chance. To quantify
retractions in chance, let P be a set of measures on
a common o-field, © be a question, and let M be a
method, let p € P and let n > 0. For two real num-
bers x and y, define x © y = max{0,z — y}. Then
define:

T@(M,T,p, n) = pn—1<M - T)
O pn(M = T);
re(M,p,n) = Y re(M,T,p,n);
TeO
T@(M,p) = ZT@(M,]?,TL);
n>0
re(M) = supre(M,p).
peP

Then rg(M,p) represents the total retractions in
chance of M in p as sample size increases, and rg (M)
is the worst-case bound on rg¢(M,p) with respect to
P. By tuning € > 0 in the preceding proposition arbi-
trarily low, one obtains the following lower bounds on
retractions in chance:

Proposition 4. Let the situation be as described in
proposition 2, and suppose that T; # T;11 for all i <
k. Then q satisfies ro(M,q) > k — € and re(M) > k.

7 Causal Flipping Theorem

Suppose that X — Y is an edge in G. Say that X —
Y is covered if and only if the parents of X in G
are the same as those of Y except for X itself. A
covered edge reversal involves flipping a covered
edge to obtain a new G’. Define G < H to hold if and
only if H is obtained from G by a finite sequence of
covered edge flips and edge additions. Then:

Theorem 1 (Chickering 2002). IG C I'H if and only
ifH=G.

Call a sequence Gy =X G; =< ... = G; a Chickering
chain. For example, the sequence in figure 1 is a
Chickering chain. From (i) to (ii), start by adding
edge Z1 — Z5 and then flip the following edges in se-
quence: Zy —+ X, Z1 - X, X =Y, Y — Zs. Then
add edge Z; — Y. From (ii) to (iii), the process is
similar, starting from the addition of Z3 — Z,. We
now present the main result of the paper. Say that
a vertex X is isolated in G if and only if X has no
causal connections to other variables in G. Then:

Theorem 2 (Causal Flipping). Suppose that M is
consistent for the edge orientation question O xy over
dependency driven P. Letp € P, G € G, and suppose



there are at least k isolated variables in G. Let O be
an arbitrary, open neighborhood of p in total variation
space, and let € > 0. Then there exists ¢ € O such
that re  (M,q) > k —e. Thus, rey , (M) > k.

Proof: It suffices to construct a Chickering chain
G =Gy = G =X ... =% G in which causal edge
X — Y flips k times. If £ = 0, then the proposition
is trivial, so suppose that £ > 0. Suppose that DAG
G contains the edge X — Y, so that Tg is either
Tx .,y or Tx_y. Extend G to some complete
DAG H on the non-isolated vertices V' (i.e., a DAG
in which each vertex is adjacent to every other).
There exists a complete DAG H' over V' with edge
Y — X. Then I'H = IH', by proposition 1, and so
H' results from H by a sequence of (covered) edge
flips, by theorem 1. Let Z be an isolated variable
of G. Add the edge 7 — X to H' to obtain the
DAG G;. Then, as Z was isolated in G, the vee
Z — X < Y is an unshielded collision in G;. By
Proposition 1, the edge ¥ — X is essential in Gy,
and so Tg, = Ty_,x. Hence Tg, # Tg. Iterate this
construction until the isolated variables are used up. -

Then every published causal conclusion X — 'Y drawn
by a consistent method for the edge orientation ques-
tion Oxy over dependency driven Py is subject to
flipping any number of times, no matter how strong the
evidence for that conclusion happens to be at present.
The bound k on causal flips based on the number of
isolated variables remaining in V is mainly a formal
nicety. In practice, there are always new, unmeasured
variables that have no noticeable correlation with the
variables in V, so the potential for future flips is, es-
sentially, endless.

8 Causal Flips in Simulation

Suppose that the truth is the standardized struc-
tural equation model with independent, Gaussian er-
ror terms and causal path parameters fixed at the val-
ues depicted in Figure 2.

Figure 2: The Truth Behind the Simulations

We generated line graphs of frequency of output of
the true edge X — Y (the pink “true” line) and the
flipped edge X < Y (the blue “reversed” line) over 100

trials at each sample size examined, for each of four
causal search algorithms implemented in TETRAD ver-
sion 4.3.9-21.2 The algorithms simulated are PC and
FCI (Spirtes et al. 2000), cpc (Ramsey et al. 2006)
and GES (Chickering et al. 2002). The retractions in
chance of algorithms PC, CPC, and FCI in the causal
scenario depicted in figure 2 are depicted in figures 3,
4, and 5. The GES algorithm is a bit hesitant to flip
all the way to the false conclusion in the example de-
picted (the truth is still fully retracted), but on a slight
refinement of the example in figure 2 (set Z3 — Z4 to
—.02501, Zg — X to .005, and X — Y to .5 - Revers-
ing the sign on X — Y was an oversight that theoret-
ically has nothing to do with the improved flips.) it
bites enthusiastically for the first flip; the second flip
being assured by the consistency of the GES method
(figure 6).
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The TETRAD package is freely downloadable at
www.phil.cmu.edu/projects/tetrad/ tetrad4.html.
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9 What Good are Methods that Flip?

Some advocates of causal discovery techniques invoke
principles stronger than causal faithfulness that rule
out the possibility of causal flips (Zhang and Spirtes
2003). Bayesians lay down prior probabilities that
make the flips improbable. In contrast, we propose
that the justification for existing causal discovery pro-
cedures is a consequence of the unavoidability of flip-
ping, rather than assurances that flipping will not
happen. Since repeated causal flips are unavoidable
for consistent methods, the best that a truth-seeker
can expect is to minimize such flips or retractions
(Schulte et al. 2007). Hence, we propose that retrac-
tion minimization provides the best available expla-
nation of how it is that causal discovery algorithms
find true causes better than alternative strategies bi-
ased against simple causal networks can, at least in
application to linear Gaussian and discrete causal net-
works. For comparisons of the retraction minimization
approach with alternative foundations for model selec-
tion, see (Kelly 2010, Kelly and Mayo-Wilson 2008,
Kelly 2008).

It can be demonstrated that, in both causal inference
and some instances of scientific theorizing more gen-
erally, methods that minimize retractions are those
that employ Ockham’s razor, i.e. a systematic prefer-
ence for simpler models (Kelly 2010, Kelly and Mayo-
Wilson 2010, Kelly 2007b). The basic idea is that
simpler theories imply fewer detectable effects, where
effects are arbitrarily subtle phenomena that may me
encountered arbitrarily late or only in arbitrarily large
samples. Therefore, positing a theory that implies a
potentially subtle effect that has not yet been detected
leaves one open to having to retract the theory if the ef-
fect never appears (e.g., after a long sequence of failed
or “null” attempts to produce the effects in question).
That retraction gets added to all the unavoidable re-
tractions that may follow, resulting in a sub-optimal
retraction bound. So one ought not to produce com-
plex theories that imply extra effects until those po-
tentially subtle effects have been verified.

Some standard causal discovery procedures, like cPC
and GES, do implement a version of Ockham’s razor
because they employ a systematic bias toward causal
networks with fewer edges. That explains the nearly
optimal performance of CPC and GES in terms of re-
tractions (i.e. two full retractions in chance) in the
above simulations. In contrast to CPC and GES, the
PC and FCI algorithms violate Ockham’s razor, which
is why they exhibit “spikes” in the chance of producing
orientation X — Y around sample size 10,000. The pC
algorithm, for example, seeks to minimize conditional
independence tests by deducing some CICs from others,
assuming that the data are faithful - which can easily
be false due to sample variation. As a consequence,
PC’s computational heuristics result in less direct con-
vergence to the truth, where “directness” is measured
in terms of total retractions in chance.

Here’s it how happens. At sample size 10,000, the
PC algorithm checks the independence of X and Z3
conditional on {Z1}, {Z>}, and {Zg}. The tests fail
to reject about 1/3 of the time. In those cases, the
algorithm deduces, from the false assumption that the
data are faithful, that there is a collision Z3 — Y <«
X .3 The algorithm concludes, therefore, that the truth
is X — Y when X <« Y is compatible with the data
and is equally simple. Ockham’s razor (and common
sense) demand that science wait for the data to choose
among equally simple models.

The penalty for violating Ockham’s razor is not
unreliability—reliability is impossible in this ques-
tion, in any event, unless one adopts unrealistic back-
ground assumptions stronger than faithfulness. How-
ever, there is a demonstrable penalty for violating Ock-

3We are indebted to Joe Ramsey for this explanation.



ham’s razor: the additional retraction in chance in-
curred on the downside of the probability “spike”. In
contrast, the cpC algorithm does cross-check in the
recommended manner, and as a result, it avoids vio-
lating Ockham’s razor in the manner just described.
Thus, it avoids the spike, as does the score-based GES
method. Therefore, the simulation study concretely il-
lustrates, with real methods, how the retraction mini-
mization theory can motivate and justify concrete im-
provements in data mining technology.
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