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Abstract

Cyber-physical systems, such as mobile
robots, must respond adaptively to dynamic
operating conditions. Effective operation of
these systems requires that sensing and actu-
ation tasks are performed in a timely manner.
Additionally, execution of mission specific
tasks such as imaging a room must be bal-
anced against the need to perform more gen-
eral tasks such as obstacle avoidance. This
problem has been addressed by maintaining
relative utilization of shared resources among
tasks near a user-specified target level. Pro-
ducing optimal scheduling strategies requires
complete prior knowledge of task behavior,
which is unlikely to be available in practice.
Instead, suitable scheduling strategies must
be learned online through interaction with
the system. We consider the sample com-
plexity of reinforcement learning in this do-
main, and demonstrate that while the prob-
lem state space is countably infinite, we may
leverage the problem’s structure to guarantee
efficient learning.

1 Introduction

In cyber-physical systems such as mobile robots, set-
ting and enforcing a utilization target for shared re-
sources is a useful mechanism for striking a balance
between general and mission-specific goals while en-
suring timely execution of tasks. However, classical
scheduling approaches are inapplicable to tasks in the
domains we consider. First, some tasks are not effi-
ciently preemptable: for example, actuation tasks in-
volve moving a physical resource, such as a robotic arm
or pan-tilt unit. Restoring the actuator state after a
preemption would be essentially the same as restart-
ing that task. Therefore, once an instance of a task

acquires the resource, it should retain the resource un-
til completion.

Second, the duration for which a task holds the re-
source may be stochastic. This is true for actuation
tasks, which often involve one or more variable me-
chanical processes. Classical real-time scheduling ap-
proaches model tasks deterministically by treating a
task’s worst-case execution time (WCET) as its execu-
tion budget. This is inappropriate in our domain, as a
task’s WCET may be many orders of magnitude larger
than its typical duration. To account for this variabil-
ity, we assume that each task’s duration obeys some
underlying but unknown stationary distribution. Be-
having optimally under these conditions requires that
we account for this uncertainty in order to anticipate
common events while exploiting early resource avail-
ability and hedging against delays.

In previous work (Glaubius et al., 2008, 2009), we
have proposed methods for solving scheduling prob-
lems with these concerns, provided that accurate task
models are available. One straightforward approach
for employing these methods is via certainty equiva-
lence: constructing and solving an approximate model
from observations of the system. However, this is
less effective than interleaving modeling and solution
with execution, since interleaving learning allows the
controller to adapt to conditions observed during ex-
ecution, which may differ from conditions observed
in a distinct modeling phase. Interleaving model-
ing and execution raises the exploration/exploitation
dilemma (Kaelbling et al., 1996): the controller must
balance optimal behavior with respect to available in-
formation against the long-term benefit of choosing ap-
parently suboptimal exploratory actions that will im-
prove that information. This dilemma is particularly
relevant in the real-time systems domain, as sustained
suboptimal behavior translates directly into poor qual-
ity of service.

In this paper we consider the problem of learning near-
optimal schedules when the system model is not known



in advance. We provide PAC bounds on the compu-
tational complexity of learning a near-optimal policy
using balanced wandering. Our result is novel, as it ex-
tends established methods for learning in finite Markov
decision processes to a domain with a countably infi-
nite state space with unbounded costs. We also pro-
vide an empirical comparison of several exploration
methods, and observe that the structure of the task
scheduling problem enforces effective exploration.

2 Background

2.1 System Model

As in Glaubius et al. (2008, 2009), the task scheduling
model consists of n tasks (7;)"_; that require mutually
exclusive use of a single common resource. Each task
T; consists of an infinite sequence of jobs (7; ;)72
Job T; ¢ is available at time 0, while each job T; (;11)
becomes available immediately upon completion of job
T; ;. Jobs cannot be preempted, so whenever a job is
granted the resource, it occupies that resource for some
stochastic duration until completion. Two simplifying
assumptions are made regarding the distribution of job
durations:

(A1) Inter-task job durations are independently dis-
tributed.

(A2) Intra-task job durations are independently and
identically distributed.

When Al holds, the duration of job T ; always obeys
the same distribution regardless of what job preceded
it. This means that the system history is not necessary
to predict the behavior of a particular job. When A2
holds, consecutive jobs of the same task obey the same
distribution. Thus, every task T; has a duration distri-
bution P(-|i) from which the duration of every job of T;
is drawn. The actuator example in the previous section
does not immediately satisfy these assumptions, since
a job’s duration depends on the state of the actuator
when the job starts executing. These may be enforced
in actuator-sharing, however, by requiring that each
job leaves the actuator in a static reference position
before relinquishing control.

In addition to the assumptions stated above, each du-
ration distribution must have bounded support on the
positive integers: that is, every task T; has an integer-
valued WCET W; such that Zzil P(t|#) = 1. For sim-
plicity, W denotes the maximum among all W, and
the WCET of individual tasks are ignored.

Our goal is to schedule jobs in order to preserve tempo-
ral isolation (Srinivasan and Anderson, 2005) among
tasks. We specify some target utilization u; for each
task that describes its intended resource share at any

temporal resolution. More specifically, let x;(t) denote
the number of quanta during which task T; held the
resource in the interval [0,t). Our objective is to keep

(" = t)us — (zi(t') — i (t))]

as small as possible over every time interval [¢,¢’) for
each task T;. We require that each task’s utilization
target u; is rational and that the resource is completely
divided among all tasks, so that >, u; = 1.

2.2 MDP Formulation

Following Glaubius et al. (2008, 2009), this problem is
modeled as a Markov decision process (MDP) (Put-
erman, 1994). An MDP consists of a set of states
X, a set of actions A, a transition system P, and a
cost function C. At each discrete decision epoch k, a
controller observes the current MDP state z; and se-
lects an action ix. The MDP then transitions to state
21 distributed according to P(:|zk, ;) and incurs
cost ¢ = C(xp41).

The value V™ of a policy 7 is the expected long-term
~v-discounted cost of following 7, where + is a discount
factor in (0,1). V™ satisfies the recurrence

VT(x) =Y P(ylz,m(x)) V" (y) — Cy)]-

yeX

It is often convenient to compare alternative actions
using the state-action value function Q7 (x, 1),

Q"(z,i) = Y Plyle,))yV™(y) — Cly)].

yeX

The objective is to find an optimal policy 7* such that
V™ (x) > V™(z) among all states = and policies 7. For
brevity, V and Q are used to denote V™ and Q™ . V
satisfies the Bellman Equation (Puterman, 1994)

Vie) =max »  Plylz. )V (y) - Cly)l. (1)
yekX
or equivalently V(z) = max;{Q(z,7)}. An optimal
policy is obtained by behaving greedily with respect
to @,
7 (z) € argmax,{Q(z,7)}.

Thus, computing the optimal control can be reduced
to computing the optimal value function. Several
dynamic programming and linear programming ap-
proaches have been developed to solve such problems
when X and A are finite (Puterman, 1994).

The task scheduling problem is modeled as an MDP
over a set of utilization states X = N™. Each state x is
an n-vector x = (z1,...,2,) where each component z;



Figure 1: The utilization state model for a two-
task problem instance. Tj (grey, open arrowheads)
stochastically transitions to the right, while T5 (black,
closed arrowheads) deterministically transitions up-
ward. The dashed ray indicates the utilization target.

is the total number of quanta during which task T; oc-
cupied the shared resource since system initialization.
7(x) denotes the total elapsed time in state x,

T(x) =)z (2)
=1

Each action ¢ in this MDP corresponds to the decision
to run task T;. Transitions are determined according
to task duration distributions, so that

Pt|i) y=x+tA;

0 otherwise

Pylx,i) = { (3)

where A; is the zero vector except that component 4
is equal to one, i.e., executing task 7T; alters just one
dimension of the system state. The cost of a state
is its Lp-distance from target utilization within the
hyperplane of states with equal elapsed time 7(x),

n

Cx) =Y los = m(x)ui - (4)

i=1

Figure 1 illustrates the utilization state model for
a problem with two tasks and a target utilization
u = (1,2)/3 (that is, task T} should receive 1/3 of
the processor, and task Ty should receive the rest).
The target utilization defines a target utilization ray
{Au: A > 0}. When the components of u are ratio-
nal, this ray regularly passes through many utilization
states. In Figure 1, for example, the utilization ray
passes through integer multiples of (1,2). Every state
on this ray has zero cost, and states with the same dis-
placement from the target utilization ray have equal
cost.

This task scheduling MDP has an infinite state space
and unbounded costs, but because of repeated transi-
tion and cost structure, states that are collinear along

rays parallel to the utilization ray may be aggregated.
The resulting problem still has infinitely many states,
but an optimal policy can be estimated accurately us-
ing a finite state approximation (Glaubius et al., 2008).
Applying this model minimization approach (Givan
et al., 2003) does require prior knowledge of the task
parameters, which is often unavailable in practice.

In this paper, we use reinforcement learning to in-
tegrate model and policy estimation. An important
question is how much experience is necessary before
we can trust learned policies. We address this question
by deriving a PAC bound on the sample complexity of
obtaining a near-optimal policy. To the best of our
knowledge, this is the first such guarantee for prob-
lems with infinite state spaces and unbounded costs.

2.3 Related Work

A principle that unifies many successful methods for
efficient exploration is optimism in the face of un-
certainty (Kaelbling et al., 1996; Szita and Ldrincz,
2008). When presented with a choice between two ac-
tions with similar estimated value, methods using this
principle tend to select the action that has been tried
less frequently. Optimism can take the form of op-
timistic initialization (Even-Dar and Mansour, 2001),
i.e., bootstrapping initial approximations of the value
function with large values (Brafman and Tennenholtz,
2003; Strehl and Littman, 2008). Interval estimation
techniques instead bias action selection towards explo-
ration by maintaining confidence intervals on model
parameters (Strehl and Littman, 2008; Auer et al.,
2009) or value estimates (Even-Dar et al., 2002). In-
terval estimation techniques have been developed for
solving single-state Bandit problems (Auer et al., 2002;
Even-Dar et al., 2002; Mannor and Tsitsiklis, 2004;
Mnih et al., 2008), as they can be extended to the
general MDP setting by treating each state as a dis-
tinct Bandit problem.

Heuristic exploration strategies are often employed
due to their relative simplicity. e-greedy exploration
and Boltzmann action selection methods (Kaelbling
et al., 1996) are randomization strategies that bias ac-
tion selection toward exploitation. Perhaps the most
commonly used strategy, e-greedy exploration, simply
chooses an action uniformly at random with probabil-
ity € at epoch k, and otherwise it selects the apparent
best action. By decaying € appropriately this strategy
asymptotically approaches the optimal policy (Even-
Dar et al., 2002).

We are interested in quantifying the sample complex-
ity of learning good policies in terms of the num-
ber of observations necessary to compute a near-
optimal policy with high probability — i.e., probably



approximately correct (PAC) learning (Valiant, 1984).
Kakade (2003) has considered the question of PAC
learning in MDPs in detail. Several PAC reinforce-
ment learning algorithms have been developed, includ-
ing E3 (Kearns and Singh, 2002), R-Max (Brafman
and Tennenholtz, 2003), MBIE (Strehl and Littman,
2008), and OIM (Szita and Lérincz, 2008). These algo-
rithms are limited to the finite state case, and assume
bounded rewards. Metric E3 (Kakade et al., 2003) is
a PAC learner for MDPs with continuous but compact
state spaces.

3 Online Learning Results

We consider the difficultly of learning good schedul-
ing policies in this section. We approach this ques-
tion both analytically and empirically. In Section 3.1,
we derive a PAC bound (Valiant, 1984) on a balanced
wandering approach to exploration (Kearns and Singh,
2002; Even-Dar et al., 2002; Brafman and Tennen-
holtz, 2003) in the scheduling domain. Our result is
novel, as it extends results derived for the finite-state
bounded cost setting, to a domain with a countably in-
finite state space and unbounded costs. These results
rely on a specific Lipschitz-like condition that restricts
the growth rate of the value function under our cost
function (See Lemmas 3 and 4 in the appendix), and
finite support of the duration distributions, i.e., finite
worst-case execution times of tasks. In Section 3.2, we
present results from simulations comparing alternative
exploration strategies.

We estimate task duration distributions using the em-
pirical probability measure. We suppose a collection
of m observations {(ix,tx) : k = 1,...,m}, where task
T;, ran for t; ~ P(:|ig) quanta at decision epoch k.
Then let w,,(7) be the number of observations involv-
ing task T;, and let w,,(i,t) be the number of those
observations in which 7T; ran for ¢ quanta,

wn(i) =Y T{ix =i}, (5)
k=1

wn(i,t) =Y T{ig =i Aty =1}, (6)
k=1

where I{-} is the indicator function. Then our task
duration model P,,(t]7) is just

P (t]i) = win (i, ) /wm (i) (7)
Since cost is completely determined by the system

state, the transition model is the sole source of un-
certainty in this problem.

3.1 Analytical PAC Bound

We consider the sample complexity of estimating a
near-optimal policy with high confidence by bound-
ing the number of low value exploratory actions
taken (Kakade, 2003). Our analysis proceeds in three
parts. First, we derive bounds on the value estima-
tion error as a function of the model accuracy. Next,
we determine the number of observations needed to
guarantee that model accuracy. Finally, we use these
results to determine how many observations suffice to
arrive at a near-optimal policy with high certainty. We
focus on estimating the state-action value function @,

w
Q(x,i) = Y P(tli)[yV(x + tA;) — C(x + tA;)]. (8)
t=1
We use V,,, to denote the optimal state value function
and @Q,, to denote the state-action value function of
the estimated MDP with transition dynamics P,,.

To establish our main result constraining the sample
complexity of learning in our scheduling domain, we
first provide the following simulation lemma, which is
proven in the appendix.

Lemma 1. If there is a constant 3 such that for all
tasks T;,

w
> |Pn(t]i) = P(t])] < B, (9)
t=1
where the worst-case execution time W is finite, then
2W 5
_ < 20 F
1@~ @l < 750 (10)

This result serves an identical role to the Simulation
Lemma of Kearns and Singh (2002) relating model es-
timation error to value estimation error. Our bound
replaces the quadratic dependence on the number of
states in that result with a dependence on the WCET
W. This is consistent with observations indicating
that the sample complexity of obtaining a good ap-
proximation should depend polynomially on the num-
ber of parameters of the transition model (Kakade,
2003; Leffler et al., 2007), which is O(|X|?|.A|) for gen-
eral MDPs, but is (W - |A|) in this scheduling domain.

Theorem 1 provides a PAC bound on the number of
observations needed to arrive at an accurate estimate
of the value function. For the sake of simplicity we
assume balanced wandering here, as this result can be
easily used to guide offline modeling as well as em-
ployed during online learning.

Theorem 1. Under balanced exploration, if

then ||Qm — Q| < € with probability at least 1 — 4.



Proof. According to Lemma 1, model accuracy
B <e(l—v)%/(2W) is sufficient to guarantee that
|Qm — Q|| <e. Thus, demonstrating the bound in
Equation 11 is a matter of guaranteeing with high cer-
tainty that P,, is near P; specifically, we require that

n w

P{A (X 1Pultle) - P > 8) } <6,

=1 t=

which we can enforce using the union bound by requir-
ing P { 1L, | P (t]i) — P(tli)] < B} 21— 6/nfor ev-
ery task. By Lemma 8.5.5 from Kakade’s disserta-
tion (Kakade, 2003),

wini) > (8W/5) log(21Wn/)

is sufficient to guarantee with probability 1 —d/n that
P,,(+]i) is accurate. If we assume balanced wandering,
that wy, (i) = m/n for each task T;, then we require

m > (8Wn/B?) log(2Wn/$) (12)

observations. Substituting the least accuracy
B=¢e(l—~)%/(2W) that will still guarantee an &-
approximation to @, produces the stated result,

m> 32W3n o 2Wn -
“\e2a-1) ®\Us )

Theorem 1 provides a PAC bound on the number of
observations needed to learn an e-approximation to
Q. However, we are principally interested in discov-
ering the number of observations we need to trust
our learned policies. Corollary 1 establishes the sam-
ple complexity for using balanced complexity to learn
good scheduling policies.

Corollary 1. Assuming each action is tried an equal
number of times, if

m > 128W342n o 2Wn
= 762(1—7)6 g s )

then the optimal policy m, of the estimated task
scheduling MDP is within € of the optimal policy m
with probability at least 1 — §.

A classical result due to Singh and Yee (1994) demon-
strates that, in general, a policy 7 that is greedy with
respect to value function approximation V is within
29[V = Voo /(1 — ) of optimal. Corollary 1 follows
by noting that ||V — Ve < [|Q — Qllss, 0 we re-
quire that 27]|Q — Q|loe/(1 —7) < &. Substituting
this constraint on @), into Theorem 1 establishes the
corollary.

As with existing bounds, the sample complexity scales
polynomially in the parameters 1/, 1/d, 1/, and the

number of actions. Unlike bounds for general MDPs,
there is no dependence on the number of states; in-
stead, the complexity of learning is determined by the
worst-case execution time W. This result is similar
to bounds for relocatable action models (Leffler et al.,
2007), in which the state space can be partitioned into
a relatively small number of classes. Transition mod-
els can be generalized among states in the same class,
so the sample complexity of learning depends on the
number of classes rather than the number of states.
Our scheduling MDP is a special case of the relocat-
able action model in which there is only one class of
states.

While relocatable action models have been used to ad-
dress infinite state spaces (Brunskill et al., 2009), ex-
isting sample complexity results do not address the
unbounded reward case. We are able to handle un-
bounded costs here by taking advantage of the slow
growth rate of the value function relative to the dis-
count factor. Specifically, the distance between con-
secutive states is bounded, so while costs grow poly-
nomially with distance from the resource share tar-
get (cf. Lemma 3 in the appendix), since costs are
exponentially discounted the value of any particular
state is finite. These observations enable the bound in
Lemma 1, suggesting that sample complexity bounds
may be possible in general for infinite state, un-
bounded cost models as long as the number of classes
is finite and individual state values can be bounded.
Of course, for these results to be useful good poli-
cies must be represented compactly, which is possible
for the scheduling domain considered here (Glaubius
et al., 2008), but is not generally the case.

3.2 Empirical Evaluation

The PAC bound in the previous section gives a sense
of the finite sample performance for learning a good
policy; however, it requires several simplifying as-
sumptions, such as balanced wandering, so the bound
may not be tight. In practice, alternative explo-
ration strategies may yield better performance than
our bound would indicate. We compare the perfor-
mance of several exploration strategies in the context
of the task scheduling problem by conducting exper-
iments comparing e-greedy, balanced wandering, and
an interval-based exploration strategy.

For interval-based optimistic exploration, we use the
confidence intervals derived for the multi-armed bandit
case by Even-Dar et al. (2002) for the Successive Elimi-
nation algorithm. That algorithm constructs intervals
of the form «y = /log(nk2c)/k about the expected
cost of each action at decision epoch k, then eliminates
actions that appear worse than the apparent best using
an overlap test. The parameter ¢ controls the sensi-
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Figure 2: Simulation comparison of exploration techniques. Note the differing scales on the vertical axes.

tivity of the intervals. We use these intervals to select
actions optimistically according to

argmax{Q (x,7) + a; x }
€A

where we have adjusted the confidence intervals ac-
cording to the potentially different number of observa-
tions of each task,

ki = \/log(nwy (i)2¢) Jwi (4)

We vary ¢ to control the chance of taking exploratory
actions. As c shrinks, these intervals narrow, increas-
ing the tendency to exploit the estimated model.

In our experiments with e-greedy, we set the random
selection rate at decision epoch k, e, = €g/k for vary-
ing values of ¢p; this strategy always exploits when
€o = 0. Balanced wandering simply executes each task
a fixed number of times m prior to exploiting. We vary
this parameter to determine its impact on the learning
rate. When m = 0, this strategy always exploits its
current model knowledge.

To compare the performance of these exploration
strategies, we generated 400 random problem instances
with two tasks. Duration distributions for these tasks
were generated by first selecting a worst-case execu-
tion time W uniformly at random from the interval
[8, 32], then choosing a normal distribution with mean
and variance selected uniformly at random from the
respective intervals [1, W] and [1,4]; this distribution
was then truncated and discretized over the interval
[1,W]. Utilization targets for each task were chosen
according to u = (uf,u))/(u} + uh), where v} and uf
were integers selected uniformly at random between
[1,64]. We used a discount factor of v = 0.95 in our
tests.

We conducted experiments by initializing the model
in the state x = (0,0). The controller simulated a
single trajectory over 20,000 decision epochs in each
problem instance with each exploration strategy. In

order to avoid enumerating arbitrarily large numbers
of states, we reinitialized the state whenever a state
with cost greater than 50 was encountered. These
high cost states were treated as absorbing states in
the approximate model to avoid degenerate policies
that exploit the reset. We report the number of mis-
takes — the number of times the exploration strat-
egy chooses an suboptimal action i that has value
V(x) — Q(x,i) > 1076, The results of these experi-
ments are shown in Figure 2.

3.3 Evaluation Results

In Figure 2, we report 90% confidence intervals on
the mean number of mistakes each exploration strat-
egy makes, averaged across the problem instances de-
scribed above. Note that these plots have different
scales due to the variation in mistake rates among ex-
ploration strategies.

Figure 2(a) compares the performance of interval-
based optimistic action selection to that of “Exploit”,
the policy that greedily follows the optimal policy of
the approximate model at each decision epoch. All of
the interval-based exploration settings we considered
exhibited statistically similar performance. Interest-
ingly, the exploitive strategy yields better performance
than the explorative strategies despite its lack of an
explicit exploration mechanism.

This observation holds true for e-greedy exploration
and balanced wandering as well. Figure 2(b) illustrates
the performance of e-greedy exploration. Notice that
the mistake rate decreases along with the likelihood of
taking exploratory actions — that is, as ¢y approaches
zero. Explicit exploration may not improve perfor-
mance in this domain. This is further supported by
our results for balanced wandering. The theory be-
hind balanced wandering is that making a few initial
mistakes early on will pay off in the long run due to
more uniformly accurate models. Figure 2(c) shows
that this is not the case in our scheduling domain, as



a purely exploitive strategy m = 0 outperforms each
balanced wandering approach.

These results suggest that the exploitive strategy may
be the best available exploration method in our task
scheduling problem domain. One plausible explana-
tion is that the environment itself enforces rational ex-
ploration: if some task is never dispatched, the system
will enter progressively more costly states as that task
becomes more and more underused. Thus, eventually
the estimated benefit of running that task will be sub-
stantial enough that the exploitive strategy must use
it. It is interesting to note that all of the explorative
policies considered have quite low mistake rates de-
spite the tight threshold of 1076 used to distinguish
suboptimal actions.

4 Conclusions

In this paper we have considered the problem of learn-
ing near-optimal schedules when the system model is
not fully known in advance. We have presented an-
alytical results that bound the number of suboptimal
actions taken prior to arriving at a near-optimal policy
with high certainty. Interestingly, the transition sys-
tem’s portability results in bounds that are similar to
those for estimating the underlying model in a single
state.

This naturally leads to a comparison to the multi-
armed bandit model (see, for example, Even-Dar et al.
(2002)), in which there is a single state with several
available actions. Each action causes the emission
of a reward according to a corresponding unknown,
stationary random process. However, a bandit model
does not appear to apply directly because while the du-
ration distributions are stationary processes that are
invariant between states, the payoff associated with
each action is state-dependent.

We have focused on the PAC model of learning rather
than deriving bounds on regret — the loss in value
incurred due to suboptimal behavior during learn-
ing (Auer et al., 2009). Regret bounds may translate
more readily into guarantees about transient real-time
performance effects during learning, as guarantees re-
garding cost (and hence value) translate into guaran-
tees about task timeliness.

We have presented empirical results which suggest that
a learner that always exploits its current information
outperforms agents that explicitly encourage explo-
ration in this domain. This occurs because any policy
that consistently ignores some action will get progres-
sively farther from the utilization target, resulting in
arbitrarily large costs. Thus the domain itself appears
to enforce an appropriate level of exploration, perhaps

obviating the need for an explicit exploration mecha-
nism. It is an open question whether a more general
class of MDPs that exhibit this behavior can be iden-
tified.
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Appendix: Proof of Lemma 1

Lemma 1 states that the error in approximating @ is
bounded,
1Qm — Qllo < 2W5/(1 —7)?,

when the transition model estimation error is bounded
by 0 (cf. Equation 9), where W is the maximum worst-
case execution time among all tasks. We introduce
lemmas prior to demonstrating this result. The first
provides a bound on expected successor state value of
a function with a Lipschitz-like “speed limit” on its
growth. Subsequent lemmas establish that both costs
and values exhibit this property.

Lemma 2. Suppose p and p are distributions over
{1,...,W} that satisfy ZtVL Ip(t) —pt)] < B, and
that for any i, the function f:X — R satisfies
|f(xi0) — f(x)| < At for some A > 0. Then

>t

fx+tA)| < AWS.

Proof. Since we can decompose f(x+tA;) into an f(x)
term and a At term, we have

[2lvte) =500
‘Z ‘+)\Z|p —p(t)

t

1f(x+tA)

Since f(x) does not depend on ¢, the first term on the
right-hand side vanishes. Since t < W, we have

)\Zkl?

()|t < AW}. O

We now show that the cost function C' and the optimal
value V satisfy the conditions of Lemma 2.

Lemma 3. For any state x, task T;, and duration t,

C(x) — Clx+tA) SIC(A,).  (13)



Proof. Since C(x) is the L1-norm between x and 7(x)u
(cf. Equation 4), we can use the triangle inequality and
scalability to derive the upper bound

We can also use the triangle inequality to obtain the
lower bound, since

C(x) < C(x+tA;) +tC(A);

rearranging the terms yields the intended result. [

It is straightforward to show that C(4A;) < 2 for any
task T;. We make use of this fact and Lemma 3 to
derive a related limit on the growth of V.

Lemma 4. For any state x, task T;, and duration t,

[V(x+tA:) = V(x)| <2t/(1 =)

Proof. Let y = x+ tA;. We can bound the difference
in values at x and y in terms of the difference in Q-
values, since

V(y) - V()| < max|Q(y,j) —Q(x.7)l.  (19)

By expanding @ according to Equation 8 and rear-
ranging terms,

Qx, )|
(’yV v+ sAj) =V (x+ sA;)

1Q(y,j) —
- ‘ZP
—C(y+sAj)+C(x+ SAj))‘
<> P(sld) [V(y +s8;) = V(x + sA;))|
+ 3 P(slh) [C(y + sA;) = C(x + sA;)]

<2+ Psli) [VI(y +s8;) = V(x+ sA;)].

Recurring this argument on the absolute value in
the right-hand side results in accumulating a residual
7ktC(A;) for the k" repetition. Therefore,

[V (x +tA;) x)| < Z'yktC . O

We are ready now to prove Lemma 1.

Proof of Lemma 1. We begin bounding
|Q(x,1) — Qm(x,7)] by expanding according to
Equation 8, rearranging terms to group costs and

values, then decomposing the sum by using the
superadditivity of the absolute value:

|Q(x, ) — Qum(x, 1)l
= ’VIZPW)V(XHAZ-) (118 Vi (x + A,
+ !Z (th) = Pr(t)]C(x +10,)| (15)
Applying Lemmas 2 and 3, we have
‘Z:[P(tli) — P (t)]C(x + tA;)| < 2WB.

We can apply the triangle inequality to obtain

‘ZP(t\i)V(x—HAi) o (E]) Vi (x + A
<]Z (t]i) = Pr(tl0)]V (x + tA))
+ZP (t]3) [V (x + tA;) — Vi (x + tA;)] .

Using Lemmas 2 and 4 yields

P

m(HOIV (x +14:)| <2WB/(1 = 7).

Substituting back into Equation 15 allows us to write

Qi) - =

D P(t]i) [V (x +tA;) — Vm(x +tA)].

Qm(x,1)] <2WE+~

Finally, we can use Equation 14 to express
[V (x+tA;) — Vi (x + tA;)] in terms of @, then recur
this argument to produce the stated bound,

Q1) — Qu(x, )] gi WG 2W5

-y (A=7y)?* -
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