
Genetic Programming to Improve Software

W. B. Langdon
Centre for Research on Evolution, Search and Testing

Computer Science, UCL, London

GISMOE: Genetic Improvement of Software for Multiple Objectives

9.10.2012

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.ucl.ac.uk/staff/W.Langdon/gismo/

Genetic Improvement Programming

• Why

• Background

– What is Genetic Programming

– GP to improve human written programs

• Examples

– Demonstration systems, automatic bug fixing

– Evolving code for a new environment (gzip)

– Improving non-functional properties RN/12/09

• Implications

W. B. Langdon, UCL 2

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/RN_12_09.pdf

When to Automatically

Improve Software
• When to use GP to create source code

– Small. E.g. glue between systems “mashup”

– Hard problems. Many skills needed.

– Multiple conflicting ill specified non-functional

requirements

• Genetic programming as tool. GP tries

many possible options. Leave software

designer to choose between best.

W. B. Langdon, UCL 3

Genetic Programming

 • A population of randomly created programs
– whose fitness is determined by running them

– Better programs are selected to be parents

– New generation of programs are created by
randomly combining above average parents or by
mutation.

– Repeat generations until solution found.

Free

PDF

http://www.gp-field-guide.org.uk/

GP Generational Cycle

5

Some applications of

Genetic Programming

• Most GP generates solutions, e.g.:

– data modelling,

– chemical industry: soft sensors,

– design (circuits, lenses, NASA satellite aerial),

– image processing,

– predicting steel hardness,

– cinema “boids”, Cliff hanger, Batman returns

Predict breast cancer survival

Pfeiffer

http://www.cs.ucl.ac.uk/staff/W.Langdon/pfeiffer_local.html

Genetic Programming to Improve

Human written Programs

• Gluing together existing programs to

create new functionality

– combining web services, mashup

• Tailoring for specific use

– domain specific hash functions

– cache management

– heap management, garbage collection

– evolving communications protocols

W. B. Langdon, UCL 7

GP to Improve

human written programs
• Finch: evolve Java byte code

– no compilation errors, 6 benchmarks

• Improving GPU shaders

• Functionality v speed or battery life

Factorial source code,

87% reduction in instructions, [white,2011]

int Factorial(int a)

{

 if (a <= 0)

 return 1;

 else

 return (a * Factorial(a-1));

}

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/White_2011_ieeeTEC.html

Improving GPU code

Sitthi-amorn, SIGGRAPH Asia 2011

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html

GP Automatic Bug Fixing

• Run code: example to reproduce bug, a

few tests to show fixed code still works.

• Search for replacement C statement within

program which fixes bug.

• Real bugs in real C programs.

– 1st prize Human-Competitive GECCO 2009

W. B. Langdon, UCL 10

GP Automatic Coding

• Show a machine optimising existing human

written code to trade-off functional and non-

functional properties.

– E.g. performance versus:

– Speed or memory or battery life.

• Trade off may be specific to particular use.

For another use case re-optimise

• Use existing code as test “Oracle”.

(Program is its own functional specification)

11 W. B. Langdon, UCL

GP Evolving Pareto Trade-Off

Movie to tradeoff between 2 objectives 12

GP Automatic Coding

• Target non-trivial open source system:

– Bowtie2 modern DNA lookup tool

• Tailor existing system for specific use:

– nextgen DNA from 1000 genome project

• Use existing system as test “Oracle”

– Smith-Waterman exact algorithm (slow)

• Use inputs & answer to train GP.

• Clean up new code

13 W. B. Langdon, UCL

Problems with BLAST
• BLAST contains biologists heuristics and

approximations for mutation rates. It is the

“gold standard” answer.

– A few minutes per look up

• “Next Gen” DNA sequencing machines

generate 100s millions short noisy DNA

sequences in about a day.

• BLAST originally designed for longer

sequences. Expects perfect data. Human

genome database too big for PC memory.

Human Generated Solutions

• More than 140 sequence tools

• All human generated (man years)

• Many inspired by BLAST but tailored to

– DNA or Proteins

– Short or long sequences. Any species v man.

– Noise tolerance. Etc. etc.

• Manual trade-off lose accuracy for speed

– Bowtie 35million matches/hour but no indels

– Bowtie2 more BLAST functionality but slower

15 W. B. Langdon, UCL

Why Bowtie 2 ?

• Target Bowtie2 DNA sequencing tool

• 50000 line C++, 50 .cpp 67 .h files, scripts, makefile,

data files, examples, documentation

• SourceForge

• New rewrite by author of successful C Bowtie

• Aim to tailor existing system for specific

(important data source)

• 1000 genome project

– Project aims to map all human mutations

– 100s millions of short human DNA sequences

– Download raw data via FTP 16

Evolving Bowtie2

• Convert code to grammar

• Grammar used to both instrument code

and control modifications to code

• Genetic programming manipulates patches

• Small

• New code is syntactically correct

• Compilation errors mostly variable out-of-

scope

17 W. B. Langdon, UCL

GP Evolving Patches to Bowtie2

W. B. Langdon, UCL 18

BNF Grammar

 vhi = _mm_cmpeq_epi16(vhi, vhi); // all elts = 0xffff

 vlo = _mm_xor_si128(vlo, vlo); // all elts = 0

 vmax = vlo;

Lines 363-365 aligner_swsse_ee_u8.cpp

Fragment of Grammar (Total 28765 rules)

<aligner_swsse_ee_u8_363> ::= "" <_aligner_swsse_ee_u8_363>

"{Log_count64++;/*28575*/}\n"

<_aligner_swsse_ee_u8_363> ::="vhi = _mm_cmpeq_epi16(vhi, vhi);"

<aligner_swsse_ee_u8_364> ::= "" <_aligner_swsse_ee_u8_364>

"{Log_count64++;/*28576*/}\n"

<_aligner_swsse_ee_u8_364> ::="vlo = _mm_xor_si128(vlo, vlo);"

<aligner_swsse_ee_u8_365> ::= "" <_aligner_swsse_ee_u8_365>

"{Log_count64++;/*28577*/}\n"

<_aligner_swsse_ee_u8_365> ::="vmax = vlo;"

7 Types of grammar rule
• Type indicated by rule name

• Replace rule only by another of same type

• 5792 statement (eg assignment, Not declaration)

• 2252 IF
• <pe_118> ::= "{Log_count64++;/*20254*/} if" <IF_pe_118> " {\n"

• <IF_pe_118> ::= "(!olap)"

• 272 for1, for, for3
• <sam_36> ::= "for(" <for1_sam_36> ";" <for2_sam_36> ";" <for3_sam_36> ") {\n"

• 106 WHILE
• <pat_731> ::= "while" <WHILE_pat_731> " {\n"

• <WHILE_pat_731> ::= "(true)"

• 24 ELSE
• <aln_sink_951> ::= "else {" <ELSE_aln_sink_951> " {Log_count64++;/*21439*/}};\n"

• <ELSE_aln_sink_951> ::= "met.nunp_0++;"

Representation

• GP evolves patches. Patches are lists of changes

to the grammar.

• Append crossover adds one list to another

• Mutation adds one randomly chosen change

• 3 possible changes:

• Delete line of source code (or replace by “”, 0)

• Replace with line of Bowtie2 (same type)

• Insert a copy of another Bowtie2 line

W. B. Langdon, UCL 21

Example Mutating Grammar

<_aligner_swsse_ee_u8_707> ::= "vh = _mm_max_epu8(vh, vf);"

<_aligner_swsse_ee_u8_365> ::= "vmax = vlo;"

2 lines from grammar

<_aligner_swsse_ee_u8_707><_aligner_swsse_ee_u8_365>

Fragment of list of mutations

Says replace line 707 of file aligner_swsse_ee_u8.cpp by line 365

vmax = vlo;{Log_count64++;/*28919*/}

vh = _mm_max_epu8(vh, vf);{Log_count64++;/*28919*/}

New code

Instrumented original code

Compilation Errors
• Use grammar to replace random line, only 15%

compile. But if move <100 lines 82% compile.

• Restrict moves to same file, 45% compile

23

Zipf’s Law

Distribution of exactly repeated Bowtie2 C++ lines

of code after macro expansion, follows Zipf’s law,

which predicts straight line with slope -1. 24

Recap

• Representation

– List of changes (delete, replace, insert). New

rule must be of same type

• Genetic operations

– Mutation (append one random change)

– Crossover (append other parent)

• Apply change to grammar then use it to

generate new C++ source code.

W. B. Langdon, UCL 25

Which Parts of Bowtie2 are Used

26 W. B. Langdon, UCL

Scaling of Parts of Bowtie2

4 Heavily used Bowtie2 lines which scale differently

Focusing Search

28 W. B. Langdon, UCL

C++

Lines

Files Bowtie2

50745 50 .cpp,

67 .h

All C++ source files

19908 40 .cpp no conditional compilation

no header files.

2744 21 .cpp no unused lines

Weights target high usage

39 6 .cpp evolve

7 3 .cpp clean up

Testing Bowtie2 variants

• Apply patch generated by GP to

instrumented version of Bowtie2

• “make” only compiles patched code

– precompile headers, no gcc optimise

• Run on small but diverse random sample of

test cases from 1000 genome project

• Calculate fitness

• Each generation select best from

population of patched Bowtie2

29 W. B. Langdon, UCL

Fitness

• Multiple objective fitness

• Compiles? No→no children

• Run patched Bowtie2 on 5 example DNA sequences

(selected from 1000 genome FTP site, see RN/12/09)

• Compare results with ideal answer (Smith-Waterman)

• Sort population by

– Number of DNA which don’t fail or timeout

– Average Smith-Waterman score

– Number of instrumented C++ lines executed (minimise)

• Select top half of population.

• Mutate, crossover to give 2 children per parent.

• Repeat 200 generations
30

Run time errors

• During evolution 74% compile

• 6% fail at run time

• 3% segfault

• 2% cpulimit expired

• 0.6% heap corruption, floating point (e.g. divide by

zero) or Bowtie2 internal checks

• 68% run ok

31 W. B. Langdon, UCL

GP Evolution Parameters

• Pop 10, 200 generations

• 50% append crossover

• 50% mutation (3 types delete, replace, insert)

• Truncation selection

• 5 test examples, reselected every generation

• ≈25 hours

32 W. B. Langdon, UCL

Clean up evolved patch

• Allowed GP solution to grow big

• Use fixed subset (441 DNA sequences) of

training data

• Remove each part of evolved patch one at time

• If makes new bowtie2 (more than a little) worse

restore it else remove it permanently

• 39 changes reduced to 7

• Took just over an hour (1:08:38)

33 W. B. Langdon, UCL

Patch

34

Wei

ght

Mutati

on

Source

file

line type Original Code New Code

999 replaced bt2_io.cpp 622 for2 i < offsLenSampled i < this->_nPat

1000 replaced sa_rescomb

.cpp

50 for2 i < satup_->offs.size() 0

1000 disabled 69 for2 j < satup_->offs.size()

100 replaced

aligner_sws

se_ee

_u8.cpp

707 vh = _mm_max_epu8(vh, vf); vmax = vlo;

1000

deleted 766 pvFStore += 4;

1000

replaced 772 _mm_store_si128(pvHStore, vh); vh = _mm_max_epu8(vh, vf);

1000

deleted 778 ve = _mm_max_epu8(ve, vh);

• Evolved patch 39 changes in 6 .cpp files

• Cleaned up 7 changes in 3 .cpp files

• 70+ times faster

Results

• Patched code (no instrument) run on 200

DNA sequences (randomly chosen from

same scanner but different people)

• Runtime 3:56:01 v 12.2 days

• Quality of output

– 89% identical

– 9% output better (higher mean Smith-

Waterman score). Median improvement 0.1

– 0.5% same

– 1.5% worse (in 4th and 6th decimal place).
35

Results

• Wanted to trade-off performance v. speed:

– On “1000 genome” nextgen DNA sequences

– 70+ faster on average

– Very small improvement in Bowtie2 results

• Trade off specific to particular use. For

another use case re-optimise

36 W. B. Langdon, UCL

Conclusions

• Genetic programming can automatically
re-engineer source code. E.g.

– hash algorithm

– Random numbers which take less power, etc.

• fix bugs (>106 lines of code, 16 programs)

• create new code in a new environment
(graphics card) for existing program,

 gzip.

• speed up 50000 lines of code

WCCI 2010

W. B. Langdon, UCL 37

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html

W. B. Langdon, UCL 38 38

END

http://www.cs.ucl.ac.uk/staff/W.Langdon/ http://www.epsrc.ac.uk/

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.epsrc.ac.uk/

Genetic Improvement Programming

W. B. Langdon

CREST

Department of Computer Science

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.amazon.com/exec/obidos/ASIN/0792381351/qid=916137667/sr=1-8/002-9548421-2413020
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-42451-2?cm_mmc=sgw-_-ps-_-book-_-3-540-42451-2
http://www.gp-field-guide.org.uk/

40

Creating new programs -

Crossover

Movie

http://www.genetic-programming.com/crossover.gif

“Moore’s Law” in Sequences

41

The Genetic Programming Bibliography

The largest, most complete, collection of GP papers.

http://www.cs.bham.ac.uk/~wbl/biblio/

 With 8,418 references, and 7,000 online publications, the GP Bibliography is a

vital resource to the computer science, artificial intelligence, machine learning,

and evolutionary computing communities.

RSS Support available through the

Collection of CS Bibliographies.

A web form for adding your entries.

Co-authorship community. Downloads

A personalised list of every author’s

GP publications.

Search the GP Bibliography at

http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

http://www.cs.bham.ac.uk/~wbl/biblio/
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

