
Vadim Zaytsev, SWAT, CWI
 2012

Tolerance in
Grammarware

PEM Colloquium

http://grammarware.net/
http://grammarware.net/
http://www.cwi.nl/research-groups/Software-Analysis-and-Transformation
http://www.cwi.nl/research-groups/Software-Analysis-and-Transformation
http://www.cwi.nl/
http://www.cwi.nl/

Grammar-based
source code analysis

• A spectrum of approaches w.r.t. tolerance

• We will go from right to left

• Figure borrowed (for extension) from:

analysis

Precise
parsing

parsing grammars

Lexical

Fuzzy Island Skeleton
grammars repair

Error

Figure 10. A spectrum of approaches for source code analysis.

Grammar Productions LOC Keywords
Simple statement skeleton 51 209 82
Nested statement skeleton 268 438 129
Base-line grammar 888 1228 325

We have experienced that the runtime for the different
parsers lies within the same range; parsing with the base-
line grammar is as fast as parsing with a small skele-
ton grammar. Note, that this was not the case when we
started our project because a less systematic default comple-
tion caused many (local) ambiguities and in turn penalties.
The described scheme for default productions using simple
means for synchronisation is very robust.

6. Related work

Fuzzy parsing In [Kop97], the notion of fuzzy parsing is
defined and engineered. Fuzzy parsers perform syntactical
analysis on selected portions of the input for the purpose of
the extraction of a partial source code model. The key idea
is to identify ‘anchor terminals’ that trigger the application
of context-free productions. That is, the input is skipped
until an anchor a is found, and then context-free analysis
is attempted using a production starting with a. This is a
rather lexical approach because no context-free structure is
employed to determine the context for constructs of interest.

Island grammars A potent refinement of fuzzy parsing
is the notion of an island grammar [DK99, Ver00, Moo01,
Moo02]. A unified syntax definition formalism is used to
specify islands and water. Island grammars from the liter-
ature are geared towards very specific parsing technology.
Island grammars amalgamate lexical and context-free anal-
ysis rather heavily; see the lexical definition of Water in
Fig. 1 which tends to compete with problem-specific forms
of chunk. As discussed in Sec. 2, island grammars can
be radically concise for simple analysis and transformation
problems when compared to an up-front development of a
conservative parser. Furthermore, the island grammar ap-
proach does immediately lead to very tolerant parsers.

Degrees of tolerant parsing In Fig. 10, we place var-
ious approaches on a chart regarding their relative posi-
tion in between lexical analysis and precise parsing. Fuzzy
parsers involve a lexical criterion to switch to the context-
free mode. Island grammars can mix lexical vs. context-free

style in more sophisticated ways. Still the islands are found
in lists of chunks with little or no similarities to the parse-
tree structure suggested by a base-line grammar. Skeleton
grammars employ ordinary context-free productions where
lexical skips only occur at subtrees the structure of which is
not relevant. Error-repairing parsers can be seen as a way
to achieve tolerance. The simple approach is ‘panicking’
using stop symbols [AU73, ASU86] on top of an otherwise
precise grammar. So lexical skips only occur for recovery
from parser errors. A sophisticated approach is described
in [BH82] where recovery from all errors is guaranteed, and
recovery is driven by the grammar structure rather than us-
ing a criterion for plain lexical panicking.

7. Conclusion

We have first presented a formal definition of tolerant gram-
mars. The parsers that are derived from our tolerant gram-
mars accept inputs that use unanticipated phrases in the
sense of dialects. Our definition specifically addresses the
issue of false positives and false negatives, which are to
be avoided when performing tolerant parsing. We have
then described a semi-automatic process to derive a tolerant
grammar for the productions that are needed for a specific
grammar-based software tool. We have demonstrated our
approach in the context of Cobol re-engineering. The result-
ing parsers scale as required for use in industrial projects.
Compared to previous work on error repair, fuzzy parsing,
and island grammars, the following shift of focus and added
value can be pointed out:

• We reuse productions from an existing base-line gram-
mar to define the structure of constructs of interest.
That is, we do not advocate the design of problem-
specific productions, as in the case of island grammars.
Because all our components for system transformation
and analysis are based on one base-line grammar, com-
ponent composition is possible.

• We advocate a form of tolerant grammars which
we call skeleton grammars because they share their
context-free structure with a base-line grammar down-
to a certain depth in the parse tree. Thereby, we estab-
lish the right context for constructs of interest, which
in turn contributes to reliable tolerant parsing, without
false positives and false negatives.

S. Klusener, R. Lämmel, Deriving Tolerant Grammars from a Base-line Grammar, ICSM 2003

http://homepages.cwi.nl/~ralf/icsm03/
http://homepages.cwi.nl/~ralf/icsm03/

Precise parsing

A. V. Aho, J. D. Ullman, The Theory of Parsing, Translation, and Compiling, 1972.
A. V. Aho, J. D. Ullman, Principles of Compiler Design, 1977.

A. V. Aho, R. Sethi, J. D. Ullman, Compilers, 1985.
A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, Compilers, 2006.

D. Grune, C. J. H. Jacobs, Parsing Techniques: A Practical Guide, 2008.

http://dl.acm.org/citation.cfm?id=SERIES11430.578789
http://dl.acm.org/citation.cfm?id=SERIES11430.578789
http://www.cs.vu.nl/~dick/PT2Ed.html
http://www.cs.vu.nl/~dick/PT2Ed.html

Error repair: panic mode

• The simplest method to detect multiple syntax errors

• Provide a list of synchronising tokens (beacon symbols)

• ;
• }
• …anything obvious and unambiguous

• In case of error, skip everything until the next
synchronising token

A. V. Aho, R. Sethi, J. D. Ullman, Compilers, §4.1, 1985.

Error repair: phrase level

• Local correction

• Default options for symbols

• Typically

• insert ; if it is not present
• balance the brackets
• …most heuristics of later blocks of Grammar Hunter

• Sometimes, real error occurs before the detection point

A. V. Aho, R. Sethi, J. D. Ullman, Compilers, §4.1, 1985.

Permissive grammars

• Insertion recovery rules

• Substitution recovery rules

• Choose interpretation with minimum recoveries

• Aimed at error handling

• error repair
• error reporting

L. C. L. Kats, M. de Jonge, E. Nilsson-Nyman, E. Visser,
Providing Rapid Feedback in Generated Modular Language Environments, OOPSLA 2009

http://www.lclnet.nl/publications/error-recovery
http://www.lclnet.nl/publications/error-recovery

Global error correction

• Given string x and grammar G,

• If x ∉ L(G),

• construct string y such that
• y ∈ L(G)

• number of changes from x to y is minimal

• The closest program is not always the intended one

A. V. Aho, R. Sethi, J. D. Ullman, Compilers, §4.1, 1985.

Hierarchical error repair

• Think of a parser as a state machine

• For every state, there are transitions for allowed tokens

• If an error occurs, no transition for the input token

• A non-error transition is taken

• based on synchronisation stack

• Compatible at least with LR and LL

D. T. Barnard, R. C. Holt, Hierarchic Syntax Error Repair for LR Grammars, IJCIS 11:4, 1982

Error productions

• Know your enemy

• Define your enemy with a grammar

• Works well for known kinds of errors

• (Should this be a part of a language?)

• permissive grammars

A. V. Aho, R. Sethi, J. D. Ullman, Compilers, §4.1, 1985.

Multiple passes

• Lazy iterative skeleton grammar parsing

• Parse first with a skeleton grammar

• obtain the global structure

• Parse the islands with subgrammars

• if possible

• Also enables

• “grammarware as a service” and “parsing in the cloud”
Hopefully: V. Zaytsev, Islands in the Cloud, SCAM’12

http://grammarware.net/writes/%23Islands-in-the-Cloud2012
http://grammarware.net/writes/%23Islands-in-the-Cloud2012

Parsing in the cloud

Hopefully: V. Zaytsev, Islands in the Cloud, SCAM’12

http://grammarware.net/writes/%23Islands-in-the-Cloud2012
http://grammarware.net/writes/%23Islands-in-the-Cloud2012

Parsing in the cloud

Hopefully: V. Zaytsev, Islands in the Cloud, SCAM’12

compilation-unit:
 using-directives? global-attributes?
 namespace-member-declarations?
using-directives:
 using-directive
 using-directives using-directive
using-directive:
 using-alias-directive
 using-namespace-directive
using-alias-directive:
 "using" id "=" namespace-or-type-name ";"
...

http://grammarware.net/writes/%23Islands-in-the-Cloud2012
http://grammarware.net/writes/%23Islands-in-the-Cloud2012

Parsing in the cloud

Hopefully: V. Zaytsev, Islands in the Cloud, SCAM’12

vertical(using-directives);
deyaccify(using-directives);
inline(using-directives);
inline(using-alias-directive);
inline(using-namespace-directive);
massage(using-directive+?, using-directive*);
factor(
 (("using" identifier "=" namespace-or-type-
name ";") | ("using" namespace-name ";")),
 "using" ((identifier "=" namespace-or-type-
name) | (namespace-name)) ";");
...

http://grammarware.net/writes/%23Islands-in-the-Cloud2012
http://grammarware.net/writes/%23Islands-in-the-Cloud2012

Parsing in the cloud

Hopefully: V. Zaytsev, Islands in the Cloud, SCAM’12

compilation-unit:
 ("using" using-directive-insides ";")* ("[" "assembly" ":"
ga-section-insides "]")* namespace-member-declaration*
namespace-member-main:
 "namespace" qualified-identifier class-base?
 "{" namespace-body-insides "}" ";"?
 "class" identifier class-base?
 "{" class-member-declarations? "}" ";"?
 "struct" identifier struct-interfaces?
 "{" struct-member-declarations? "}" ";"?
 "interface" identifier interface-base?
 "{" interface-member-declarations? "}" ";"?
 "enum" identifier enum-base? "{" enum-body-insides "}" ";"?
 "delegate" type id "(" formal-parameter-list? ")" ";"
...

http://grammarware.net/writes/%23Islands-in-the-Cloud2012
http://grammarware.net/writes/%23Islands-in-the-Cloud2012

Parsing in the cloud

Hopefully: V. Zaytsev, Islands in the Cloud, SCAM’12

layout L = [\ \t\r\n]* !>> [\ \t\r\n] ;

syntax CompilationUnit = ("using" NotSemicolon ";")*
 ("[" "assembly" ":" NotRightSquareBracket "]")*
 NamespaceMemberDeclaration* ;

syntax NotRightSquareBracket = NRSBChunk+ () >> [\]];
lexical NRSBChunk = ![\]\ \t\r\n]+ >> [\]\ \t\r\n];

...

http://grammarware.net/writes/%23Islands-in-the-Cloud2012
http://grammarware.net/writes/%23Islands-in-the-Cloud2012

Parsing in the cloud

Hopefully: V. Zaytsev, Islands in the Cloud, SCAM’12

using-directive-insides:
 ...

ga-section-insides:
 ...

attribute-section-insides:
 ...

http://grammarware.net/writes/%23Islands-in-the-Cloud2012
http://grammarware.net/writes/%23Islands-in-the-Cloud2012

Skeleton grammars

• Productions for interesting constructs are reused

• Default productions used for the rest

• Nonterminal mapping is maintained

• facilitates reasoning about false positives & negatives

grammar
Skeleton

Root completion Default completion Default restriction
Root!completed Default!completed

grammargrammar

Default
productions

Base!line
grammar

productions
Contract

Figure 6. Construct a tolerant grammar (in fact, a skeleton grammar) from contract productions, a base-line grammar,
and default productions; this is a semi-automatic process.

contract.1 "CONTINUE" -> Statement
contract.2 "NEXT" "SENTENCE" -> Statement
contract.3 Statement* -> Statement-list
root.1 Statement-list "." -> Sentence
root.2 Label-name "." Sentence* -> Paragraph
root.3 Paragraph-without-header? Paragraph* -> Paragraphs
root.4 Section-header "." Paragraphs -> Section
root.5 Section-without-header Section* -> Sections
root.6 Proc-division-header Sections -> Proc-division
root.7 Id-division? Env-division? Data-division? Proc-division? -> Program
default.1 Token-start-verb Token-stat* "." -> Statement
default.2 Integer | User-defined-word -> Label-name
default.3 Sentence+ -> Paragraph-without-header
default.4 Label-name "SECTION" Integer? -> Section-header
default.5 Paragraphs -> Section-without-header
default.6a "PROCEDURE" "DIVISION" Using-phrase "." Declaratives? -> Procedure-division-header
default.6b "USING" User-defined-word* -> Using-phrase
default.6c "DECLARATIVES" "." Token-excl-end* "END" "DECLARATIVES" "." -> Declaratives
default.7 "IDENTIFICATION" "DIVISION" "." Token-excl-env-data-procedure* -> Id-division
default.8 "ENVIRONMENT" "DIVISION" "." Token-excl-data-proc* -> Env-division
default.9 "DATA" "DIVISION" "." Token-excl-proc* -> Data-division

Figure 7. The productions of the constructed grammar; auxiliary token productions are omitted.

The productions are grouped for the contract, root com-
pletion, and default completion. The productions for root
completion were reused from the base-line grammar for
VS Cobol II [LV99]. The default productions were derived
semi-automatically from the base-line grammar.

Automated root completion In order to share context-
free structure with the base-line grammar, we add all pro-
ductions that are needed to connect the nonterminals for
constructs of interest with the start symbol. This is an im-
portant provision for making sure that constructs of interest
will only be recognised in the right context. In our example,
we need to connect Statement with Program. In Fig. 8,
root completion is defined as an algorithm that constructs
the root-completed grammar. This algorithm is completely
general (i.e., no side conditions, no heuristics), and it is triv-
ially implemented. The algorithm transitively selects all the
base-line productions that are needed for reaching the start
symbol. Note that the automation of root completion im-

plies that its added value comes for free. In Fig. 7 all pro-
ductions root.1 – root.7 are shown that will be collected for
the contract productions contract.1 – contract.3 during root
completion.

Extent of default completion Some of the nonterminals
in the root-completed grammar can be completely unde-
fined. Both contract productions and the productions in-
cluded by root completion can involve such unresolved ref-
erences. In our running example, Data-division in the
production root.7 is such an undefined nonterminal. De-
fault completion shall provide a definition for these unde-
fined nonterminals. Defined nonterminals also necessitate
a default completion for two reasons. Firstly, some nonter-
minals might be partially defined, e.g., Statement in our
example, because the contract productions only cover some
forms. Secondly, to improve tolerance, it is beneficial to
provide defaults for most nonterminals anyway.

S. Klusener, R. Lämmel, Deriving Tolerant Grammars from a Base-line Grammar, ICSM 2003

http://homepages.cwi.nl/~ralf/icsm03/
http://homepages.cwi.nl/~ralf/icsm03/

Bridge grammars

• Bridges connect islands

• can enclose other bridges but never cross

• Reefs add info to nearby islands

• e.g., indentation and delimiters

• Can be further enhanced with

• bridge repairer
• artificial islands

E. Nilsson-Nyman, T. Ekman, G. Hedin. Practical Scope Recovery using Bridge Parsing, SLE’08

http://dx.doi.org/10.1007/978-3-642-00434-6_7
http://dx.doi.org/10.1007/978-3-642-00434-6_7

Robust parsing

• Combination of

• error productions
• island grammars for multiple languages
• bridges between islands are parts of islands

• Works well for multilingual parsing

• e.g., VB + JS + ASP + HTML

N. Synytskyy, J. R. Cordy, T. R. Dean, Robust Multilingual Parsing Using Island Grammars, CASCON'03

http://research.cs.queensu.ca/~cordy/Papers/CASCON03_MultiParsing.pdf
http://research.cs.queensu.ca/~cordy/Papers/CASCON03_MultiParsing.pdf

Island grammars

• Detailed production rules for interesting constructs

• Liberal production rules for the rest

• ~[\.]+ [\.] ! Statement

• ~[\ \t\n]+ ! Water {avoid}

• Minimal set of assumptions about the overall structure

• (e.g., a program is a list of statements)

A. van Deursen, T. Kuipers, Building Documentation Generators, ICSM 1999.
L. Moonen, * using Island Grammars, WCRE 2001, IWPC 2002.

Fuzzy parsing

• Floating islands: no [information about] water

• Complete full lexical analysis

• Perform syntactic analysis of selected parts

• triggered by anchor symbols

• Inspired (and used) by fact extractors

R. Koppler, A Systematic Approach to Fuzzy Parsing, SP&E 27:6, 1997.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.3198
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.3198

Fuzzy parsing
declare function local:mccabe($w) {
1+count($w//if) +count($w//evaluate/when)
-count($w//evaluate/when[contains(@unparsed,"OTHER")])
+count($w//perform[contains(@unparsed,"TIMES")])
+count($w//perform[contains(@unparsed,"UNTIL")])
+count($w//search/when) +count($w//search/end)};

let $doc := doc("portfolio.xml") return <results>
{for $section in $doc//section, $para in $section/paragraph
let $cc := local:mccabe($para) where $cc>20
return <component>
<section> {data($section/@name)}</section>
<paragraph> {data($para/@label-name)} </paragraph>
<cc>{$cc} </cc>
</component> </results>

V. Zaytsev, [Framework for] Using XQuery to Measure IT Portfolio Codebases,
rejected from GTTSE 2007 & ICPC 2008.

Iterative lexical analysis

• Straightforward shortest pattern matching

• {.*} ! Block

• Bottom-up language engineering

• Several levels of matching:

• from “simple matches” (1) and “short matches” (2)
• to “good guesses” (7) and “desperation” (8)

• Enables syntactic analysis of irregular code
A. Cox, C. Clarke, Syntactic Approximation Using Iterative Lexical Analysis, IWPC 2003

Hierarchical lexical analysis

• No syntactic constraints

• Works well for conceptual source models

• Even across languages

• Definition example:

• [<type>] <functionName> \([{ <formalArg> }+] \)
[{ <type> <argDecl> ; }+] \{

G. Murphy, D. Notkin. Lightweight Source Model Extraction, FSE 1995.

Lexical analysis

grep " [0-9][0-9]*[A-Z0-9\-] * PRODCODE" *

grep "MOVE *[A-Z0-9\-]*PRODCODE" *

perl -pi -w -e 's/SEN/SWAT/i;' *

if ($current_line =~ /(MOVE|SET|IF|...)/)
 {...}

A. S. Klusener, R. Lämmel, C. Verhoef, Architectural Modifications to Deployed Software, SCP 54, 2005

http://homepages.cwi.nl/~ralf/am/
http://homepages.cwi.nl/~ralf/am/

To
summarise

http://commons.wikimedia.org/wiki/File:Torii_kiyoshige_bando_hikosaburo_ii.jpg

http://commons.wikimedia.org/wiki/File:Torii_kiyoshige_bando_hikosaburo_ii.jpg
http://commons.wikimedia.org/wiki/File:Torii_kiyoshige_bando_hikosaburo_ii.jpg

To summarise
• Lexical analysis
• Hierarchical lexical analysis
• Iterative lexical analysis
• Fuzzy parsing
• Island grammars
• Robust parsing
• Bridge grammars
• Skeleton grammars
• Parsing in the cloud
• Error productions
• Hierarchical error repair
• Permissive grammars
• Panic mode
• Precise parsing

one scale of tolerance?

Stay tuned!

vadim@grammarware.net

mailto:vadim@grammarware.net?subject=IPA
mailto:vadim@grammarware.net?subject=IPA
http://grammarware.net
http://grammarware.net

