
Universiteit Antwerpen

Agile Quality Assurance

"in vivo" research in software evolution

Prof.Dr. Serge Demeyer
PEM Colloquium — CWI (Amsterdam) — January 2012

ANSYMO

Agile Quality Assurance

Table Of Contents
Introduction

• Reliability vs. Agility

Mining Software Repositories

• Tests (= visualisation)
+ How good was our testing process ?

• Bugs (= text mining)
+ Who should fix this bug ?
+ How long will it take to fix this bug ?
+ What is the severity of this bug ?

• Expertise (= social network analysis)
+ Who are the key personalities ?
+ Who can help me with this file ?
+ Where should we focus our (regression) tests ?

Conclusion
• The future

2

Agile Quality Assurance

Innovation

3

Business Models

1971 — Starbucks
(seattle)

(Vienna)
1529 — European coffee house

1475 — Kiva Han coffee house
 (Constantinople)

Underlying Technology

1946 — commerical piston espresso machine

1908 — patent on paper filter

2001 — senseo

Tec
hnolo

gy c
han

ges
ev

ery
 20 ye

ars

…

Underl
yin

g busin
ess

 m
od

els
 ra

rel
y c

han
ge !

Agile Quality Assurance

Innovation in ICT

4

E
m

b
ed

d
ed

In
tern

et

ENIAC, 1945 IBM PC, 1981 iPad, 2010NEC ultralite, 1989

U
n
d
erlyin

g
Tech

n
o
lo

g
y

Tec
hnolo

gy c
han

ges
ev

ery
 5 ye

ars

…

Underl
yin

g busin
ess

 m
od

els
 ch

an
ge o

fte
n !

Agile Quality Assurance

Market pressure in ICT

5

RELIABILITY AGILITY

Measure of innovation
• # products in portfolio younger than 5 years

+ in ICT usually more than 1/2 the portfolio

Significant investment in R&D
• more products … faster

Agile Quality Assurance

Reliability vs. Agility

6

Software is vital to our society ⇒ Software must be reliable

Traditional Software Engineering

Reliable = Software without bugs
Today’s Software Engineering

Reliable = Easy to Adapt

Striving for
RELIABILITY

(Optimise for
perfection)

Striving for
AGILITY

(Optimise for
development speed)

On the Origin
of Species

Agile Quality Assurance

Reliability vs. Agility … no single truth

7

Agile Quality Assurance

Table Of Contents

8

Introduction
• Reliability vs. Agility

Mining Software Repositories

• Tests (= visualisation)
+ How good was our testing process ?

• Bugs (= text mining)
+ Who should fix this bug ?
+ How long will it take to fix this bug ?
+ What is the severity of this bug ?

• Expertise (= social network analysis)
+ Who are the key personalities ?
+ Who can help me with this file ?
+ Where should we focus our (regression) tests ?

Conclusion
• The future

Agile Quality Assurance

Software Evolution

9

It is not age that turns a piece of software into a legacy
system, but the rate at which it has been developed and
adapted without being reengineered.

[Demeyer, Ducasse and Nierstrasz: Object-Oriented Reengineering Patterns]

Components are very brittle …
After a while one inevitably resorts to glue :)

Agile Quality Assurance

Software Repositories & Archives

10

Version Control
• CVS, Subversion, …
• Rational ClearCase
• Perforce,
• Visual Source Safe
• …

Issue Tracking
• Bugzilla
• BugTracker.NET
• ClearQuest
• JIRA
• Mant
• Visual Studio Team Foundation

Server
• …

Automate the Build
• make
• Ant, Maven
• MSBuild
• OpenMake
• Build Forge
• …

Automated Testing
• HP QuickTest Professional
• IBM Rational Functional Tester
• Maveryx
• Selenium
• TestComplete
• Visual Studio Test

Professional Microsoft 2010
• …

… mailing archives, newsgroups, chat-boxes, facebook, twitter, …

All of a sudden empirical research has
what any empirical science needs: a
large corpus of objects to analyze.

[Bertrand Meyer's technology blog]

Agile Quality Assurance

Mining Software Repositories

11

Conferences
• 2012—9th edition, Zürich, CH

• 2011—8th edition, Honolulu, HI, USA
• 2010—7th edition, Cape Town, ZAF
• 2009—6th edition, Vancouver, CAN
• 2008—5th edition, Leipzig, DEU
• 2007—4th edition, Minneapolis, MN, USA
• 2006—3rd edition, Shanghai, CHN
• 2005—2nd edition, Saint Luis, MO, USA
• 2004—1st edition, Edinburgh, UK

The Mining Software Repositories (MSR) field analyzes
the rich data available in software repositories to uncover
interesting and actionable information about software
systems and projects.

Hall of Fame—Mining Challenge Winners
• 2011—Apples Vs. Oranges? An exploration of

the challenges of comparing the source code
of two software systems (Daniel M. German
and Julius Davies)

• 2010—Cloning and Copying between GNOME
Projects (Jens Krinke, Nicolas Gold, Yue Jia,
and David Binkley)

• 2009—On the use of Internet Relay Chat
(IRC) meeting by developers of the GNOME
GTK+ project (Emad Shihab, Zhen Ming Jiang
and Ahmed E. Hassan)

• 2008—A newbie's guide to Eclipse APIs (Reid
Holmes and Robert J. Walker)

• 2007—Mining Eclipse Developer Contributions
via Author-Topic Models (Erik Linstead, Paul
Rigor, Sushil Bajracharya, Cristina Lopes, and
Pierre Baldi)

• 2006—A study of the contributors of
PostgreSQL (Daniel M. German)

Agile Quality Assurance

Table Of Contents

12

Introduction
• Reliability vs. Agility

Mining Software Repositories

• Tests (= visualisation)
+ How good was our testing process ?

• Bugs (= text mining)
+ Who should fix this bug ?
+ How long will it take to fix this bug ?
+ What is the severity of this bug ?

• Expertise (= social network analysis)
+ Who are the key personalities ?
+ Who can help me with this file ?
+ Where should we focus our (regression) tests ?

Conclusion
• The future

Agile Quality Assurance

Test Monitor — Change History

13

http://swerl.tudelft.nl/bin/view/Main/TestHistory Case = Checkstyle

Single Test Unit Testing

Integration tests

Phased Testing

http://swerl.tudelft.nl/bin/view/Main/TestHistory
http://swerl.tudelft.nl/bin/view/Main/TestHistory

Agile Quality Assurance

Test Monitor — Growth History

14

Few Tests

Steady
Testing & Coding

Increased Test Activity

Agile Quality Assurance

Test Monitor — Coverage Evolution

15

Sudden Drop !?

Good Class
Coverage

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30

%
 te

st
 c

ov
er

ag
e

% of test code in system

v2.0

v3.1-v3.5

v2.2

v2.4

v3.0

v4.0-v4.3

Class Coverage
Method Coverage

Block Coverage
Statement Coverage

Agile Quality Assurance

Table Of Contents

16

Introduction
• Reliability vs. Agility

Mining Software Repositories

• Tests (= visualisation)
+ How good was our testing process ?

• Bugs (= text mining)
+ Who should fix this bug ?
+ How long will it take to fix this bug ?
+ What is the severity of this bug ?

• Expertise (= social network analysis)
+ Who are the key personalities ?
+ Who can help me with this file ?
+ Where should we focus our (regression) tests ?

Conclusion
• The future

Description ⇒ text Mining

Stack Traces ⇒ Link to source code

Product/Component
Specific vocabulary

Suggestions ?

Agile Quality Assurance

Bug Database

Bug Reports

(1) & (2)
Extract and preprocess bug reports

18

prediction

• true positive
• false positive
• true negative
• false negative
⇒ precision & recall

Text Mining

New report

(4) Predict
• severity
•assigned-to
•estimated time

(3) Training predictor

Agile Quality Assurance

Results

19

Question Cases Precision Recall

Who should fix this
bug ?

Eclipse, Firefox, gcc

eclipse: 57%
firefox: 64%

gcc: 6%

—

How long will it take to
fix this bug ?

JBoss
depends on the component

many similar reports: off by one hour
few similar reports: off by 7 hours

depends on the component
many similar reports: off by one hour

few similar reports: off by 7 hours

What is the severity of
this bug ?

Mozilla, Eclipse, Gnome

mozilla, eclipse:
67% - 73%

gnome:
75%-82%

mozilla, eclipse:
50% - 75%

gnome:
68%-84%

Promising results but …
•how much training is needed ?
•how reliable is the data ?

(estimates, severity, assigned-to)
•does this generalize ? (on industrial scale ?)

⇒ replication is needed

Agile Quality Assurance

Table Of Contents

20

Introduction
• Reliability vs. Agility

Mining Software Repositories

• Tests (= visualisation)
+ How good was our testing process ?

• Bugs (= text mining)
+ Who should fix this bug ?
+ How long will it take to fix this bug ?
+ What is the severity of this bug ?

• Expertise (= social network analysis)
+ Who are the key personalities ?
+ Who can help me with this file ?
+ Where should we focus our (regression) tests ?

Conclusion
• The future

Agile Quality Assurance

270 M. Pinzger and H.C. Gall

Fig. 13.1 Communication paths extracted from the Eclipse Platform Core developer mailing list

way. Figure 13.1 shows an excerpt of a mail thread from the online mailing list
archive of Eclipse Platform Core.

A mail addressed to a mailing list is processed by the reflector and sent to all
subscribers. This means that the To: address is always the mailing list address
itself; hence, there is no explicit receiver address. In our example this address is
platform-core-dev. To model the communication path between sender and receiver,
the receiver needs to be reconstructed from subsequent answering mails. The iden-
tification of the sender is given by the From: field which is denoted by the name on
the right side of a message. For determining the receivers of emails we analyze the
tree structure of a mail thread and compute the To: and Cc: paths.

Figure 13.1 illustrates the two paths in our example thread whereas gray arrows
denote the To: path and light gray arrows the Cc: path. A gray arrow is established
between an initial mail and its replies. For example, Philippe Ombredanne is first
replying to the mail of Thomas Watson, so in this case Philippe Ombredanne is the
sender and Thomas Watson is the receiver of the mail. To derive Cc: receivers we
consider the person answering a mail as an intended receiver of this mail. In case this
person is already the To: receiver (as it applies with the mails number 3–5 between
Bob Foster and Pascal Rapicault) no additional path is derived, because we assume
that a mail is not sent to a person twice.

For importing the data from the mailing lists archives we extended the iQuest
tool. iQuest is part of TeCFlow,1 a set of tools to visualize the temporal evolution
of communication patterns among groups of people. It contains a component to
parse mailing lists and import them into a MySQL database. Our extension aims at
including the follow-up information of mails to fully reconstruct the structure of a
mail-thread. The sample thread shown above consists of 15 mails that result in 25
communication paths.

13.3.1.2 Deriving Communication Paths from Bug Reports

The second source outlined for modeling communication paths is a bug tracking
repository, such as, Bugzilla. Bugzilla users create reports and comments and give

1 http://www.ickn.org/ickndemo/

13 Dynamic Analysis of Communication and Collaboration 273

Fig. 13.2 Integrated model for representing communication and collaboration data in OSS
projects

person. In every other case the person is assumed to be unknown and a new person
entity is added to the database.

While this algorithm works fine for person information obtained from Bugzilla
and mailing lists, there are problems with matching persons obtained from CVS log
data. Typically, the author stored in CVS logs indicates the CVS user name, but not
the real name of a person. Because of the high number of false matches, the mapping
of these persons is done manually.

In addition to the information of a person, email addresses contain domain infor-
mation that, for example, denotes the business unit of a developer. We use this
information to assign developers to teams. We obtain email addresses that have
been generated with MHonArc.2 The problem is that MHonArc provides a spam
mode which deters spam address harvesters by hiding the domain information of
email addresses. For example, the email address of Chris McGee is displayed as

2 http://www.mhonarc.org/

Construct Social Network

21

Mailing lists
+ Bug reports

+ CVS Logs
⇒

Agile Quality Assurance

Code Ownership (& Alien Commits)

22

13 Dynamic Analysis of Communication and Collaboration 279

Fig. 13.7 Collaboration in the Eclipse Platform Core project observed in the time from 14th to
28th February 2005

information ideally gets processed. Figure 13.8 illustrates the communication via
the developer mailing list and Bugzilla data over 21 months. The amount of com-
munication (i.e., the number of communication paths reconstructed from bug reports
and emails) is illustrated by the width of edges. The wider the edges of a person’s
node are, the more this person communicated with other developers.

The graph in Fig. 13.8 shows the core development team whose members fre-
quently communicate with each other. Rafael Chaves, Dj Houghton, Jeff Mcaffer
Thomas Watson, John Arthorne, and Pascal Rapicault form the core team. They are
the communicators who keep the network together and play an important role within
the project. Interesting is that they all belong to either the group @ca.ibm.com or
@us.ibm.com as indicated by the shadows of rectangles representing these devel-
opers. Another highly connected group is formed by the Swiss team (@ch.ibm.ch)
whose members are represented by the nodes on the right side of the graph. Almost
each developer of the Swiss team is in touch with the US team; however, Markus
Keller and Daniel Megert turn out as the main communicators between the two
teams during that time.

Another interesting finding concerns the environment via which the developers
communicated. Most of the communication was via Bugzilla bug reports indicated
by the gray edges. Only the core team also used the mailing list to discuss Eclipse

Code Owners

Alien Commit

Agile Quality Assurance

Key personalities

23

280 M. Pinzger and H.C. Gall

Fig. 13.8 Communicators of the Eclipse Platform Core project as from May 2004 to February
2006

Platform Core relevant issues. Such findings are of particular interest when new
ways of communication are considered.

13.5.4 Project Dynamics

Newcomers should be integrated fast into development teams to rapidly increase
productivity and foster synergy among team members. With STNA-Cockpit the
project manager can observe how newcomers actually are integrated into their
teams. For this, the project manager selects the starting observation period and
uses the time-navigation facility of STNA-Cockpit to investigate the evolution of
the communication and collaboration network over time. The graph animation
allows the project manager to observe how the newcomer behaves concerning
communication and collaboration with other team members. In particular, she
looks for communication paths that tell her the newcomer gets actively involved

communicators

“swiss group”

Agile Quality Assurance

Socialization

24

13 Dynamic Analysis of Communication and Collaboration 281

(b) 2nd half of April 2004(a) 1st half of April 2004

(d) 2nd half of June 2004(c) 1st half of June 2004

Dj Houghton

John Arthorne

Rafael Chaves Jeff Mcaffer

Pascal Rapicault

Kevin Barnes

org.eclip ources

org.eclip untime

org.eclipse.co unt e.compatibility

se.core.res

se.core.r

re.r im

Rafael Chaves

Daniel Megert

John Arthorne

Dj Houghton

Da anson

Jared Burns

Eric Gamma

Kevin Barnes

org.eclipse.core.resources

rin Sw
h

Pascal Rapicault

Dj Houghton

Sonia Dimitrov

John Arthorne
Thomas Watson

Jeff Mcaffer

Dirk Baeumer

Rafael Chaves

Erich Gamma

Darin Wright

Kevin Barnes

Darin Swanson

org.eclip co esources

org.eclip co .runtime

se. re.r

se. re

John Arthorne

Rafael Chaves

Darin Wright

Darin Swanson

Kevin Barnes

org.eclip

Luc Bourlier

se.co ariablesre.v

Fig. 13.9 Socialization of Kevin Barness in the Eclipse Platform Core project

in discussions on the developers mailing lists and bug reports. In addition, she
observes whether the newcomer contributes to the plug-ins and finally takes over
responsibility of portions of the source code.

Consider the following scenario in which Kevin Barness is entering the US
team @ca.ibm.com of the Eclipse Platform Core project in April 2004. Figure 13.9
depicts various snapshots taken from the network created for subsequent points in
time. Kevin Barness is starting as a developer in the Eclipse Platform Core team at
the beginning of April 2004. His first action is to get in touch with some key person-
alities of the project, namely Rafael Chaves and John Arthorne. His first contacts are
visualized by the graphs depicted by (Fig. 13.9a, b). In the following weeks he com-
municates also with other project members to get more involved into the project (see
Fig. 13.9c), namely Darin Wright and Darin Swanson. As (Fig. 13.9d) illustrates,
Darin Wright is a developer and Darin Swanson the owner of the files that are going
to be modified by Kevin. Rafael Chaves seems to play the role of the connector who
introduces the new developer Kevin Barness to the responsible persons. According
to the graph, he is communicating with two senior developers.

Socialization of Kevin Barness in the Eclipse
Platform Core project

Agile Quality Assurance

Expertise Browser

25

Used within a geographically dispersed team
•120 developers at two sites (Germany and England)

grew to 250 developers (incl. satellite site in France)
• satellite teams: locate expertise
•established teams: who is doing what ?

Agile Quality Assurance

Code Ownership vs. Code Quality

26

3

Ownership of A.dll by Developers

(a) A.dll

3

Ownership of B.dll by Developers

(b) B.dll

Figure 2: Ownership graphs for two binaries in Windows

of experience used by Mockus and Weiss also used the num-
ber of changes. However, prior literature [14] has shown high
correlation (above 0.9) between number of changes and num-
ber of lines contributed and we have found similar results in
Windows, indicating that our results would not change sig-
nificantly. With these terms defined, we now introduce our
metrics.

• Minor – number of minor contributors

• Major – number of major contributors

• Total – total number of contributors

• Ownership – proportion of ownership for the contrib-
utor with the highest proportion of ownership

Figure 1 shows the proportion of commits for each of the
developers that contributed to abocomp.dll in Windows, in
decreasing order. This library had a total of 918 commits
made during the development cycle. The top contributing
engineer made 379 commits, roughly 41%. Five engineers
made at least 5% of the commits (at least 46 commits).
Twelve engineers made less than 5% of the commits (less
than 46 commits). Finally, there were a total of seventeen
engineers that made commits to the binary. Thus, our met-
rics for abocomp.dll are:

Metric Value

Minor 12
Major 5
Total 17
Ownership 0.41

4. HYPOTHESES
We begin with the observation that a developer with lower

expertise is more likely to introduce bugs into the code. A
developer who has made a small proportion of the commits
to a binary likely has less expertise and is more likely to
make an error. We expect that as the number of develop-
ers working on a component increases, the component may
become “fragmented” and the difficulty of vetting and coor-
dinating all these minor contributions becomes an obstacle
to good quality. Thus if Minor is high, quality suffers.

Hypothesis 1 - Software components with many minor con-
tributors will have more failures than software components
that have fewer.

We also look at the proportion of ownership for the highest
contributing developer for each component (Ownership). If
Ownership is high, that indicates that there is one devel-
oper who “owns” the component and has a high level of ex-
pertise. This person can also act as a single point of contact
for others who need to use the component, need changes to
it, or just have questions about it. We theorize that when
such a person exists, the software quality is higher resulting
in fewer failures.

Hypothesis 2 - Software components with a high level of
ownership will have fewer failures than components with
lower top ownership levels.

If the number of minor contributors negatively affects soft-
ware quality, the next question to ask is, “Why do some
binaries have so many minor contributors?” We have ob-
served both at Microsoft and also within OSS projects such
as Python and Postgres, that during the process of mainte-
nance, feature addition, or bug fixing, owners of one compo-
nent often need to modify other components that the first
relies on or is relied upon by. As a simple example, a devel-
oper tasked with fixing media playback in Internet Explorer
may need to make changes to the media playback interface li-
brary even though the developer is not the designated owner
and has limited experience with this component. This leads
to our hypothesis.

Hypothesis 3 - Minor contributors to components will be
Major contributors to other components that are related
through dependency relationships

Finally, if low-expertise contributions do have a large im-
pact on software quality, then we expect that defect predic-
tion techniques will be affected by their inclusion or removal.
We therefore replicate prior defect prediction techniques and
compare results when using all data, data derived only from
changes by minor contributors and, and data derived only
from changes to major contributors. We expect that when
data from minor contributors is removed, the quality of the
defect prediction will suffer.

3

Ownership of A.dll by Developers

(a) A.dll

3

Ownership of B.dll by Developers

(b) B.dll

Figure 2: Ownership graphs for two binaries in Windows

of experience used by Mockus and Weiss also used the num-
ber of changes. However, prior literature [14] has shown high
correlation (above 0.9) between number of changes and num-
ber of lines contributed and we have found similar results in
Windows, indicating that our results would not change sig-
nificantly. With these terms defined, we now introduce our
metrics.

• Minor – number of minor contributors

• Major – number of major contributors

• Total – total number of contributors

• Ownership – proportion of ownership for the contrib-
utor with the highest proportion of ownership

Figure 1 shows the proportion of commits for each of the
developers that contributed to abocomp.dll in Windows, in
decreasing order. This library had a total of 918 commits
made during the development cycle. The top contributing
engineer made 379 commits, roughly 41%. Five engineers
made at least 5% of the commits (at least 46 commits).
Twelve engineers made less than 5% of the commits (less
than 46 commits). Finally, there were a total of seventeen
engineers that made commits to the binary. Thus, our met-
rics for abocomp.dll are:

Metric Value

Minor 12
Major 5
Total 17
Ownership 0.41

4. HYPOTHESES
We begin with the observation that a developer with lower

expertise is more likely to introduce bugs into the code. A
developer who has made a small proportion of the commits
to a binary likely has less expertise and is more likely to
make an error. We expect that as the number of develop-
ers working on a component increases, the component may
become “fragmented” and the difficulty of vetting and coor-
dinating all these minor contributions becomes an obstacle
to good quality. Thus if Minor is high, quality suffers.

Hypothesis 1 - Software components with many minor con-
tributors will have more failures than software components
that have fewer.

We also look at the proportion of ownership for the highest
contributing developer for each component (Ownership). If
Ownership is high, that indicates that there is one devel-
oper who “owns” the component and has a high level of ex-
pertise. This person can also act as a single point of contact
for others who need to use the component, need changes to
it, or just have questions about it. We theorize that when
such a person exists, the software quality is higher resulting
in fewer failures.

Hypothesis 2 - Software components with a high level of
ownership will have fewer failures than components with
lower top ownership levels.

If the number of minor contributors negatively affects soft-
ware quality, the next question to ask is, “Why do some
binaries have so many minor contributors?” We have ob-
served both at Microsoft and also within OSS projects such
as Python and Postgres, that during the process of mainte-
nance, feature addition, or bug fixing, owners of one compo-
nent often need to modify other components that the first
relies on or is relied upon by. As a simple example, a devel-
oper tasked with fixing media playback in Internet Explorer
may need to make changes to the media playback interface li-
brary even though the developer is not the designated owner
and has limited experience with this component. This leads
to our hypothesis.

Hypothesis 3 - Minor contributors to components will be
Major contributors to other components that are related
through dependency relationships

Finally, if low-expertise contributions do have a large im-
pact on software quality, then we expect that defect predic-
tion techniques will be affected by their inclusion or removal.
We therefore replicate prior defect prediction techniques and
compare results when using all data, data derived only from
changes by minor contributors and, and data derived only
from changes to major contributors. We expect that when
data from minor contributors is removed, the quality of the
defect prediction will suffer.

Software components with many
minor contributors will have more
failures than software
components that have fewer.

Software components with a
high level of ownership will
have fewer failures than
components with lower top
ownership levels.

Data from Windows Vista and Windows 7

Agile Quality Assurance

Table Of Contents
Introduction

• Reliability vs. Agility

Mining Software Repositories

• Tests (= visualisation)
+ How good was our testing process ?

• Bugs (= text mining)
+ Who should fix this bug ?
+ How long will it take to fix this bug ?
+ What is the severity of this bug ?

• Expertise (= social network analysis)
+ Who are the key personalities ?
+ Who can help me with this file ?
+ Where should we focus our (regression) tests ?

Conclusion
• The future

27

Agile Quality Assurance

Hype Cycle

28

Hype Cycle © Gartner

V
is

ib
ili

ty

Maturity

Technology
Trigger

Peak of
Inflated

Expectations

Trough of
Disillusionment

Slope of
Enlightenment

Plateau of
Productivity

Agile Quality Assurance

The Future ?

29

Perso
n
al O

p
in

io
n

Peak of
Inflated

Expectations

Hype Cycle © Gartner

V
is

ib
ili

ty

Maturity

Technology
Trigger

Trough of
Disillusionment

Slope of
Enlightenment

Plateau of
Productivity

IBM (Patents) ⇒ Eclipse

Microsoft Research
⇒ Team Foundation Server

… for an experiment nearby

Agile Quality Assurance

Bibliography

30

Tests
• Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and Serge Demeyer, Studying the co-

evolution of production and test code in open source and industrial developer test processes
through repository mining, In International Journal on Empirical Software Engineering, Volume 16,
Number 3, pp. 325--364, 2011

Bugs
• John Anvik, Lyndon Hiew, and Gail C. Murphy. 2006. Who should fix this bug? In Proceedings of

the 28th international conference on Software engineering (ICSE '06). ACM, New York, NY, USA,
361-370.

• Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller. 2007. How Long Will It
Take to Fix This Bug? In Proceedings of the Fourth International Workshop on Mining Software
Repositories (MSR '07). IEEE Computer Society, Washington, DC, USA

• Ahmed Lamkanfi, Serge Demeyer, Emanuel Giger, and Bart Goethals, Predicting the Severity of a
Reported Bug, In Proceedings MSR'10 (7th IEEE Working Conference on Mining Software
Repositories), May, IEEE Press, 2010

Expertise (Social Networks)
• Martin Pinzger and Harald C. Gall. Dynamic Analysis of Communication and Collaboration in OSS

Projects. Chapter 13 In Collaborative Software Engineering, I. Mistrík, J. Grundy, A. van der Hoek,
J. Whitehead (eds.), pp. 265-284, Springer, 2010.

• Christian Bird, Nachiappan Nagappan, B. Murphy, H. Gall, and P. Devanbu. Don't Touch My Code!
Examining the Effects of Ownership on Software Quality. In Proceedings of the the eighth joint
meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering, Szeged, Hungary, 2011.

• Audris Mockus and James Herbsleb. Expertise browser: A quantitative approach to identifying
expertise. In 2002 International Conference on Software Engineering, pages 503-512, Orlando,
Florida, May 19-25 2002. ACM Press.

