Grammar Investigation

Vadim V. Zaytsev 2011

Grammar life cycle

What to expect

$\sqrt{C}++$ is bigger than C .
$\checkmark \mathrm{C} \#$ is more complex than Java.
\checkmark There are 11 bugs in Rascal.
\checkmark Modula can have 2 sublanguages.
\checkmark Fortran and Oberon are equally hard to learn.
\checkmark It was more difficult to develop Rascal than XPath.
\checkmark C\# grammar is hard to extend, can be improved.
\checkmark JDK grammars underuse the grammar notation.

What to recall

\checkmark Formal grammars
\checkmark Complexity theory
\checkmark Software metrics
\checkmark Mathematical statistics
\checkmark Program impurity classes
\checkmark Psychiatry
\checkmark Software science
\checkmark Lorenz curve
\checkmark Control flow analysis
\checkmark Product quality standard
\checkmark Pattern recognition
\checkmark Graph theory

Grammar investigation

Grammar

Profit!

Grammar investigation

Usually a number

Usually an indication or a forecast

Motivation

\checkmark Compare size and effort.
\checkmark Estimate the quality of the grammar.
\checkmark Predict future complications (detect smells).
\checkmark Improve grammar quality.
\checkmark Compare language implementations.
\checkmark Evaluate productivity impacts of new techniques.

What do metrics measure?

\checkmark Eength Size
\checkmark Quality, complexity
\checkmark Language complexity
\checkmark Structural complexity
\checkmark Cognitive complexity, learnability
\checkmark Functionality, usability
\checkmark Defect density, reliability
\checkmark Modularity, coupling/cohesion, reusability
\checkmark Nobody knows exactly

Grammar analysis

$\begin{gathered} \hline \text { TERMI } \\ \text { VAR } \\ \text { LAB } \\ \text { PROD } \\ \text { DEAD } \\ \text { DEADP } \\ \text { UNDEF } \\ \text { ROOT } \\ \text { LOC } \\ \text { AVSN } \\ \text { AVSP } \end{gathered}$	UMET UOPS MET OPS VOC LEN LEN^ UOPS* VOL PVOL BVOL HLEV HLEV^ DIF, IC LLEV EFF $\mathrm{EFF}{ }^{\wedge}$ BUG BUG	NPAT NPATC MPAT MPATC WPAT MCC MI	FImin Flavg FImax ONCE FOmin FOavg FOmax LEAF	LEV CLEV RLEV NLEV HEI DEP TIMPI TIMP

Primitive grammar measurements

TERM
VAR
LAB
PROD
DEAD
DEADP
UNDEF
ROOT
LOC
AVSN
AVSP

TERM: number of terminal symbols

\checkmark Solid size metric
\checkmark Easy to compute (traversal needed)
\checkmark Almost no correlation with any other metrics (except, quite surprisingly, for NPAT)
\checkmark TERM $\equiv 0$ for some meta-syntaxes (XSD, EMF)

VAR: number of nonterminal symbols

\checkmark Best to add the number of built-in primitives
\checkmark Solid size metric
\checkmark Easy to compute (traversal needed)
\checkmark Extremely high correlation with most size metrics
\checkmark Seems like a proper target for normalisations (except it is not, $r=0.9783$)
\checkmark Claims that "larger VAR implies greater maintenance overhead"

LAB: number of descriptive labels

\checkmark Expression selectors and production labels
$\sqrt{ }$ More of a documentation metric
\checkmark Does it capture readability?
\checkmark Easy to compute (traversal needed)
\checkmark Being the only documentation metric, does not correlate with anything

PROD: number of production rules

\checkmark Trivial to compute (no traversal)
$\sqrt{ }$ Conceptually different from VAR, but always correlates heavily ($r=0.9890$)
\checkmark It is known that:

$\mathrm{VAR} \leq \mathrm{PROD}$

DEAD: number of dead nonterminals

\checkmark Nonterminal symbols unreachable from the root
\checkmark Easy to compute (traversal)

DEADP: number of dead productions

\checkmark Production rules unreachable from the root
\checkmark Relatively easy to compute (traversal)

UNDEF: number of bottom nonterminals

\checkmark Nonterminals that are used but not defined
\checkmark Relatively easy to compute (traversal)

ROOT: number of start symbols

\checkmark In theory, one and only one start
\checkmark In practice, multiple or none are possible
\checkmark Trivial to compute (no traversal)

LOC: lines of EBNF code

\checkmark Following LOC counting traditions
\checkmark Secondary metric computed as:

$$
\mathrm{LOC}=\mathrm{VAR}+\mathrm{PROD}
$$

AVSN: average right hand side size

$\sqrt{ }$ Per nonterminal symbol
\checkmark Relatively easy to compute

AVSP: average right hand side size

\checkmark Per production rule
\checkmark Relatively easy to compute

Grammarware science

UMET
UOPS
IMET
OPS
VOC
LEN
LEN^
UOPS*
VOL
PVOL
BVOL
HLEV
HLEV^
DIF, IC
LLEV
EFF
EFF^
BUG

UMET: unique meta-symbols

\checkmark Tells more about grammar notation
$\sqrt{ }$ Or about the extent to which notation is exercised
\checkmark For the notation, there exists UMET:

$$
2 \leq \mathrm{UMET} \leq \underline{\mathrm{UMET}}
$$

UOPS: unique operands

\checkmark Can be computed as:

$$
\mathrm{UOPS}=\mathrm{VAR}+\mathrm{TERM}+\mathrm{LAB}
$$

\checkmark There exists UOPS*:

$$
\text { UOPS* } \leq \text { UOPS }
$$

UOPS*: minimum required operands

$\sqrt{ }$ Can be computed as:
UOPS* = TERM + ROOT + UNDEF
\checkmark If the above expression is zero, 2nd assumption:
UOPS* = DEAD

MET: used metasymbols

\checkmark Number of applications of sequential composition, repetition, optionality, ...
\checkmark Known property:

$\mathrm{UMET} \leq \mathrm{MET}$

OPS: used operands

\checkmark Number of occurrences of nonterminals, terminals, labels, ...
\checkmark Known property:

$$
\mathrm{UOPS} \leq \mathrm{OPS}
$$

VOC: grammar vocabulary

$\sqrt{ }$ Can be computed as:

$$
\mathrm{VOC}=\mathrm{UMET}+\mathrm{UOPS}
$$

LEN: grammar length

$\sqrt{ }$ Can be computed as:
LEN = MET + OPS

PUR: purity ratio

\checkmark Can be computed as:

$$
\mathrm{PUR}=\widehat{\mathrm{LEN}} / \mathrm{LEN}
$$

VOL: grammar volume

$\sqrt{ }$ Can be computed as:

$$
\mathrm{VOL}=\mathrm{LEN} \log _{2} \mathrm{VOC}
$$

PVOL: potential (minimal) volume

\checkmark Can be computed as:

$$
\text { PVOL }=(2+\text { UOPS } *) \log _{2}(2+\text { UOPS* })
$$

BVOL: boundary volume

$\sqrt{ }$ Can be computed as:

$$
\mathrm{BVOL}=\left(2+\mathrm{UOPS}^{*} \log _{2} \mathrm{UOPS}^{*}\right) \log _{2}\left(2+\mathrm{UOPS}^{*}\right)
$$

HLEV: grammar level

$\sqrt{ }$ Can be computed as:

HLEV: PVOL/VOL

\checkmark Known property:

$$
0 \leq \mathrm{HLEV} \leq 1
$$

HLEV: estimated grammar level

\checkmark Can be computed as:

$$
\widehat{\mathrm{HLEV}}:(2 \times \mathrm{UOPS}) /(\mathrm{UMET} \times \mathrm{OPS})
$$

DIF: difficulty

$\sqrt{ }$ Can be computed as:
DIF $=1 / \mathrm{HLEV}$

LLEV: meta-language level

\checkmark Can be computed as:
LLEV = HLEV×PVOL
\checkmark For English: 2.16
\checkmark For Algol: 1.21
\checkmark For Assembly: 0.88
\checkmark For BNF: 0.00002-0.00437

EFF: engineering effort

$\sqrt{ }$ Can be computed as:

> EFF = VOL/HLEV

$\widehat{\text { EFF: }}$ estimated engineering effort

\checkmark The most commonly used metric "by Halstead"
\checkmark Was not suggested by Maurice Halstead.
\checkmark Computed as:
$\widehat{\mathrm{EFF}}=\frac{\mathrm{VOL}}{\widehat{\mathrm{HLEV}}}=\frac{\mathrm{UMET} \times \mathrm{OPS} \times \mathrm{LEN} \times \log _{2} \mathrm{VOC}}{2 \times \mathrm{UOPS}}$

BUG: estimated number of errors

$\sqrt{ }$ Can be computed as:

$$
\mathrm{BUG}=\mathrm{EFF}^{2 / 3} / 3000
$$

\checkmark Or (more accurate):

$$
\mathrm{BUG}=\mathrm{VOL} / 3000
$$

Pattern (clone type II) analysis
NPAT NPATC MPAT MPATC WPAT

NPAT: number of patterns

\checkmark Conceptual clone detection
\checkmark Map all productions to $\{\mathrm{N}, \mathrm{T},(), \mid\}^{*}$
\checkmark It is known that:

$$
1 \leq \text { NPAT } \leq \text { PROD }
$$

NPATC: normalised NPAT

$\sqrt{ }$ Computed as:

$$
\text { NPATC }=\text { NPAT } / \text { PROD } \times 100 \%
$$

\checkmark It is obvious that:

$$
\mathrm{PROD}^{-1} \leq \mathrm{NPATC} \leq 1
$$

MPAT: max number of pattern uses

$\sqrt{ }$ It is obvious that:

$$
1 \leq \mathrm{MPAT} \leq \mathrm{PROD}
$$

MPATC: normalised MPAT

$\sqrt{ }$ Computed as:

$$
\text { MPATC }=\mathrm{MPAT} / \mathrm{PROD} \times 100 \%
$$

\checkmark It is obvious that:

$$
\mathrm{PROD}^{-1} \leq \mathrm{MPATC} \leq 1
$$

WPAT: length of the longest pattern

$$
0 \leq \mathrm{WPAT}<\infty
$$

$\checkmark \exists$ NPAT * : max number of patterns

$$
\text { NPAT } \leq \text { NPAT }^{*}
$$

WPAT	NPAT*
0	1
1	3
2	7
3	21
4	73
5	279
\ldots	$? ? ?$

Control flow (fan-in \& fan-out)

Nonterminal fan-in

\checkmark Number of uses of a nonterminal within a grammar
\checkmark Fan-in $=0 \Rightarrow$ DEAD
\checkmark Fan-in $=1 \Rightarrow$ ONCE

FImin ≥ 2

$$
0 \leq \text { FIavg } \leq \text { FImax } \leq \text { VAR }
$$

\checkmark Coupling metric

Nonterminal fan-out

\checkmark Number of distinct nonterminals referenced
\checkmark Fan-out $=0 \Rightarrow$ LEAF
FOmin ≥ 1

$$
0 \leq \text { FOavg } \leq \text { FOmax } \leq \mathrm{VAR}
$$

\checkmark Cohesion metric
\checkmark If $\mathrm{VAR}=\mathrm{PROD}$,
FOmax \leq WPAT

Grammatical levels \& call graph

LEV: number of grammatical levels

\checkmark Grammatical level: a subset of mutually dependent nonterminals
\checkmark It is known that:

$$
1 \leq \mathrm{LEV} \leq \mathrm{VAR}
$$

CLEV: percentage of gram.levels

\checkmark LEV normalised by nonterminal count
\checkmark Computed as:

$$
\mathrm{CLEV}=\mathrm{LEV} / \mathrm{VAR} \times 100 \%
$$

\checkmark Low $\mathrm{CLEV} \Rightarrow$ nonterminals are clustered into few equivalence classes, subjects to modularisation

RLEV: number of recursive levels

\checkmark Levels that are either nontrivial or self-referring
\checkmark It is known that:

$$
0 \leq \text { RLEV } \leq \text { LEV }
$$

\checkmark RLEV reveals the number of syntactic components
\checkmark RLEV $=0 \Leftrightarrow$ the language is finite

NLEV: number of nontrivial levels

\checkmark Levels that consist of more than one nonterminal
\checkmark It is known that:

$$
0 \leq \text { NLEV } \leq \text { RLEV }
$$

DEP: depth

\checkmark The size of the biggest grammatical level
$\sqrt{ }$ It can be proven that:

$$
\mathrm{DEP} \leqslant \frac{\mathrm{VAR}-\mathrm{LEV}}{\mathrm{NLEV}}+1
$$

$\sqrt{ }$ High DEP indicates uneven distribution of nonterminals among grammatical levels
\checkmark The distribution is always uneven!

HEI: Varju height

\checkmark The longest path from the starting gram.level
$\sqrt{ }$ It is known that:

$\mathrm{HEI} \leq \mathrm{LEV}$

\checkmark All metrics derived from grammatical levels are pairwise strongly independent on the class of context-free languages.

TIMPI: (immediate) tree impurity

\checkmark A call graph is always between a tree and a complete digraph
\checkmark How far is the immediate call graph from a tree?

$$
\text { TIMP }=\frac{e-n+1}{n(n-1)} 100 \%
$$

\checkmark where n is the number of nodes (nonterminals) and e is the number of edges

TIMP: tree impurity

\checkmark A closure on the call graph is always between a tree and a complete digraph
\checkmark How far is it from a tree?
\checkmark Obviously,

TIMPI \leq TIMP

\checkmark Correlates well with CLEV
\checkmark It is claimed that high TIMP hinders adaptation

Cyclomatic complexity

MCC: cyclomatic complexity

\checkmark McCabe, McClure
\checkmark Number of decision points:
\checkmark choices
\checkmark optionality
\checkmark repetition
\checkmark Other cyclomatic metrics exist
\checkmark To be explored

Maintainability index

MI: maintainability index

\checkmark Coleman-Oman model
\checkmark Secondary metric computed as:
$\mathrm{MI}=171-5.2 \ln$ VOL $-0.23 \mathrm{MCC}-16.2 \ln \mathrm{LOC}$
\checkmark Observed considerable reverse correlation with the first BUG metric ($r=-0.9080$)

Grammar analysis

$\begin{gathered} \hline \text { TERMI } \\ \text { VAR } \\ \text { LAB } \\ \text { PROD } \\ \text { DEAD } \\ \text { DEADP } \\ \text { UNDEF } \\ \text { ROOT } \\ \text { LOC } \\ \text { AVSN } \\ \text { AVSP } \end{gathered}$	UMET UOPS MET OPS VOC LEN LEN^ UOPS* VOL PVOL BVOL HLEV HLEV^ DIF, IC LLEV EFF $\mathrm{EFF}{ }^{\wedge}$ BUG BUG	NPAT NPATC MPAT MPATC WPAT MCC MI	FImin Flavg FImax ONCE FOmin FOavg FOmax LEAF	LEV CLEV RLEV NLEV HEI DEP TIMPI TIMP

Recall complexity theory

\checkmark Kolmogorov complexity is about how much resources are needed to specify the entity.
\checkmark The shortest description in a meta-language.
\checkmark Hence, related to normal forms.
\checkmark Also linked to identifiable structured subentities.
\checkmark Complexity is incomputable.
\checkmark All proof systems have a complexity threshold.

Metrics tripled

\checkmark Measure working/baseline/recovered grammars
\checkmark Measure normalised grammars
\checkmark Impurity V "Unwarranted Assignment"
\checkmark Impurity VI "Unfactored Expressions"
\checkmark Measure freshly extracted grammars
\checkmark May be incorrect, contain dead production rules
\checkmark Easier to get than good quality grammars

Grammar normalisations

$\sqrt{ }$ Chain productions
\checkmark Remove (xbgf:unchain)
$\sqrt{ }$ Nonterminals that are used only once
\checkmark Unfold (xbgf:inline)
$\sqrt{ }$ Definitions that contain unfactored expressions
\checkmark Factor (xbgf:distribute)

Idea: some metrics tell the same story

\checkmark Gather statistical data
\checkmark Compute correlations

$$
r_{x y}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}}}
$$

\checkmark Research how normalisation changes results
\checkmark Research what metrics are heavily interdependent
$\checkmark \Rightarrow$ measure the same thing

How to compare a metric with itself?

\checkmark Not looking for a correlation with itself ($r \equiv 1.0$)
\checkmark How interesting are the results provided by a metric?
\checkmark Constants are not interesting
\checkmark "Linear" metrics will be detected by their correlation with size (VAR, PROD , ...) anyway
\checkmark Versatile results are interesting!
\checkmark Deviation? Variance?

Gini coefficients

$\sqrt{ }$ Measure the inequality of a distribution
$\sqrt{ } \mathrm{G}=0 \Rightarrow$ total equality
$\sqrt{ } \mathrm{G}=1 \Rightarrow$ total inequality
\checkmark Adjust the formula for our needs:

$$
g_{x}=\frac{2}{n}\left(n-\frac{1+\sum i x_{i}}{\sum x_{i}}\right)
$$

Gini coeff: MPATC ($\mathrm{g}=0.8588$)

Gini coeff: RLEV (g=0.3535)

Freshly extracted grammars

> TERM' VAR' LAB' PROD' DEAD'
> DEADP' UNDEF' AVSP' HLEV' WPAT'

Normalised grammars

~AVSN ~AVSP ~HLEV^ ~NPATC ~MPATC ~WPAT
\sim FImin
${ }^{\sim}$ FImax
~FOmin
~FOmax
~TIMPI
~TIMP
${ }^{\sim}$ MCC

Interesting things found

\checkmark A cluster of plain size metrics (farther from TERM \Leftrightarrow closer to VAR)
\checkmark LEAF complements NPAT and correlates with size metrics that are far from VAR: $\widehat{\text { LEN, }}$, VOC, UOPS, ...
\checkmark VAR correlates with PROD $(r=0.9890)$
\checkmark AVSN does not correlate with AVSP (???)
\checkmark MI reverse correlates with BUG^{1}
\checkmark LEV correlates with maximum fan-in (???)
$\sqrt{ }$ CLEV and TIMP display strong reverse correlation

Complete picture (47/159)

$\begin{aligned} & \text { TERM' } \\ & \text { VAR' } \\ & \text { LAB' } \\ & \text { PROD' } \\ & \text { DEAD' } \\ & \text { DEADP' } \\ & \text { UNDE' ' } \\ & \text { AVSP' } \\ & \text { HLEV' } \\ & \text { WPAT' } \end{aligned}$	TERM VAR LAB PROD DEADP UNDEF ROOT AVSN AVSP	UMET UOPS MET OPS VOC LEN UOPSS* VOL PVOL BVOL HLEV DIF, IC LLEV EFF EFF^ BUG	NPAT NPATC IMPAT MPATC WPAT MCC ...	FImin FTavg FImax ONCE FOmin FOavg FOmax LEAF	$\begin{gathered} \hline \text { LEV } \\ \text { CLEV } \\ \text { RLEV } \\ \text { NLEV } \\ \text { HEI } \\ \text { DEP } \\ \text { TIMMPI } \\ \text { TIMMP } \end{gathered}$	

Threat to validity

Static vs interactive

\checkmark Top nonterminals
\checkmark Top nonterminals list count
\checkmark Average production length
\checkmark Number of subcomponents
$\sqrt{ }$ Productions that are too long
$\sqrt{ }$ Indication on how to extract modules from subcomponents

Complex measurements: fan-in
O. JDK $1.0 \mathrm{impl} \quad 0$ JDK 1.0 read

- J2SE 1.2 impl O. J2SE 1.2 read
- J2SE 5.0 impl O. J2SE 5.0 read

Complex measurements: fan-in

O. JDK $1.0 \mathrm{impl} \quad$ O. JDK 1.0 read

- J2SE 1.2 impl O J2SE 1.2 read
- J2SE 5.0 impl O. J2SE 5.0 read

ONCE

DEAD

Complex measurements: fan-out

; Complex measurements: patterns

- FL in DCG
- EBNF in SDF
- PICO in SDF
- FL in Java
- BNF in SDF
- BTF in XSD
- FL in SDF
- YACC in SDF
- LCF in XSD
- FL in XSD
- FL in Ecore
- LOGO in SDF
- FL in TXL
- FL in ANTLR
- FL in Ecore/XSD
- FL in XSD/Java
- BGF in XSD

Complex measurements: patterns

$\sqrt{ }$ The most popular patterns found in all grammars:

Pattern	Uses everywhere	Uses everywhere
N	2682	1635
T	1724	1198
NTN	664	671
NN	346	277
$T N$	252	212
$T N T$	150	136
$T\{N\} T$	134	
$N\{N\}$	107	68
$N T$	100	85
$T T N$	100	75

Dynamic measurements: call graph

Unsolved questions

$\sqrt{ }$ Performance

Extract/recover grammarbase	$5: 23$
Normalise grammars	$10: 19$
Calculate correlations between rec \& ext, rec \& num	$3: 06$
Calculate all possible correlations	$4: 35$
Calculate Gini coefficients	$2: 04$
Compute metrics	$1: 24$

Unsolved questions

$$
r(C L E V, T I M P)=0.9518
$$

$\sqrt{ }$ The relation between the number of cliques in a directed graph normalised per number of nodes, and the distance of that graph from being a tree?

Unsolved questions

\checkmark The Coleman-Oman maintainability model is wrong.
\checkmark Normalisation as explained (unchain/inline/factor)
\checkmark reduces analysability
\checkmark reduces changeability
\checkmark reduces testability
$\sqrt{ }$ increases the maintenance index
\checkmark Contradiction with ISO 9126

Unsolved questions

\checkmark Completeness claims (the lack thereof).
\checkmark When can we tell that we have measured everything?
\checkmark When should we just stop measuring everything?

Awesome things ahead

\checkmark Preserving properties of trafo/normalisations
\checkmark Dynamic grammar analysis
\checkmark Grammar smells
\checkmark Metrics for pairs of grammars
\checkmark Coverage metrics for grammar testing
\checkmark Metrics for grammar transformations

To do

\checkmark Better classification: measure, metric, counter, ...
\checkmark Formulae related or values related?
\checkmark Information flow metrics
\checkmark Parsing influences by metrics
\checkmark More research on normal form theory
\checkmark More indicators
\checkmark Feedback?

