
Scalable Cluster Technologies for
Mission-Critical Enterprise Computing

Werner H.P. Vogels

VRIJE UNIVERSITEIT

Scalable Cluster Technologies for
Mission-Critical Enterprise Computing

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. T. Sminia,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen

op dinsdag 11 november 2003 om 13.45 uur
in het aula van de universiteit,

De Boelelaan 1105

door

Werner Hans Peter Vogels

geboren te Ermelo

promotoren: prof.dr.ir. H.E. Bal
 prof.dr. A.S. Tanenbaum

In rememberance of those
who would have loved to

read about this work

Rob & Trees

Cor van den Biggelaar

Alje van der Laan

Wilhelmus Vogels

Chapter 2 has been published in the Proceedings of the 15th ACM Symposium on
Operating Systems Principles, Copper Mountain, CO, December 1995.

Chapter 3 has been published in IEEE Computer, Volume 31 Number 11, November
1998.

Chapter 4 has been published in the Proceedings of the 8th IEEE Hot Interconnets
Symposium, Stanford, CA, August 2000.

Chapter 5 has been published in Proceedings of the 8th ACM SIGOPS European
Workshop, Sintra, Portugal, September 1998.

Chapter 6 has been published in Proceedings of the 2nd International Enterprise
Distributed Object Computing Conference, San Diego, November, 1998.

Chapter 7 has been published in Proceedings of the Second Usenix Windows NT
Symposium, Seattle, WA, August 1998.

Chapter 8 has been published in the Proceedings of the IEEE International Conference
on Cluster Computing: Cluster-2000, Chemnitz, Germany, December 2000.

Chapter 9 has been published in the Proceedings of the 17th ACM Symposium on
Operating Systems Principles, Kiawah Island, SC, December 1999.

Copyright © 2003 by Werner H.P. Vogels

This work is licensed under the Creative Commons Attribution-NoDerivs-
NonCommercial License. To view a copy of this license, visit http:
//creativecommons.org/licenses/by-nd-nc/1.0 or send a letter to Creative
Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

ISBN: 1-4116-0166-1

On the cover is the SGI Origin 3000 Lomax cluster at NASA Ames research center.
It is a 512-processor, single system image, distributed shared memory system used
for performing scalability studies, benchmarking, and solving large-scale problems
for the Information Power Grid. The system has 256 Gigabytes of main memory, 2
Terabytes of disk storage and can reach a peak of 409 GFLOPS.

The cluster consists of 128 C-Bricks, each with quad 400 MHz R12000 processors
and 2Gb of local memory, and 44 R-Bricks for communication. Additional details
on the Lomax cluster can be found at http://www.nas.nasa.gov/User/Systemsdocs/
O3K/hardware.html

The photo was made by Tom Trower of NASA Ames Research Center

Table of Contents

Acknowledgements vii

1 General Introduction 1

1.1 Unlocking the full potential of high-performance networking 3
1.2 Building efficient runtime systems for enterprise cluster applications 3
1.3 Structuring the management of large-scale enterprise computing systems 4
1.4 System analysis through large-scale usage monitoring 5

Part I - An Architecture for Protected User-Level Communication 7

Introduction 7
A new architecture for high-performance networking 8
A foundation for the Virtual Interface Architecture 8
User-level communication in production use 9
The future of user-level communication 10

2 U-Net: A User-Level Network Interface for Parallel and Distributed
Computing 13

2.1 Introduction 13
2.2 Motivation and related work 16

2.2.1 The importance of low communication latencies 16
2.2.2 The importance of small-message bandwidth 18
2.2.3 Communication protocol and interface flexibility 18
2.2.4 Towards a new networking architecture 20
2.2.5 Related work 20
2.2.6 U-Net design goals 21

2.3 The user-level network interface architecture 23
2.3.1 Sending and receiving messages 23
2.3.2 Multiplexing and demultiplexing messages 24
2.3.3 Zero-copy vs. true zero-copy 25
2.3.4 Base-level U-Net architecture 26

ii Table of Contents Table of Contents iiiii Table of Contents Table of Contents iii

2.3.5 Kernel emulation of U-Net 27
2.3.6 Direct-Access U-Net architecture 27

2.4 Two U-Net implementations 28
2.4.1 U-Net using the SBA-100 28
2.4.2 U-Net using the SBA-200 29

2.5 U-Net Active Messages implementation and performance 34
2.5.1 Active Messages implementation 34
2.5.2 Active Messages micro-benchmarks 35
2.5.3 Summary 36

2.6 Split-C application benchmarks 36
2.7 TCP/IP and UDP/IP protocols 39

2.7.1 A proof-of-concept implementation 40
2.7.2 The protocol execution environment 41
2.7.3 Message handling and staging 42
2.7.4 Application controlled flow-control and feedback 43
2.7.5 IP 43
2.7.6 UDP 44
2.7.7 TCP 45
2.7.8 TCP tuning 46

2.8 Summary 48

3 Evolution of the Virtual Interface Architecture 51

3.1 Introduction 51
3.2 Performance factors 53

3.2.1 Low communication latency 53
3.2.2 High bandwidth for small messages 54
3.2.3 Flexible communication protocols 54

3.3 Milestones in interface design 55
3.3.1 Parallel computing roots 56
3.3.2 U-Net 58
3.3.3 Architecture 59
3.3.4 Protection 59
3.3.5 AM-II and VMMC 60
3.3.6 Virtual Interface Architecture 60

3.4 Design trade-offs 62
3.4.1 Queue structure 62
3.4.2 Memory management 63
3.4.3 Multiplexing and de-multiplexing 64
3.4.4 Remote memory access 65

3.5 Conclusions 66

ii Table of Contents Table of Contents iiiii Table of Contents Table of Contents iii

4 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 67

4.1 Introduction. 67
4.2 The AC3 Velocity Cluster 68
4.3 The GigaNet Interconnect 69
4.4 The Problem 71
4.5 Baseline Performance 73
4.6 Tree Saturation Experiments 74

4.6.1 Front-to-back 74
4.6.2 Slow Host Congestion Fabric 75
4.6.3 Switch Port Contention 77
4.6.4 Multi-stage Congestion 78

4.7 Experiments without Flow Control 80
4.8 Summary 81

Part II - Scalable Management Tools for Enterprise Cluster Computing 83

Introduction 83
Classifying cluster applications 84
Evaluation of a enterprise-class cluster management system. 85
Lessons learned 86
Applying the lessons 87
A framework for scalable cluster management 87
Continuing the quest for scalable cluster management 87

5 Six Misconceptions about Reliable Distributed Computing 89

5.1 Introduction 89
5.2 The misconceptions 90

5.2.1 Transparency is the ultimate goal 90
5.2.2 Automatic object replication is desirable 91
5.2.3 All replicas are equal and deterministic 91
5.2.4 Technology comes first 92
5.2.5 The communication path is most important 92
5.2.6 Client management and load balancing can be made generic 92

5.3 Conclusion 93

6 Quintet, Tools for Reliable Enterprise Computing 95

6.1 Introduction 95
6.2 Reliability 96
6.3 Transparency 97
6.4 Quintet goals 98
6.5 Relation with MTS 100

iv Table of Contents Table of Contents viv Table of Contents Table of Contents v

6.6 Target environment 100
6.7 System overview 101

6.7.1 Core Technology 102
6.7.2 Component Management 103
6.7.3. Component Development Tools 104
6.7.4 Component Runtime 106
6.7.5 System Management 106
6.7.6 Client Runtime 107

6.8 Extensibility 108
6.9 Future Work 109

7 Scalability of the Microsoft Cluster Service 111

7.1 Introduction 111
7.2 Distributed Management 111
7.3 Practical Scalability 112
7.4 Scalability goals of MSCS 113
7.5 Cluster Management 114
7.6 Cluster Network 114

7.6.1 Node Failure Detection 115
7.7 Node Membership 115

7.7.1 Join 116
7.7.2 Regroup 118

7.8 Global Update Protocol 122
7.9 Discussion 124

7.9.1 Failure Detection 124
7.9.2 Membership Join 125
7.9.3 Membership Regroup 126
7.9.4 Global Update Protocol 127

7.10 Conclusions 127

8 The Galaxy Framework for the Scalable Managament of Enterprise-
Critical Cluster Computing 129

8.1 Introduction 129
8.2 General Model 131

8.2.1 Extensions to the basic model 132
8.3 Distribution model 133
8.4 Scalability 134
8.5 Distribution Support System 136

8.5.1 Failure Detection and Membership Services 137
8.5.2 Epidemic communication 141

8.6 The Farm 142

iv Table of Contents Table of Contents viv Table of Contents Table of Contents v

8.6.1 Inserting nodes in the Farm 143
8.6.2 The Farm Information Database 144
8.6.3 Landscapes 144

8.7 Cluster design and construction 144
8.8 Cluster communication services 146
8.9 Cluster profiles and examples 146

8.9.1 Application development cluster 147
8.9.2 Component management cluster 148
8.9.3 Game server cluster 148

8.10 Component development libraries 149
8.11 Related work 150
8.12 Evaluating scalability 151

Part III - System experimentation and analysis of large-scale systems 153

Introduction 153
The case for rigorous statistical analysis 154
A final conclusion 155

9 File system usage in Windows NT 4.0 157

9.1 Introduction 157
9.2 Systems under study 160
9.3 Collecting the data 161

9.3.1 File system snapshots 162
9.3.2 File system trace instrumentation 162
9.3.3 Executable and paging I/O 164
9.3.4 Missing and noise data 165

9.4 The data analysis process 165
9.5 File system content characteristics 166
9.6 BSD & Sprite studies revisited 169

9.6.1 User activity 169
9.6.2 File access patterns 172
9.6.3 File lifetimes 176

9.7 Data distribution 180
9.8 Operational characteristics 184

9.8.1 Open and close characteristics 186
9.8.2 Read and write characteristics 187
9.8.3 Directory & control operations 188
9.8.4 Errors 188

9.9 The cache manager 189
9.9.1 Read-ahead 189
9.9.2 Write-behind 190

vi Table of Contents Table of Contents PB

9.10 FastIO 191
9.11 Related work 193
9.12 Summary 194

Samenvatting 207

Publications and Reports 215

Additional Acknowledgements and Support 223

Acknowledgements

Annette, Laura and Kim have contributed more to the work described in this thesis
than anyone will ever realize. They deserve credit for stimulating me to look for
solutions in creative, non-traditional ways, for motivating me to face new challenges,
and for always encouraging me to take all the time I need. The supreme happiness in
life is the conviction that we are loved.

First and foremost my gratitude goes to Robbert van Renesse, Ken Birman and Fred
Schneider for being colleagues, mentors, students, critics and friends during the past
10 years.

If you are fortunate you will meet people on your path that have the ability to point
you into the right direction and as such have a profound influence on the work
without getting much recognition. Jim Gray, on several occasions, has steered me
towards succeeding, even where progress was not obvious. His unwavering support
has been much appreciated. He is a good friend.

Paulo Verissimo and Luis Rodrigues took me into their research team at INESC,
when I still had little to show for, and allowed me to develop my skills, publish my
first works and build an international network of colleagues and friends. I am grateful
for their support in those days and for the opportunity to experience Portugal.

My first true collaboration at Cornell was with Thorsten von Eicken. In a rather
intensive year we architected and built U-Net, which had an exciting mix of creative
innovation and superb engineering. I have very fond memories of that year and the
interaction has been the blueprint for many collaborations that followed afterwards.

It are not only mentors and teachers that have influenced my work in the past years,
my students have played an equal enlightening role. I got more than I deserved when
my star students Dan Dumitiru, Pino Decandia, Ivano Rosero and Mark Rogge

viii Acknowledgements Acknowledgements ixviii Acknowledgements Acknowledgements ix

decided to join me at Reliable Network Solutions, Inc. More recently it has been
Chris Re who constantly challenges me to think laterally.

I was able to develop my interest in computer science research because I was
given opportunities to do so during my years at the Haagse Hoogeschool. Rob
Kraaijenbrink and Kees van Loon supported my drive for discovery, and allowed
me to keep the PDP-11 alive until PCs could no longer be ignored. I hope that my
friend and colleague from those days, Henk Schouten, will also be able to fulfill his
dreams.

I had a life before computer science, but Frank de Leeuw with his persistent advice
and Annette coming back from London with an 8 bit Atari ended that life.

I am grateful to Annette for her help with editing and reviewing the thesis.

A special word of thanks goes to Henri Bal and Andy Tanenbaum for their efforts to
make this dissertation become a reality. They had the difficult task to review work
they had not been closely involved with and did so with an open mind and an eye
for detail. Thanks to their effort, the structure and content of the thesis improved
significantly.

Finally I would like to thank my reading committee; Ken Birman, Jim Gray, Thilo
Kielman, Keith Marzullo and Willy Zwaenepoel, for their detailed reading of the
thesis and attaching their seal of approval.

viii Acknowledgements Acknowledgements ixviii Acknowledgements Acknowledgements ix

Support

The research presented in this thesis has been supported by:

• The US Defense Advanced Research Projects Agency’s Information
Technology Office under contracts ONR-N00014-92-J-1866, ONR- N0014-
96-1-10014, AFRL-F30602-99-1-0532 and AFRL-F49620-02-1-0233.

• The National Science Foundation under Grant No. EIA 97-03470.
• The National Aeronautics & Space Administration under the Remote

Exploration and Experimentation program administered by the Jet Propulsion
Laboratory.

• The Microsoft Corporation through grants by the Scalable Servers group of
the Bay Area Research Center and by the Microsoft Server product division.

• The Intel Corporation though grants by the Server Architecture Lab.

x PB

Chapter 1

General Introduction

Enterprise computing has changed significantly in the past decade. In the past,
the workloads at corporate datacenters were dominated by centralized processing
using a limited number of big database servers, mainly handling online transaction
processing (OLTP) and batch processing tasks in support of the back-office process.
The organization of these datacenters has evolved from mainframe-oriented into
a large collection of flexible application servers providing a very diverse set of
services. These services still include the traditional order processing and inventory
control, but now also provide internal and external information portals, continuous
data-mining operations, pervasive integration of customer relationship management
information, email and other collaboration services, and a variety of computational
services such as financial forecasting.

An important observation is that these services have become essential to the
successful operation of the enterprise, and that any service interruption, either
through failure or through performance degradation, could bring the activities of
the enterprise to a halt. The mission-critical nature of these services requires them to
be scalable, highly-available, and with robust performance guarantees. Organizing
these services into compute clusters appeared a logical step as cluster technology
held the promise of cost-effective scalability and was considered to be a good basis
for implementing a highly-available service organization.

In the early 1990’s the technologies provided by traditional cluster computing,
being either OLTP or parallel computing oriented, were insufficient for developing
the scalable, robust services the new information-centered enterprise required. The
problems that faced enterprise cluster computing are best described by Greg Pfister

2 General Introduction Introduction 32 General Introduction Introduction 3

in the conclusion section of his book “In search of Clusters – the ongoing battle in
lowly parallel computing” [77]:

Attempts to use overtly parallel processing have previously been crippled
by wimpy microprocessors, slothful communication, and the need to rebuild
painfully complex parallel software from scratch.

The result of this situation has been the completely justifiable conviction that
this form of computing simply was not worth the trouble unless it provided
enormous gains in performance or function. With a performance focus came
a fixation on massive parallelism; with a functional focus came a fixation on
massively distributed processing.

In this thesis some of the results of my research into the problems that faced mission-
critical cluster computing are presented. The problems ranged from enabling off-the-
shelf workstations and operating systems to exploit high-performance interconnects,
to structuring the management of geographically distributed clusters. These problems
inhibited the wide-spread adoption of cluster computing as a solution for scalable
and robust enterprise computing. The research in this thesis has mainly focused on
the following four areas:

• Unlocking the full potential of high-performance networking
• Developing efficient runtime systems for cluster-aware enterprise

applications
• Structuring the management of large-scale enterprise computing systems
• System analysis through large-scale usage monitoring

The new technologies that resulted from my research are considered to have been
major contributions to the ability to build scalable clusters in support of modern
mission-critical enterprise computing. These technologies have transitioned into
industry standards such as the Virtual Interface Architecture, into commercial
available clustered application-servers, and into the design of a new commercial
highly-scalable cluster management system that supports enterprise-wide,
geographically distributed, management of cluster services.

This thesis presents several of the more important results, but the research has lead
to many more results, also outside of the four main areas, and these results are
referenced in Appendix A.

2 General Introduction Introduction 32 General Introduction Introduction 3

Each of the four main research areas is described in more detail in the following
sections.

1.1 Unlocking the full potential of high-performance networking

Although significant progress had been made in the early 1990’s in developing high-
performance cluster interconnects, this technology was not yet suitable for integration
into off-the-shelf enterprise cluster systems. The communication technology was
targeted towards high-performance parallel computing where the operating systems
used styles of application structuring that made it difficult to transfer the technology
to standard workstations. For example the IBM SP2 used techniques that allowed
only one application access to the interconnect, as the operating system provided no
protection on the network.

The arrival of standard high-performance network technology brought the promise
that regular workstations and servers could use high-performance communication in
a manner similar to parallel computing systems, but in a much more cost-effective
way. Unfortunately the standard operating systems were not structured to support
high-performance and the overhead on network processing was so high that most of
the benefits of the new networks could not be made available.

In 1994 I started research, in collaboration with Thorsten von Eicken, to break
through this barrier. The resulting architecture, U-Net, presented a new abstraction
that combined the power of direct user-level network access with the full protection
of standard operating systems. In U-Net the network adapter was virtualized into
the application’s address space, enabling end-to-end network performance close to
the bare-wire maximum. The complete separation of data and control for network
processing enabled the construction of very high performance cluster applications.

An industry consortium lead by Intel, Microsoft and Compaq standardized the U-
Net architecture into the Virtual Interface Architecture, which became the de-facto
standard for enterprise cluster interconnections. The U-Net architecture, its transition
into VIA, and experiences with large production clusters based on VIA can be found
in Part I of this thesis.

1.2 Building efficient runtime systems for enterprise cluster
applications

Advances in the scalability of cluster hardware and cluster management systems
enabled a large set of applications to benefit from improved performance and

4 General Introduction 1.3 Structuring the management of large-scale enterprise computing systems 54 General Introduction 1.3 Structuring the management of large-scale enterprise computing systems 5

availability. Many of these applications were based on legacy systems which
in themselves were not “aware” of the cluster environment on which they were
executing. Even though this transparency appeared to have several advantages,
especial when applied to client-server interaction, it was impossible to meet
the demands of scalability and fault-tolerance for server applications without
introducing at least some awareness about the distributed nature of the system it
was executing on. These insights were similar to our experiences with building
group structuring systems for complex distributed production systems, where the
conclusion was reached that server-side transparency blocked the development of
advanced distributed applications.

My research into efficient runtime systems for cluster-aware applications focused
on what would be the right tools for application developers to structure their
applications if distribution was made explicit instead of transparent. This research
resulted in the development of an application-server (dubbed Quintet) intended to
serve the application-tier of multi-tier enterprise applications. Quintet provides
tools for the distribution and replication of server components to meet availability,
performance and scalability guarantees. The approach in Quintet is radically
different from previous systems that support object replication, in that the replication
and distribution are no longer transparent and are brought under full control of the
developer.

A number of the components that were developed for Quintet found their way
into commercial application-servers, and Quintet was the basis for the application
development support in the Galaxy Cluster Management Framework. Other tools
such as the multi-level failure detector have been reused in the farm and cluster
management system, but also transitioned into stand-alone tools for tracking small
web and compute-farms.

Part II of this thesis is dedicated to the research on cluster runtime and management
systems. In chapter 5 our experiences with the use of academic software in production
systems are described, while in chapter 6 an overview is given of the design of the
Quintet application-server.

1.3 Structuring the management of large-scale enterprise computing
systems

The improvements in processor and network performance in the early 1990’s were by
themselves not sufficient to bring cluster computing into the mainstream. Software

4 General Introduction 1.3 Structuring the management of large-scale enterprise computing systems 54 General Introduction 1.3 Structuring the management of large-scale enterprise computing systems 5

support for cluster computing, both at the systems level and at the application level,
faced serious structuring and scalability problems. This was most visible in the area
of cluster management where the enterprise support systems were targeted towards
small-scale clusters and supported only very specific hardware configurations.

Whereas low-end parallel computing for the masses was being enabled by the
Beowulf cluster management tools, there was no similar solution for enterprise
cluster computing. The main reason for the lack of progress was that software
systems for enterprise cluster management had to serve a variety of application types,
all with very specific demands for the way cluster management was performed. The
distributed systems components necessary to build these management systems are
often more complex than the applications they have to serve.

The Galaxy Cluster Management Framework was the first system to provide a
scalable solution for the management of clusters in large data-centers. Its multi-tier
management infrastructure enabled the management of compute-farms at multiple
locations, with within each farm islands of specialized clusters that are managed
according to a cluster profile. The system was designed based on principles that were
the result of an analysis of the production use of our communication software and
an in-depth analysis of existing management systems. Galaxy was successful in that
its design and principles were selected by a major operating systems vendor as the
foundation for its next generation cluster system. The work leading to Galaxy and
a detailed description of the system can be found chapters 7 and 8 in part II of this
thesis.

1.4 System analysis through large-scale usage monitoring

Understanding the way systems are used in production settings is essential for
systems research that seeks to find solutions for the practical problems facing the
computing industry. Monitoring large-scale systems and the analysis of the results is
almost a research area by itself. The design of a monitoring and analysis system is
often very complex as there are many concurrent data sources involved, and there is
only limited or no control over the system usage. A difficult challenge when designing
the instrumentation and monitoring of a system is to ensure that it produces complete
usage information such that rigorous statistical analysis is possible.

This thesis contains two studies performed by me that use large scale experimentation
and monitoring:

6 General Introduction Section PB

The first is a study into the behavior under overload conditions of a large-scale
cluster interconnect, which consisted of 40 individual switches. This study uses a
traditional experiment design, where there is full control over behavior of the data
sources and sinks. The challenge with the design of these experiments was that only
observations at the sinks could be used to draw conclusions about the behavior of
the switches in the middle of the network, given that the switches themselves could
not be instrumented. What complicated the experimentation was the large amount of
data that needed to be collected at high speeds to be able to perform proper analysis
later in the process. The details of this study are in chapter 4.

In the second study, to which part III of the thesis is dedicated, I was confronted with
the problems of continuously monitoring a production environment where there is no
control over the data sources. The subject of this study was the usage characteristics
of file-systems of standard workstations. To this purpose the operating systems of a
large number of workstations were instrumented and observed over a longer period
of time. Again in this study the analysis was complicated by the magnitude of the
amount of data collected and the complexity introduced by the heterogeneity of
the applications execution on the workstations. In the conclusions of this study I
stress the importance of specialized statistical techniques for processing large sets
of observation data. This exact, rigorous statistical analysis, which was missing
from earlier file-system studies, is essential for the construction of proper workload
models, both for future benchmarking and for advanced systems tuning.

Part I

An Architecture for
Protected User-Level Communication

Introduction

In the early 1990’s it was becoming clear that the acceptance of cluster computing as
a key component in the evolution of enterprise computing was stagnating. The main
reason for the stagnation was that advances in network technology are not translated
into an improved networking experience for cluster applications. The advances
in network performance were deemed essential for clusters to be constructed out
of regular workstations, an approach which would make scaling clusters through
a rack & stack approach cost-effective. The only modular architectures which
provided some form of improved performance were those targeted at the scientific
computing market, such as the Thinking Machines CM-5 and the Meiko CS-2. These
architectures were not suitable for the enterprise computing market as they exhibited
the traditional problem seen at many parallel computing platforms of using CPUs
that are at least one generation behind the CPUs available for the general workstation
market. This problem combined with the often exorbitant costs of these clusters
made it very difficult to find a place in the enterprise market for cluster computing.
The only cluster architecture with some limited enterprise computing successes was
the IBM SP-2, but the proprietary nature of the communication infrastructure, as
well as the lack of support for protected access to the network interface reduced the
wide-spread adoption of the architecture outside of the scientific computing arena.

The advances in workstation networking were initially based on a surge of
popularity of ATM networking, which was becoming commonly available for both
SBUS and PCI architectures. The expectation was that end-to-end latency would be

8 An Architecture for Protected User-Level Communication A foundation for the Virtual Interface Architecture 98 An Architecture for Protected User-Level Communication A foundation for the Virtual Interface Architecture 9

in the 20-100 µsec range and bandwidth would be 100 Mbit/sec or more. In reality
the minimum latency measured was in the order of hundreds of microseconds, and
full bandwidth could only be achieved under infinite source conditions using large
messages. When using simple standard protocols such as UDP as transport over the
high-performance network, the latency for smaller messages was similar to or worse
than the latency achieved over 10 Mbit/sec Ethernet [37].

A new architecture for high-performance networking

The main reason for the lack of performance improvement was the message
processing overhead incurred during the send and receive actions. The operating
system structures for network processing had basically not changed since the late
1970’s when most network communication went over slow serial lines. The new low
latency networks exposed the fixed overhead that was associated with each receive,
which was almost independent of the number of bytes transferred. The properties
of the new high-performance networks could not be exploited without a complete
overhaul of the way communication primitives were offered in traditional operating
systems.

In 1994 I started a research project together with Thorsten von Eicken to re-architect
the way standard operating systems handled high-performance interconnects. The
resulting U-Net architecture addressed the issues by delivering data directly to the
applications, bypassing the operating system completely during the send and receive
operations. At the same time U-Net guaranteed that multiple processes could use the
network concurrently in a fully protected fashion. The prototype system provided
end-to-end performance that was close to the performance of the network itself. The
U-Net architecture was first presented at the 1995 ACM Symposium on Operating
Systems Principles (SOSP-15) and is described in detail in chapter 2.

A foundation for the Virtual Interface Architecture

U-Net did not only address the issues of operating systems performance, but
also offered a new approach to the way that the networked applications could be
structured, by completely separating the data and control paths. It went further
than architectures such as Active Messages and Fast Messages in removing the
last software coating that these architectures had put over the interaction with the
network. In U-Net the network interface was virtualized and each application was

8 An Architecture for Protected User-Level Communication A foundation for the Virtual Interface Architecture 98 An Architecture for Protected User-Level Communication A foundation for the Virtual Interface Architecture 9

exposed to a set of queue structures that resembled the way networking hardware
normally operates.

The U-Net architecture was seen by the enterprise cluster architects as the major
step forward in enabling the development of scalable clusters. In the two years
following the first U-Net publications, a consortium led by Intel, Compaq and
Microsoft developed the Virtual Interface Architecture, which was largely based
on the experiences with U-Net, but also incorporated some of the direct memory
transfer technology developed for the VMMC2 architecture of the Shrimp project at
Princeton. A description of the evolution of these research prototypes into the Virtual
Interface Architecture appeared in the November 1998 issue of IEEE Computer and
can be found in chapter 3.

User-level communication in production use

In 1998 commercial implementations of direct-user-level network interfaces and
interconnects based on the VI architecture started to find their way into production
clusters. Even though the architecture was able to meet the expectations, its success
was not as wide-spread as expected. The main obstacles were difficulties in the
transition of legacy cluster applications to a new network architecture combined
with the lack of end-to-end control strategies. In VIA, just like in U-Net, the data and
control transfer was separated and this was not a model many application developers
were familiar with. Already quite quickly after the first introduction of VIA
based hardware, network support libraries started to emerge that provided a more
traditional programming interface. This ultimately resulted in the development of
Winsock-Direct, an emulation of the socket interface for user-level communication.
The emulation was a disaster from the performance point of view, but it was deemed
“good-enough” as it helped the transition of legacy applications to VIA based
platforms.

The production use of the new clusters showed a major departure from the
communication patterns that were normally seen in scientific computing clusters.
In the traditional parallel computing world there is a high level of control where
applications are being placed and what phases the communication goes through. This
is essential for achieving optimal performance. In the production enterprise clusters
there is hardly any control over which applications are active at which nodes, and
the internal communication is often triggered by events external to the cluster. This

10 An Architecture for Protected User-Level Communication The future of user-level communication 1110 An Architecture for Protected User-Level Communication The future of user-level communication 11

results in communication patterns that are very hard to predict, which puts a heavy
burden on the interconnects to manage the load in the network fairly.

The separation of data and control in the VIA interface removed the ability of
the communication architecture to provide end-to-end back-pressure to manage
competing data streams. In chapter 4 detailed experiments are described which I
performed to investigate how effective the use of flow-control feedback to network
adapters is, when one cannot control the processes generating and receiving the
data streams. The experiments were performed at one of the first large production
VIA installations, a 256 processor cluster using a multi-stage Giganet interconnect,
consisting of 40 switches organized in a fat tree. The results of the experiments were
presented at the 2000 IEEE Hot Interconnects conference.

The future of user-level communication

Although the adoption of user-level communication by application developers has
been slow, major system services have been adapted to directly use the network
interfaces. For example the large commercial database systems, as well as transaction
services, e-mail servers, cluster management systems and middle-tier application
servers have been redesigned to make use of VIA directly. Other systems services
such as the Direct Access File System (DAFS), are still under development.

A related area that emerged soon after the first VIA devices were delivered was that
of direct user-level access to network storage devices. Fiber-Channel is the dominant
network technology used to access the storage devices and improved performance
can be established through transferring data directly in and from user space. The
architecture necessary to support this is simpler than the work that was needed to
build general communication architectures such as U-Net and VIA. Most of the
operating systems provide block IO interfaces that are already designed to transfer
data directly to and from user-provided buffers through DMA. The resulting direct
user-level IO architectures exploit this behavior.

The drive in the storage community to use standard internet protocols for access to
the networked storage has resulted in initiatives such as iSCSI. This push combined
with the availability of hardware TCP implementation will ensure that direct user-
level access to data transferred over standard internet protocols will become
available.

10 An Architecture for Protected User-Level Communication The future of user-level communication 1110 An Architecture for Protected User-Level Communication The future of user-level communication 11

At the computer architecture level U-Net and VIA have also had significant impact
as they were used as templates for the interface model of the Infiniband architecture.
Infiniband is a specification for the development of a unified high-performance IO
architecture, for which the first devices will become generally available in 2003. Next
to providing the common concepts such as direct user-level access, remote DMA
and a queue based interface, Infiniband extends the work done in U-Net and similar
systems with atomic remote compare&swap and fetch&add operations, and with
extended memory operation to reduce the cost of repeated memory registrations.

The work done in U-Net continues to impact the way new network, storage and
IO devices are developed. A major lesson learned from the transition of U-Net into
VIA and the wide-spread deployment of the architecture is that these advances
in hardware and interface technologies at the architecture level do not guarantee
successful acceptation of the technology by application developers. There is still
significant research to be done to develop distributed systems support that can
exploit the user-level communication paradigms and provide the server application
developer with solid abstractions for building high-performance applications.

12 PB

Chapter 2

U-Net: A User-Level Network Interface for
Parallel and Distributed Computing

The U-Net communication architecture provides processes with a virtual view of a
network interface to enable user- level access to high-speed communication devices.
The architecture, implemented on standard workstations using off- the-shelf ATM
communication hardware, removes the kernel from the communication path, while
still providing full protection.

The model presented by U-Net allows for the construction of protocols at user level
whose performance is only limited by the capabilities of the network. The architecture
is extremely flexible in the sense that traditional protocols like TCP and UDP, as well
as novel abstractions like Active Messages can be implemented efficiently. A U-Net
prototype on an 8-node ATM cluster of standard workstations offers 65 microseconds
round-trip latency and 15 Mbytes/sec bandwidth. It achieves TCP performance at
maximum network bandwidth and demonstrates performance equivalent to Meiko
CS-2 and TMC CM-5 supercomputers on a set of Split-C benchmarks.

2.1 Introduction

The increased availability of high-speed local area networks has shifted the
bottleneck in local-area communication from the limited bandwidth of network
fabrics to the software path traversed by messages at the sending and receiving
ends. In particular, in a traditional Unix networking architecture, the path taken by
messages through the kernel involves several copies and crosses multiple levels
of abstraction between the device driver and the user application. The resulting
processing overheads limit the peak communication bandwidth and cause high
end-to-end message latencies. The effect is that users who upgrade from Ethernet

14 U-Net: A User-Level Network Interface for Parallel and Distributed Computing

to a faster network fail to observe an application speed-up commensurate with the
improvement in raw network performance. A solution to this situation seems to
elude vendors to a large degree because many fail to recognize the importance of
per-message overhead and concentrate on peak bandwidths of long data streams
instead. While this may be justifiable for a few applications such as video playback,
most applications use relatively small messages and rely heavily on quick round-
trip requests and replies. The increased use of techniques such as distributed shared
memory, remote procedure calls, remote object-oriented method invocations, and
distributed cooperative file caches will further increase the importance of low round-
trip latencies and of high bandwidth at the low-latency point.

Many new application domains could benefit not only from higher network
performance but also from a more flexible interface to the network. By placing all
protocol processing into the kernel, the traditional networking architecture cannot
easily support new protocols or new message send/receive interfaces. Integrating
application specific information into protocol processing allows for higher efficiency
and greater flexibility in protocol cost management. For example, the transmission of
MPEG compressed video streams can greatly benefit from customized retransmission
protocols, which embody knowledge of the real-time demands as well as the
interdependencies among video frames [95]. Other applications can avoid copying
message data by sending straight out of data structures. Being able to accommodate
such application specific knowledge into the communication protocols becomes
more and more important in order to be able to efficiently utilize the network and to
couple the communication and the computation effectively.

One of the most promising techniques to improve both the performance and the
flexibility of networking layer performance on workstation-class machines is to
move parts of the protocol processing into user space. This research argues that in
fact the entire protocol stack should be placed at user level and that the operating
system and hardware should allow protected user-level access directly to the
network. The goal is to remove the kernel completely from the critical path and to
allow the communication layers used by each process to be tailored to its demands.
The key issues that arise are

• multiplexing the network among processes,
• providing protection such that processes using the network cannot interfere

with each other,

2.1 Introduction 15

• managing limited communication resources without the aid of a kernel path,
and

• designing an efficient yet versatile programming interface to the network.

Some of these issues have been solved in parallel machines such as in the Thinking
Machines CM-5, the Meiko CS-2, and the IBM SP-2, all of which allow user-level
access to the network. However, all these machines have a custom network and
network interface, and they usually restrict the degree or form of multiprogramming
permitted on each node. This implies that the techniques developed in these designs
cannot be applied to workstation clusters directly. This chapter describes the U-Net
architecture for user-level communication on an off-the-shelf hardware platform
(SPARCStations with Fore Systems ATM interfaces) running a standard operating
system (SunOS 4.1.3). The communication architecture virtualizes the network
device so that each process has the illusion of owning the interface to the network.
Protection is assured through kernel control of channel set-up and tear-down. The
U-Net architecture is able to support both legacy protocols and novel networking
abstractions: TCP and UDP as well as Active Messages are implemented and exhibit
performance that is only limited by the processing capabilities of the network
interface. Using Split-C, a state-of-the-art parallel language, the performance of
seven benchmark programs on an ATM cluster of standard workstations rivals that of
parallel machines. In all cases U-Net was able to expose the full potential of the ATM
network by saturating the 140Mbits/sec fiber, using either traditional networking
protocols or advanced parallel computing communication layers.

The major contributions of this research are to propose a simple user-level
communication architecture (Sections 2.2 and 2.3) which is independent of the
network interface hardware (i.e., it allows many hardware implementations),
to describe two high-performance implementations on standard workstations
(Section 2.4), and to evaluate its performance characteristics for communication
in parallel programs (Sections 2.5 and 2.6) as well as for traditional protocols from
the IP suite (Section 2.7). While other researchers have proposed user-level network
interfaces independently, this is the first presentation of a full system which does
not require custom hardware or OS modification and which supports traditional
networking protocols as well as state of the art parallel language implementations.
Since it exclusively uses off-the-shelf components, the system presented here
establishes a baseline to which more radical proposals that include custom hardware
or new OS architectures must be compared to.

16 U-Net: A User-Level Network Interface for Parallel and Distributed Computing

2.2 Motivation and related work

The U-Net architecture focuses on reducing the processing overhead required to
send and receive messages as well as on providing flexible access to the lowest layer
of the network. The intent is three-fold:

• provide low-latency communication in local area settings,
• exploit the full network bandwidth even with small messages, and
• facilitate the use of novel communication protocols

2.2.1 The importance of low communication latencies

The latency of communication is mainly composed of processing overhead and
network latency (time-of-flight). The term processing overhead is used here to refer
to the time spent by the processor in handling messages at the sending and receiving
ends. This may include buffer management, message copies, checksumming, flow-
control handling, interrupt overhead, as well as controlling the network interface.
Separating this overhead from the network latency distinguishes the costs stemming
from the network fabric technology from those due to the networking software
layers.

Recent advances in network fabric technology have dramatically improved network
bandwidth while the processing overheads have not been affected nearly as much.
The effect is that for large messages, the end-to-end latency—the time from the
source application executing “send” to the time the destination application receiving
the message—is dominated by the transmission time and the new networks offer
a net improvement. For small messages in local area communication, however,
the processing overheads dominate and the improvement in transmission time is
less significant in comparison. In wide area networks the speed of light eventually
becomes the dominant latency component and while reducing the overhead does not
significantly affect latency it may well improve throughput.

U-Net places a strong emphasis on achieving low communication overheads because
small messages are becoming increasingly important in many applications. For
example, in distributed systems:

• Object-oriented technology is finding widespread adoption and is naturally
extended across the network by allowing the transfer of objects and the remote
execution of methods (e.g., CORBA and the many C++ extensions). Objects are
generally small relative to the message sizes required for high bandwidth (around

2.2 Motivation and related work 17

100 bytes vs. several Kbytes) and thus communication performance suffers
unless message overhead is low.

• The electronic workplace relies heavily on sets of complex distributed services,
which are intended to be transparent to the user. The majority of such service
invocations are requests to simple database servers that implement mechanisms
like object naming, object location, authentication, protection, etc. The message
size seen in these systems range from 20-80 bytes for the requests and the
responses generally can be found in the range of 40-200 bytes.

• To limit the network traversal of larger distributed objects, caching techniques
have become a fundamental part of most modern distributed systems. Keeping
the copies consistent introduces a large number of small coherence messages.
The round-trip times are important as the requestor is usually blocked until the
synchronization is achieved.

• Software fault-tolerance algorithms and group communication tools often
require multi-round protocols, the performance of which is latency-limited. High
processing overheads resulting in high communication latencies prevent such
protocols from being used today in process-control applications, financial trading
systems, or multimedia groupware applications.

• Without projecting into the future, existing more general systems can benefit
substantially as well:

• Numerous client/server architectures are based on a RPC style of
interaction. By drastically improving the communication latency for
requests, responses and their acknowledgments, many systems may see
significant performance improvements.

• Although remote file systems are often categorized as bulk transfer systems,
they depend heavily on the performance of small messages. A weeklong
trace of all NFS traffic to the departmental CS fileserver at UC Berkeley
has shown that the vast majority of the messages is under 200 bytes in size
and that these messages account for roughly half the bits sent [2].

Finally, many researchers propose to use networks of workstations to provide the
resources for compute intensive parallel applications. In order for this to become
feasible, the communication costs across LANs must reduce by more than an order
of magnitude to be comparable to those on modern parallel machines.

18 U-Net: A User-Level Network Interface for Parallel and Distributed Computing

2.2.2 The importance of small-message bandwidth

The communication bandwidth of a system is often measured by sending a virtually
infinite stream from one node to another. While this may be representative of a few
applications, the demand for high bandwidths when sending many small messages
(e.g., a few hundred bytes) is increasing due to the same trends that demand low
latencies. U-Net specifically targets this segment of the network traffic and attempts
to provide full network bandwidth with as small messages as possible, mainly by
reducing the per-message overheads.

Reducing the minimal message size at which full bandwidth can be achieved may
also benefit reliable data stream protocols like TCP that have buffer requirements
that are directly proportional to the round-trip end-to-end latency. For example the
TCP window size is the product of the network bandwidth and the round-trip time.
Achieving low-latency in local area networks will keep the buffer consumption
within reason and thus make it feasible to achieve maximal bandwidth at low cost.

2.2.3 Communication protocol and interface flexibility

In traditional UNIX networking architectures the protocol stacks are implemented
as part of the kernel. This makes it difficult to experiment with new protocols
and efficiently support dedicated protocols that deal with application specific
requirements. Although one could easily design these protocols to make use of a
datagram primitive offered by the kernel (like UDP or raw IP), doing so efficiently
without adding the new protocol to the kernel stack is not possible. The lack of
support for the integration of kernel and application buffer management introduces
high processing overheads, which especially affect reliable protocols that need to
keep data around for retransmission. In particular, without shared buffer management
reference count mechanisms cannot be used to lower the copy and application/kernel
transfer overheads. For example, a kernel-based implementation of a reliable transport
protocol like TCP can use reference counts to prevent the network device driver from
releasing network buffers that must remain available for possible retransmission.
Such an optimization is not available if an application specific reliable protocol is
implemented in user space and has to use UDP as transport mechanism.

By removing the communication subsystem’s boundary with the application-specific
protocols, new protocol design techniques, such as Application Level Framing
[18,41] and Integrated Layer Processing [1,15,18], can be applied and more efficient
protocols produced. Compiler assisted protocol development can achieve maximum

2.2 Motivation and related work 19

optimization if all protocols are compiled together instead of only a small subset of
application specific protocols.

In more specialized settings a tight coupling between the communication protocol
and the application can yield even higher savings. For example, in a high-level
language supporting a form of blocking RPC no copy need to be made in case a
retransmission is required, as the high-level semantics of the RPC guarantee that
the source data remains unmodified until the RPC completes successfully. Thus the
address of a large RPC argument may well be passed down directly to the network
interface’s DMA engine.

Another example is that at the moment a process requests data from a remote node
it may pre-allocate memory for the reply. When the response arrives, the data can
be transferred directly into its final position without the allocation of intermediate
buffers or any intermediate copies.

Figure 2.1. The traditional networking architecture (a) places the kernel in the path
of the communication. The U-Net architecture (b) only uses a simple multiplexing/
demultiplexing agent - that can be implemented in hardware - in the data
communication path and uses the kernel only for set-up.

U

K

NI

NI

User

Operating

Legend:

kernel

application

system

Network
interface

NI with
message
multiplex

a)

b)

U

U

U

U

K NI

node 1 U

U

U

U

KNI

node 2

U

U

U

U
K

NI

node 1 U

U

U

U
K

NI

node 2

20 U-Net: A User-Level Network Interface for Parallel and Distributed Computing

Taking advantage of the above techniques is becoming a key element in reducing the
overhead of communication and can only be done if applications have direct access
to the network interface.

2.2.4 Towards a new networking architecture

A new abstraction for high-performance communication is required to deliver
the promise of low-latency, high-bandwidth communication to the applications
on standard workstations using off-the-shelf networks. The central idea in U-Net
is to simply remove the kernel from the critical path of sending and receiving
messages. This eliminates the system call overhead, and more importantly, offers
the opportunity to streamline the buffer management, which can now be performed
at user-level. As several research projects have pointed out, eliminating the kernel
from the send and receive paths requires that some form of a message multiplexing
and demultiplexing device (in hardware or in software) is introduced for the purpose
of enforcing protection boundaries.

The approach proposed in this research is to incorporate this mux/demux directly
into the network interface (NI), as depicted in Figure 2.1, and to move all buffer
management and protocol processing to user-level. This, in essence, virtualizes the
NI and provides each process the illusion of owning the interface to the network.
Such an approach raises the issues of selecting a good virtual NI abstraction to
present to processes, of providing support for legacy protocols side-by-side with
next generation parallel languages, and of enforcing protection without kernel
intervention on every message.

2.2.5 Related work

Some of the issues surrounding user-level network interface access have been studied
in the past. For the Mach3 operating system a combination of a powerful message
demultiplexer in the microkernel, and a user-level implementation of the TCP/IP
protocol suite solved the network performance problems that arose when the Unix
single OS-Server was responsible for all network communication. The performance
achieved is roughly the same as that of a monolithic BSD system [62].

More recently, the application device channel abstraction, developed at the
University of Arizona, provides application programs with direct access to the
experimental Osiris ATM board [30] used in the Aurora Gigabit testbed. Other
techniques that are developed for the Osiris board to reduce the processing overhead

2.2 Motivation and related work 21

are the pathfinder multiplexer [4], which is implemented in hardware and the fbufs
cross-domain buffer management [29].

At HP Bristol a mechanism has been developed for the Jetstream LAN [34] where
applications can reserve buffer pools on the Afterburner [26] board. When data
arrives on a virtual circuit associated with an application, data is transferred directly
into the correct pool. However, the application cannot access these buffers directly:
it is always forced to go through the kernel with a copy operation to retrieve the data
or provide data for sending. Only the kernel-based protocols could be made aware of
the buffer pools and exploit them fully.

In the parallel computing community some machines (e.g., Thinking Machines
CM-5, Meiko CS-2, IBM SP-2, Cray T3D) provide user-level access to the
network, but the solutions rely on custom hardware and are somewhat constrained
to the controlled environment of a multiprocessor. On the other hand, given that
these parallel machines resemble clusters of workstations ever more closely, it is
reasonable to expect that some of the concepts developed in these designs can indeed
be transferred to workstations.

Successive simplifications and generalizations of shared memory is leading to a
slightly different type of solution in which the network can be accessed indirectly
through memory accesses. Shrimp [12] uses custom NIs to allow processes to
establish channels connecting virtual memory pages on two nodes such that data
written into a page on one side gets propagated automatically to the other side.
Thekkath [98] proposes a memory-based network access model that separates
the flow of control from the data flow. The remote memory operations have been
implemented by emulating unused opcodes in the MIPS instruction set. While
the use of a shared memory abstraction allows a reduction of the communication
overheads, it is not clear how to efficiently support legacy protocols, long data
streams, or remote procedure call.

2.2.6 U-Net design goals

Experience with network interfaces in parallel machines made it clear that providing
user-level access to the network in U-Net is the best avenue towards offering
communication latencies and bandwidths that are mainly limited by the network
fabric and that, at the same time, offer full flexibility in protocol design and in the
integration of protocol, buffering, and appropriate higher communication layers. The
many efforts in developing fast implementations of TCP and other internetworking

22 U-Net: A User-Level Network Interface for Parallel and Distributed Computing

protocols clearly affirm the relevance of these protocols in high-performance
networking and thus any new network interface proposal must be able to support
these protocols effectively (which is typically not the case in parallel machines, for
example).

The three aspects that set U-Net apart from the proposals discussed above are:

• the focus on low latency and high bandwidth using small messages,
• the emphasis on protocol design and integration flexibility, and

Figure 2.2. U-Net building blocks.
a) Endpoints serve as an application’s handle into the network, communication
segments are regions of memory that hold message data, and message queues (send/
recv/free queues) hold descriptors for messages that are to be sent or that have been
received.
b) Regular endpoints are serviced by the U-Net network interface directly. Emulated
endpoints are serviced by the kernel and consume no additional network interface
resources but cannot offer the same level of performance.

recv
queue

free
queue

send
queuecommunication segment

U-Net Endpoint

U-Net NI

a)

b)

Kernel

Endpoint
Emulated

Endpoint

Endpoint

Endpoint Emulated

application 1 application 2 application 3

OS

trap
tr
ap

2.2 Motivation and related work 23

• the desire to meet the first two goals on widely available standard workstations
using off-the-shelf communication hardware.

2.3 The user-level network interface architecture

The U-Net user-level network interface architecture virtualizes the interface in such
a way that a combination of operating system and hardware mechanisms can provide
every process1 the illusion of owning the interface to the network. Depending on
the sophistication of the actual hardware, the U-Net components manipulated by
a process may correspond to real hardware in the NI, to memory locations that are
interpreted by the OS, or to a combination of the two. The role of U-Net is limited to
multiplexing the actual NI among all processes accessing the network and enforcing
protection boundaries as well as resource consumption limits. In particular, a process
has control over both the contents of each message and the management of send and
receive resources, such as buffers.

2.3.1 Sending and receiving messages

The U-Net architecture is composed of three main building blocks, shown in
Figure 2.2: endpoints serve as an application’s handle into the network and contain
communication segments which are regions of memory that hold message data, and
message queues which hold descriptors for messages that are to be sent or that have
been received. Each process that wishes to access the network first creates one or
more endpoints, then associates a communication segment and a set of send, receive,
and free message queues with each endpoint.

To send a message, a user process composes the data in the communication segment
and pushes a descriptor for the message onto the send queue. At that point, the
network interface is expected to pick the message up and insert it into the network.
If the network is backed-up, the network interface will simply leave the descriptor
in the queue and eventually exert backpressure to the user process when the queue
becomes full. The NI provides a mechanism to indicate whether a message in the
queue has been injected into the network, typically by setting a flag in the descriptor;
this indicates that the associated send buffer can be reused.

Incoming messages are demultiplexed by U-Net based on their destination: the data
is transferred into the appropriate communication segment and a message descriptor

1. The terms “process” and “application” are used interchangeably to refer to arbitrary
unprivileged UNIX processes.

24 U-Net: A User-Level Network Interface for Parallel and Distributed Computing

is pushed onto the corresponding receive queue. The receive model supported by U-
Net is either polling or event driven: the process can periodically check the status of
the receive queue, it can block waiting for the next message to arrive (using a UNIX
select call), or it can register an upcall2 with U-Net. The upcall is used by U-Net
to signal that the state of the receive queue satisfies a specific condition. The two
conditions currently supported are: the receive queue is non-empty and the receive
queue is almost full. The first one allows event driven reception while the second
allows processes to be notified before the receive queue overflows. U-Net does not
specify the nature of the upcall which could be a UNIX signal handler, a thread, or a
user-level interrupt handler.

In order to amortize the cost of an upcall over the reception of several messages it is
important that a U-Net implementation allows all messages pending in the receive
queue to be consumed in a single upcall. Furthermore, a process must be able to
disable upcalls cheaply in order to form critical sections of code that are atomic
relative to message reception.

2.3.2 Multiplexing and demultiplexing messages

U-Net uses a tag in each incoming message to determine its destination endpoint and
thus the appropriate communication segment for the data and message queue for the
descriptor. The exact form of this message tag depends on the network substrate; for
example, in an ATM network the ATM virtual channel identifiers (VCIs) may be used.
In any case, a process registers these tags with U-Net by creating communication
channels: on outgoing messages the channel identifier is used to place the correct
tag into the message (as well as possibly the destination address or route) and on
incoming messages the tag is mapped into a channel identifier to signal the origin of
the message to the application.

U-Net’s notion of a message tag is similar to the idea used in parallel machines of
including a parallel-process id in the header of messages. The message tag used in
U-Net is more general, however, in that it allows communication between arbitrary
processes, whereas a parallel-process id tag only serves communication within a
parallel program running in a closed environment.

An operating system service needs to assist the application in determining the correct
tag to use based on a specification of the destination process and the route between

2. The term “upcall” is used in a very general sense to refer to a mechanism which allows
U-Net to signal an asynchronous event to the application.

2.3 The user-level network interface architecture 25

the two nodes. The operating system service will assist in route discovery, switch-
path setup and other (signalling) tasks that are specific for the network technology
used. The service will also perform the necessary authentication and authorization
checks to ensure that the application is allowed access to the specific network
resources and that there are no conflicts with other applications. After the path to
the peer has been determined and the request has passed the security constraints,
the resulting tag will be registered with U-Net such that the latter can perform its
message multiplexing/demultiplexing function. A channel identifier is returned to
the requesting application to identify the communication channel to the destination.

Endpoints and communication channels together allow U-Net to enforce protection
boundaries among multiple processes accessing the network and, depending on how
routes are allocated, may allow it to extend these boundaries across the network.
This is achieved using two mechanisms:

• endpoints, communication segments, and message queues are only accessible
by the owning process,

• outgoing messages are tagged with the originating endpoint address and
incoming messages are demultiplexed by U-Net and only delivered to the
correct destination endpoint.

Thus an application cannot interfere with the communication channels of another
application on the same host. In addition, if the set-up of routes is carefully controlled
by the collection of operating systems in a cluster of hosts, then this protection can
be extended across the network such that no application can directly interfere with
communication streams between other parties.

2.3.3 Zero-copy vs. true zero-copy

U-Net attempts to support a “true zero copy” architecture in which data can be sent
directly out of the application data structures without intermediate buffering and
where the NI can transfer arriving data directly into user-level data structures as well.
In consideration of current limitations on I/O bus addressing and on NI functionality,
the U-Net architecture specifies two levels of sophistication: a base-level which
requires an intermediate copy into a networking buffer and corresponds to what is
generally referred-to as zero copy, and a direct-access U-Net which supports true
zero copy without any intermediate buffering.

26 U-Net: A User-Level Network Interface for Parallel and Distributed Computing

The base-level U-Net architecture matches the operation of existing network
adapters by providing a reception model based on a queue of free buffers that are
filled by U-Net as messages arrive. It also regards communication segments as a
limited resource and places an upper bound on their size such that it is not feasible to
regard communication segments as memory regions in which general data structures
can be placed. This means that for sending, each message must be constructed in a
buffer in the communication segment and on reception data is deposited in a similar
buffer. This corresponds to what is generally called “zero-copy”, but which in truth
represents one copy, namely between the application’s data structures and a buffer in
the communication segment.3

Direct-access U-Net supports true zero copy protocols by allowing communication
segments to span the entire process address space and by letting the sender specify
an offset within the destination communication segment at which the message data
is to be deposited directly by the NI.

The U-Net implementations described here support the base- level architecture
because the hardware available does not support the memory mapping required for
the direct-access architecture. In addition, the bandwidth of the ATM network used
does not warrant the enhancement because the copy overhead is not a dominant
cost.

2.3.4 Base-level U-Net architecture

The base-level U-Net architecture supports a queue-based interface to the network
which stages messages in a limited-size communication segment on their way
between application data structures and the network. The communication segments
are allocated to buffer message data and are typically pinned to physical memory.
In the base-level U-Net architecture send and receive queues hold descriptors
with information about the destination, respectively origin, endpoint addresses of
messages, their length, as well as offsets within the communication segment to the
data. Free queues hold descriptors for free buffers that are made available to the
network interface for storing arriving messages.

3. True zero copy is achieved with base-level U-Net when there is no need for the application
to copy the information received to a data structure for later reference. In that case data can be
accessed in the buffers and the application can take action based on this information without
the need for a copy operation. A simple example of this is the reception of acknowledgment
messages that are used to update some counters but do not need to be copied into longer term
storage.

2.3 The user-level network interface architecture 27

The management of send buffers is entirely up to the process: the U-Net architecture
does not place any constraints on the size or number of buffers nor on the allocation
policy used. The only restrictions are that buffers lie within the communication
segment and that they be properly aligned for the requirements of the network
interface (e.g., to allow DMA transfers). The process also provides receive buffers
explicitly to the NI via the free queue but it cannot control the order in which these
buffers are filled with incoming data.

As an optimization for small messages—which are used heavily as control messages
in protocol implementation—the send and receive queues may hold entire small
messages in descriptors (i.e., instead of pointers to the data). This avoids buffer
management overheads and can improve the round-trip latency substantially. The
size of these small messages is implementation dependent and typically reflects the
properties of the underlying network.

2.3.5 Kernel emulation of U-Net

Communication segments and message queues are generally scarce resources and
it is often impractical to provide every process with U-Net endpoints. Furthermore
many applications (such as telnet) do not really benefit from that level of
performance. Yet, for software engineering reasons it may well be desirable to use a
single interface to the network across all applications. The solution to this dilemma
is to provide applications with kernel-emulated U- Net endpoints. To the application
these emulated endpoints look just like regular ones, except that the performance
characteristics are quite different because the kernel multiplexes all of them onto a
single real endpoint.

2.3.6 Direct-Access U-Net architecture

Direct-access U-Net is a strict superset of the base-level architecture. It allows
communication segments to span the entire address space of a process and it allows
senders to specify an offset in the destination communication segment at which the
message data is to be deposited. This capability allows message data to be transferred
directly into application data structures without any intermediate copy into a buffer.
While this form of communication requires quite some synchronization between
communicating processes, parallel language implementations, such as Split-C, can
take advantage of this facility.

28 U-Net: A User-Level Network Interface for Parallel and Distributed Computing

The main problem with the direct-access U-Net architecture is that it is difficult
to implement on current workstation hardware: the NI must essentially contain an
MMU that is kept consistent with the main processor’s and the NI must be able to
handle incoming messages which are destined to an unmapped virtual memory page.
Thus, in essence, it requires (i) the NI to include some form of memory mapping
hardware, (ii) all of (local) physical memory to be accessible from the NI, and (iii)
page faults on message arrival to be handled appropriately.

At a more basic hardware level, the limited number of address lines on most I/O
buses makes it impossible for an NI to access all of physical memory such that even
with an on-board MMU it is very difficult to support arbitrary-sized communication
segments.

2.4 Two U-Net implementations

The U-Net architecture has been implemented on SPARCstations running
SunOS 4.1.3 and using two generations of Fore Systems ATM interfaces. The first
implementation uses the Fore SBA- 100 interface and is very similar to an Active
Messages implementation on that same hardware described elsewhere [36]. The
second implementation uses the newer Fore SBA-200 interface and reprograms
the on-board i960 processor to implement U-Net directly. Both implementations
transport messages in AAL5 packets and take advantage of the ATM virtual channel
identifiers in that all communication between two endpoints is associated with a
transmit/receive VCI pair4.

2.4.1 U-Net using the SBA-100

The Fore Systems SBA-100 interface operates using programmed I/O to store cells
into a 36-cell deep output FIFO and to retrieve incoming cells from a 292-cell deep

Operation Time (µs)
1-way send and receiver across the
switch (at trap level)

21

Send overhead (AAL5) 7
Receive overhead (AAL5) 5
Total (one way) 33

Table 2.1. Cost breakup for a single-roundtrip (AAL5).

4. ATM is a connection-oriented network that uses virtual channel identifiers (VCIs) to name
one-way connections.

2.4 Two U-Net implementations 29

input FIFO. The only function performed in hardware beyond serializing cells
onto the fiber is ATM header CRC calculation. In particular, no DMA, no payload
CRC calculation5, and no segmentation and reassembly of multi-cell packets are
supported by the interface. The simplicity of the hardware requires the U-Net
architecture to be implemented in the kernel by providing emulated U-Net endpoints
to the applications as described in the section on kernel emulation.

The implementation consists of a loadable device driver and a user-level library
implementing the AAL5 segmentation and reassembly (SAR) layer. Fast traps into
the kernel are used to send and receive individual ATM cells: each is carefully
crafted in assembly language and is quite small (28 and 43 instructions for the send
and receive traps, respectively).

The implementation was evaluated on two 60Mhz SPARCstation-20s running
SunOS 4.1.3 and equipped with SBA-100 interfaces. The ATM network consists
of 140Mbit/s TAXI fibers leading to a Fore Systems ASX-200 switch. The end-to-
end round trip time of a single-cell message is 66µs. A consequence of the lack of
hardware to compute the AAL5 CRC is that 33% of the send overhead and 40% of
the receive overhead in the AAL5 processing is due to CRC computation. The cost
breakup is shown in Table 2.1. Given the send and receive overheads, the bandwidth
is limited to 6.8MBytes/s for packets of 1KBytes.

2.4.2 U-Net using the SBA-200

The second generation of ATM network interfaces produced by Fore Systems, the
SBA-200, is substantially more sophisticated than the SBA-100 and includes an
on-board processor to accelerate segmentation and reassembly of packets as well
as to transfer data to/from host memory using DMA. This processor is controlled
by firmware which is downloaded into the on-board RAM by the host. The U-Net
implementation described here uses custom firmware to implement the base-level
architecture directly on the SBA- 200.

The SBA-200 consists of a 25Mhz Intel i960 processor, 256Kbytes of memory, a
DMA-capable I/O bus (Sbus) interface, a simple FIFO interface to the ATM fiber
(similar to the SBA-100), and an AAL5 CRC generator. The host processor can map
the SBA-200 memory into its address space in order to communicate with the i960
during operation.

5. The card calculates the AAL3/4 checksum over the payload but not the AAL5 CRC
required here.

30 U-Net: A User-Level Network Interface for Parallel and Distributed Computing

The experimental set-up used consists of five 60Mhz SPARCStation-20 and
three 50Mhz SPARCStation-10 workstations connected to a Fore Systems ASX-200
ATM switch with 140Mbit/s TAXI fiber links.

Fore firmware operation and performance

The complete redesign of the SBA-200 firmware for the U-Net implementation was
motivated by an analysis of Fore’s original firmware which showed poor performance.
The apparent rationale underlying the design of Fore’s firmware is to off-load the
specifics of the ATM adaptation layer processing from the host processor as much
as possible. The kernel-firmware interface is patterned after the data structures used
for managing BSD mbufs and System V streams bufs. It allows the i960 to traverse
these data structures using DMA in order to determine the location of message data,
and then to move it into or out of the network rather autonomously.

The performance potential of Fore’s firmware was evaluated using a test program
which maps the kernel-firmware interface data structures into user space and
manipulates them directly to send raw AAL5 PDUs over the network. The measured
round-trip time was approximately 160µs while the maximum bandwidth achieved
using 4Kbyte packets was 13Mbytes/sec. This performance is rather discouraging:
the round-trip time is almost 3 times larger than using the much simpler and cheaper
SBA-100 interface, and the bandwidth for reasonable sized packets falls short of the
15.2Mbytes/sec peak fiber bandwidth.

A more detailed analysis showed that the poor performance can mainly be attributed
to the complexity of the kernel-firmware interface. The message data structures are
more complex than necessary and having the i960 follow linked data structures on
the host using DMA incurs high latencies. Finally, the host processor is much faster
than the i960 and so off-loading can easily backfire.

U-Net firmware

The base-level U-Net implementation for the SBA-200 modifies the firmware to
add a new U-Net compatible interface6. The main design considerations for the new
firmware were to virtualize the host-i960 interface such that multiple user processes

6. For software engineering reasons, the new firmware’s functionality is a strict superset of
Fore’s such that the traditional networking layers can still function while new applications
can use the faster U-Net.

2.4 Two U-Net implementations 31

can communicate with the i960 concurrently, and to minimize the number of host
and i960 accesses across the I/O bus.

The new host-i960 interface reflects the base-level U-Net architecture directly.
The i960 maintains a data structure holding the protection information for all open
endpoints. Communication segments are pinned to physical memory and mapped
into the i960’s DMA space, receive queues are similarly allocated such that the host
can poll them without crossing the I/O bus, while send and free queues are actually
placed in SBA-200 memory and mapped into user-space such that the i960 can poll
these queues without DMA transfers.

The control interface to U-Net on the i960 consists of a single i960-resident
command queue that is only accessible from the kernel. Processes use the system
call interface to the device driver that implements the kernel resident part of U-Net.
This driver assists in providing protection by validating requests for the creation of
communication segments and related endpoints, and by providing a secure interface

0

50

100

150

200

250

0

2
5
6

5
1
2

7
6
8

1
0
2
4

Raw U-Net

UAM

UAM xfer
r
o
u
n
d
t
r
i
p

i
n

m
i
c
r
o
s
e
c
o
n
d
s

message size in bytes

60

70

80

90

100

110

120

130

0 12 24 36 48 60

R
a
w

U
-
N
e
t

UAM

UAM
xfer

Figure 2.3. U-Net round-trip times as a function of message size. The Raw U-Net
graph shows the round-trip times for a simple ping-pong benchmark using the U-Net
interface directly. The small graph highlights the performance on small messages.
The UAM line measures the performance of U-Net Active Messages using reliable
single-cell requests and replies whereas UAM xfer uses reliable block transfers of
arbitrary size.

32 U-Net: A User-Level Network Interface for Parallel and Distributed Computing

between the operating system service that manages the multiplexing tags and the U-
Net channel registration with the i960. The tags used for the ATM network consist
of a VCI pair that implements full duplex communication (ATM is a connection
oriented network and requires explicit connection set-up even though U-Net itself
is not connection oriented). The communication segments and message queues for
distinct endpoints are disjoint and are only present in the address space of the process
that creates the endpoint.

In order to send a single protocol data unit (PDU), the host uses a double word store
to the i960-resident transmit queue to provide a pointer to a transmit buffer, the
length of the packet and the channel identifier to the i960. Single cell packet sends
are optimized in the firmware because many small messages are less than a cell in
size. For larger sized messages, the host-i960 DMA uses three 32-byte burst transfers
to fetch two cells at a time and computes the AAL5 CRC using special SBA-200
hardware.

0

20

40

60

80

100

120

140

0

5
1
2

1
0
2
4

1
5
3
6

2
0
4
8

2
5
6
0

3
0
7
2

3
5
8
4

4
0
9
6

4
6
0
8

5
1
2
0

0

2

4

6

8

10

12

14

16AAL5 limit

 Raw
U-Net UAM

store/get

M
B
i
t
s
/
s
e
c M

B
y
t
e
s
/
s
e
c

message size in bytes

Figure 2.4. U-Net bandwidth as a function of message size. The AAL-5 limit curve
represents the theoretical peak bandwidth of the fiber (the sawtooths are caused by the
quantization into 48-byte cells). The Raw U-Net measurement shows the bandwidth
achievable using the U-Net interface directly, while UAM store/get demonstrate the
performance of reliable U-Net Active Messages block transfers.

2.4 Two U-Net implementations 33

To receive cells from the network, the i960 periodically polls the network input
FIFO. Receiving single cell messages is special- cased to improve the round-trip
latency for small messages. The single-cell messages are directly transferred into
the next receive-queue entry which is large enough to hold the entire message—this
avoids buffer allocation and extra DMA for the buffer pointers. Longer messages
are transferred to fixed-size receive buffers whose offsets in the communication
segment are pulled off the i960-resident free queue. When the last cell of the packet
is received, the message descriptor containing the pointers to the buffers is DMA-ed
into the next receive queue entry.

Performance

Figure 2.3 shows the round trip times for messages up to 1K bytes, i.e., the time for a
message to go from one host to another via the switch and back. The round-trip time
is 65µs for a one-cell message due to the optimization, which is rather low, but not
quite at par with parallel machines, like the CM-5, where custom network interfaces
placed on the memory bus (Mbus) allow round- trips in 12µs. Using a UNIX signal
to indicate message arrival instead of polling adds approximately another 30µs on
each end. Longer messages start at 120µs for 48 bytes and cost roughly an extra
6µs per additional cell (i.e., 48 bytes). Figure 2.4 shows the bandwidth over the raw
base level U-Net interface in Mbytes/sec for message sizes varying from 4 bytes to
5Kbytes. It is clear from the graph that with packet sizes as low as 800 bytes, the
fiber can be saturated.

Memory requirements

The current implementation pins pages used in communication segments down to
physical memory and maps them into the SBA- 200’s DMA space. In addition, each
endpoint has its own set of send, receive and free buffer queues, two of which reside
on the i960 and are mapped to user-space. The number of distinct applications that
can be run concurrently is therefore limited by the amount of memory that can be
pinned down on the host, the size of the DMA address space and, the i960 memory
size. Memory resource management is an important issue if access to the network
interface is to be scalable. A reasonable approach would be to provide a mechanism
by which the i960, in conjunction with the kernel, would provide some elementary
memory management functions, which would allow dynamic allocation of the DMA
address space to the communication segments of active user processes. The exact

34 U-Net: A User-Level Network Interface for Parallel and Distributed Computing

mechanism to achieve such an objective without compromising the efficiency and
simplicity of the interface remains a challenging problem.

2.5 U-Net Active Messages implementation and performance

The U-Net Active Messages (UAM) layer is a prototype that conforms to the
Generic Active Messages (GAM) 1.1 specification [24]. Active Messages is a
mechanism that allows efficient overlapping of communication with computation in
multiprocessors. Communication using Active Messages is in the form of requests
and matching replies. An Active Message contains the address of a handler that gets
called on receipt of the message followed by upto four words of arguments. The
function of the handler is to pull the message out of the network and integrate it into
the ongoing computation. A request message handler may or may not send a reply
message. However, in order to prevent live-lock, a reply message handler cannot
send another reply.

Generic Active Messages consists of a set of primitives that higher-level layers can
use to initialize the GAM interface, send request and reply messages and perform
block gets and stores. GAM provides reliable message delivery, which implies that
a message that is sent will be delivered to the recipient barring network partitions,
node crashes, or other catastrophic failures.

2.5.1 Active Messages implementation

The UAM implementation consists of a user level library that exports the GAM
1.1 interface and uses the U-Net interface. The library is rather simple and mainly
performs the flow-control and retransmissions necessary to implement reliable
delivery and the Active Messages-specific handler dispatch.

Flow Control Issues

In order to ensure reliable message delivery, UAM uses a window-based flow
control protocol with a fixed window size (w). Every endpoint preallocates a total
of 4w transmit and receive buffers for every endpoint it communicates with. This
storage allows w requests and w replies to be kept in case retransmission is needed
and it allows 2w request and reply messages to arrive without buffer overflow.

Request messages which do not generate a reply are explicitly acknowledged
and a standard “go back N” retransmission mechanism is used to deal with lost
requests or replies. The flow control implemented here is an end-to-end flow control

2.5 U-Net Active Messages implementation and performance 35

mechanism which does not attempt to minimize message losses due to congestion
in the network.

Sending and Receiving

To send a request message, UAM first processes any outstanding messages in the
receive queue, drops a copy of the message to be sent into a pre-allocated transmit
buffer and pushes a descriptor onto the send queue. If the send window is full, the
sender polls for incoming messages until there is space in the send window or until
a time-out occurs and all unacknowledged messages are retransmitted. The sending
of reply messages or explicit acknowledgments is similar except that no flow-control
window check is necessary.

The UAM layer receives messages by explicit polling. On message arrival, UAM
loops through the receive queue, pulls the messages out of the receive buffers,
dispatches the handlers, sends explicit acknowledgments where necessary, and frees
the buffers and the receive queue entries.

2.5.2 Active Messages micro-benchmarks

Four different micro-benchmarks were run to determine the round trip times and
transfer bandwidths for single cell messages as well as block transfers.

1. The single-cell round trip time was estimated by repeatedly sending a single cell
request message with 0 to 32 bytes of data to a remote host specifying a handler
that replies with an identical message. The measured round trip times are shown
in Figure 2.3 and start at 71µs which suggests that the UAM overhead over raw
U-Net is about 6µs. This includes the costs to send a request message, receive it,
reply and receive the reply.

2. The block transfer round-trip time was measured similarly by sending messages of
varying sizes back and forth between two hosts. Figure 2.3 shows that the time
for an N-byte transfer is roughly 135µs + N*0.2µs. The per-byte cost is higher
than for Raw U-Net because each one-way UAM transfer involves two copies
(from the source data structure into a send buffer and from the receive buffer into
the destination data structure).

3. The block store bandwidth was measured by repeatedly storing a block of a
specified size to a remote node in a loop and measuring the total time taken.
Figure 2.4 shows that the bandwidth reaches 80% of the AAL-5 limit with blocks

36 U-Net: A User-Level Network Interface for Parallel and Distributed Computing

of about 2Kbytes. The dip in performance at 4164 bytes is caused by the fact that
UAM uses buffers holding 4160 bytes of data and thus additional processing time
is required. The peak bandwidth at 4Kbytes is 14.8Mbytes/s.

The block get bandwidth was measured by sending a series of requests to a remote
node to fetch a block of specified size and waiting until all blocks arrive. The block
get performance is nearly identical to that of block stores.

2.5.3 Summary

The performance of Active Messages shows that the U-Net interface is well suited
for building higher-level communication paradigms used by parallel languages and
run-times. The main performance penalty of UAM over raw U-Net is due to the
cost of implementing reliability and removing the restrictions of the communication
segment size: UAM must send acknowledgment messages and it copies data into and
out of buffers in the communication segment. For large transfers there is virtually no
bandwidth loss due to the extra copies, but for small messages the extra overhead of
the copies and the acknowledgments is noticeable.

Overall, the performance of UAM is so close to raw U-Net that using the raw
interface is only worthwhile if control over every byte in the AAL-5 packets is
required (e.g., for compatibility) or if significant benefits can be achieved by using
customized retransmission protocols.

2.6 Split-C application benchmarks

Split-C [22] is a simple parallel extension to C for programming distributed memory
machines using a global address space abstraction. It is implemented on top of U-Net
Active Messages and is used here to demonstrate the impact of U-Net on applications
written in a parallel language. A Split-C program comprises one thread of control per
processor from a single code image and the threads interact through reads and writes

Machine CPU speed message
overhead

round-trip
latency

network
bandwidth

CM-5 33 MHz Sparc-2 3 µs 12 µs 10 Mb/s
Meiko CS-2 40 MHz SuperSparc 11 µs 25 µs 39 Mb/s
U-Net ATM 50/60 Mhz SuperSparc 6 µs 71 µs 14 Mb/s

Table 2.2. Comparison of CM-5, Meiko CS-2, and U-Net ATM cluster computation
and communication performance characteristics

2.6 Split-C application benchmarks 37

0.0

0.2

0.4

0.6

0.8

1.0

1.2

network

cpu

matrix multiply
128x128 16x16

sample sort, 512K
sml msg

blocks blocks
bulk msg

0

1

2

radix sort
small msg

radix sort
bulk msg

connected
components

conjugate
gradient

CM-5

Meiko
ATM

C
M

-5

M
ei

ko

A
T

M

C
M

-5

M
ei

ko

A
T

M

C
M

-5

M
ei

ko

A
T

M

C
M

-5

M
ei

ko

A
T

M

C
M

-5

M
ei

ko

A
T

M

C
M

-5

M
ei

ko

A
T

M

C
M

-5

M
ei

ko

A
T

M

C
M

-5

M
ei

ko

A
T

M

Figure 2.5. Comparison of seven Split-C benchmarks on the CM-5, the U-Net ATM
cluster, and the Meiko CS-2. The execution times are normalized to the CM-5 and the
computation/communication breakdown is shown for three applications.

38 U-Net: A User-Level Network Interface for Parallel and Distributed Computing

on shared data. The type system distinguishes between local and global pointers
such that the compiler can issue the appropriate calls to Active Messages whenever
a global pointer is dereferenced. Thus, dereferencing a global pointer to a scalar
variable turns into a request and reply Active Messages sequence exchange with the
processor holding the data value. Split-C also provides bulk transfers which map
into Active Message bulk gets and stores to amortize the overhead over a large data
transfer.

Split-C has been implemented on the CM-5, Paragon, SP-1, Meiko CS-2, IBM SP-
2, and Cray T3D supercomputers as well as over U-Net Active Messages. A small
set of application benchmarks is used here to compare the U-Net version of Split-C
to the CM-5 [22,35] and Meiko CS-2 [90] versions. This comparison is particularly
interesting as the CM-5 and Meiko machines are easily characterized with respect
to the U-Net ATM cluster as shown in Table 2.2: the CM-5’s processors are slower
than the Meiko’s and the ATM cluster’s, but its network has lower overheads and
latencies. The CS-2 and the ATM cluster have very similar characteristics with a
slight CPU edge for the cluster and a faster network for the CS-2.

The Split-C benchmark set used here is comprised of seven programs: a blocked
matrix multiply [22], a sample sort optimized for small messages [23], the same sort
optimized to use bulk transfers [90], two radix sorts similarly optimized for small
and bulk transfers, a connected components algorithm [57], and a conjugate gradient
solver. The matrix multiply and the sample sorts have been instrumented to account
for time spent in local computation phases and in communication phases separately
such that the time spent in each can be related to the processor and network
performance of the machines. The execution times for runs on eight processors are
shown in Figure 2.5; the times are normalized to the total execution time on the
CM-5 for ease of comparison. The matrix multiply uses matrices of 4 by 4 blocks
with 128 by 128 double floats each. The main loop multiplies two blocks while it
prefetches the two blocks needed in the next iteration. The results show clearly the
CPU and network bandwidth disadvantages of the CM-5. The sample sort sorts an
array of 4 million 32-bit integers with arbitrary distribution. The algorithm first
samples the keys, then permutes all keys, and finally sorts the local keys on each
processor. The version optimized for small messages packs two values per message
during the permutation phase while the one optimized for bulk transfers presorts
the local values such that each processor sends exactly one message to every other
processor. The performance again shows the CPU disadvantage of the CM-5 and

2.6 Split-C application benchmarks 39

in the small message version that machine’s per-message overhead advantage. The
ATM cluster and the Meiko come out roughly equal with a slight CPU edge for the
ATM cluster and a slight network bandwidth edge for the Meiko. The bulk message
version improves the Meiko and ATM cluster performance dramatically with respect
to the CM-5 which has a lower bulk-transfer bandwidth. The performance of the
radix sort and the connected components benchmarks further demonstrate that the
U-Net ATM cluster of workstations is roughly equivalent to the Meiko CS-2 and
performs worse than the CM-5 in applications using small messages (such as the
small message radix sort and connected components) but better in ones optimized
for bulk transfers.

2.7 TCP/IP and UDP/IP protocols

The success of new abstractions often depends on the level to which they are able
to support legacy systems. In modern distributed systems the IP protocol suite plays
a central role, its availability on many platforms provides a portable base for large
classes of applications. Benchmarks are available to test the various TCP/IP and

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

Fore ATM TCP

Fore ATM UDP

Ethernet UDP

Ethernet TCP

r
o
u
n
d
t
r
i
p

i
n

m
i
c
r
o
s
e
c
o
n
d
s

message size in bytes

Figure 2.6. TCP and UDP round-trip latencies over ATM and Ethernet as a function
of message size

40 U-Net: A User-Level Network Interface for Parallel and Distributed Computing

UDP/IP implementations, with a focus on bandwidth and latency as a function of
application message size.

Unfortunately the performance of kernelized UDP and TCP protocols in SunOS
combined with the vendor supplied ATM driver software has been disappointing: the
maximum bandwidth with UDP is only achieved by using very large transfer sizes
(larger than 8Kbytes), while TCP will not offer more than 55% of the maximum
achievable bandwidth. The observed round-trip latency, however, is even worse: for
small messages the latency of both UDP and TCP messages is larger using ATM than
going over Ethernet: it simply does not reflect the increased network performance.
Figure 2.6 shows the latency of the Fore-ATM based protocols compared to those
over Ethernet.

TCP and UDP modules have been implemented for U-Net using the base-level U-
Net functionality. The low overhead in U-Net protocol processing and the resulting
low-latency form the basis for TCP and UDP performance that is close to the raw
U-Net performance limits presented earlier.

2.7.1 A proof-of-concept implementation

The TCP and UDP over U-Net implementation effort has two goals: first to show that
the architecture is able to support the implementation of traditional protocols and
second to create a test environment in which traditional benchmarks can be used to
put U-Net and kernelized protocol processing into perspective.

By basing the U-Net TCP & UDP implementation on existing software full protocol
functionality [14] and interoperability is maintained. A number of modules that were
not in the critical performance path were not ported to U-Net, namely the ARP and
ICMP modules.

At this point the secure U-Net multiplexor does not have support for the sharing
of a single VCI among multiple channels, making it impossible to implement the
standard IP-over-ATM transport mechanism, which requires a single VCI to carry all
IP traffic for all applications [61]. For IP-over-U-Net a single channel is used to carry
all IP traffic between two applications, which matches the standard processing as
closely as currently possible. This test setup does not use an exclusive U-Net channel
per TCP connection, although that would be simple to implement.

Some issues with IP-over-ATM incompatibility are not yet resolved and are related
to what is the best way to implement proper ICMP handling when targeting IPv6

2.7 TCP/IP and UDP/IP protocols 41

over U-Net. For this an additional level of demultiplexing is foreseen and will
be based on the IPv6 [flow-id, source address] tag when packets arrive over the
dedicated IP-over-ATM VCI. Packets for which the tag does not resolve to a local
U-Net destination will be transferred to the kernel communication endpoint for
generalized processing and possibly triggering ICMP handling. This will yield an
implementation that is fully interoperable with other IP-over- ATM implementations
and will cover both local and wide-area communication.

2.7.2 The protocol execution environment

The TCP/IP suite of protocols is frequently considered to be ill- suited for use over
high-speed networks such as ATM. However, experience has shown that the core of
the problems with TCP/IP performance usually lie in the particular implementations
and their integration into the operating system and not with the protocols themselves.
This is indeed the case with the Fore driver software which tries to deal with the
generic low-performance buffer strategies of the BSD based kernel.

Using U-Net, the protocol developer does not experience a restrictive environment
(like the kernel) where the use of generalized buffer and timer mechanisms is
mandatory and properties of network and application can not be incorporated in the

0

20

40

60

80

100

120

140

0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

0

2

4

6

8

10

12

14

16U-Net UDP

Fore UDP
sender

Fore UDP
receiverM

B
i
t
s
/
s
e
c

M
B
y
t
e
s
/
s
e
c

message size in bytes

Figure 2.7. UDP bandwidth as a function of message size.

42 U-Net: A User-Level Network Interface for Parallel and Distributed Computing

protocol operation. U-Net gives the developer the freedom to design protocols and
protocol support software such as timer and buffer mechanisms that are optimized
for the particular application and the network technology used. This yields a toolbox
approach to protocol and application construction where designers can select from a
variety of protocol implementations.

As a result, U-Net TCP and UDP deliver the low-latency and high bandwidth
communication expected of ATM networks without resorting to excessive buffering
schemes or the use of large network transfer units, while maintaining interoperability
with non-U-Net implementations.

2.7.3 Message handling and staging

One of the limiting factors in the performance of kernel-based protocols is the
bounded kernel resources available, which need to be shared between many
potential network-active processes. By implementing protocols at user-level,
efficient solutions are available for problems which find their origin in the use of the
operating system kernel as the single protocol processing unit. Not only does U-Net
remove all copy operations from the protocol path but also it allows for the buffering
and staging strategies to depend on the resources of the application instead of the
scarce kernel network buffers.

An example is the restricted size of the socket receive buffer (max. 52Kbytes in
SunOS), which has been a common problem with the BSD kernel communication
path: already at Ethernet speeds buffer overrun is the cause of message loss in
the case of high bandwidth UDP data streams. By removing this restriction, the
resources of the actual recipient, instead of those of the intermediate processing unit,
now become the main control factor and this can be tuned to meet application needs
and be efficiently incorporated into the end-to-end flow-control mechanisms.

The deficiencies in the BSD kernel buffer (mbuf) mechanism have been identified
long ago [19] and the use of high-performance networks seem to amplify the impact of
this mechanism even more, especially in combination with the Fore driver buffering
scheme. Figure 2.7 shows the UDP throughput with the saw-tooth behavior that is
caused by the buffer allocation scheme where first large 1Kbyte buffers are filled
with data and the remainder, if less than 512 bytes, is copied into small mbufs of 112
bytes each. This allocation method has a strong degrading effect on the performance
of the protocols because the smaller mbufs do not have a reference count mechanism
unlike the large cluster buffers.

2.7 TCP/IP and UDP/IP protocols 43

Although an alternative kernel buffering mechanism would significantly improve the
message handling in the kernel and certainly remove the saw-tooth behavior seen in
Figure 2.7, it is questionable if it will contribute as significantly to latency reduction
as, for example, removing kernel-application copies entirely [54] .

Base-level U-Net provides a scatter-gather message mechanism to support efficient
construction of network buffers. The data blocks are allocated within the receive and
transmit communication segments and a simple reference count mechanism added
by the TCP and UDP support software allows them to be shared by several messages
without the need for copy operations.

2.7.4 Application controlled flow-control and feedback

One of the major advantages of integrating the communication subsystem into
the application is that the application can be made aware of the state of the
communication system and thus can take application specific actions to adapt itself
to changing circumstances. Kernel based communication systems often have no
other facility than to block or deny a service to an application, without being able to
communicate any additional information.

At the sending side, for example, feedback can be provided to the application about
the state of the transmission queues and it is simple to establish a backpressure
mechanism when these queues reach a high-water mark. Among other things, this
overcomes problems with the current SunOS implementation, which will drop
random packets from the device transmit queue if there is overload without notifying
the sending application.

Other protocol specific information such as retransmission counters, round trip
timers, and buffer allocation statistics are all readily available to the application
and can be used to adapt communication strategies to the status of the network.
The receive window under U-Net/TCP, for example, is a direct reflection of the
buffer space at the application and not at the intermediate processing unit, allowing
for a close match between application level flow control and the receive-window
updates.

2.7.5 IP

The main functionality of the IP protocol is to handle the communication path and to
adapt messages to the specifics of the underlying network. On the receiving side IP-
over-U-Net is liberal in the messages that it accepts, and it implements most of the

44 U-Net: A User-Level Network Interface for Parallel and Distributed Computing

IP functionality, except for the forwarding of messages and the interfacing to ICMP.
A transport protocol is selected and the U-Net demultiplex information is passed on
to the transport module to possibly assist in destination selection.

On the sending side the functionality of the IP protocol is reduced to mapping messages
into U-Net communication channels. Because of this reduced functionality, this side
of the protocol is collapsed into the transport protocols for efficient processing.

IP over U-Net exports an MTU of 9Kbytes and does not support fragmentation on
the sending side as this is known to be a potential source for wasting bandwidth
and triggering packet retransmissions [55]. TCP provides its own fragmentation
mechanism and because of the tight coupling of application and protocol module
it is relatively simple for the application to assist UDP in achieving the same
functionality.

2.7.6 UDP

The core functionality of UDP is twofold: an additional layer of demultiplexing over
IP based on port identifiers and some protection against corruption by adding a 16 bit
checksum on the data and header parts of the message. In the U-Net implementation
the demultiplexing is simplified by using the source endpoint information passed-

0

20

40

60

80

100

120

140

0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

0

2

4

6

8

10

12

14

16
U-Net TCP

Fore TCP

M
B
i
t
s
/
s
e
c

M
B
y
t
e
s
/
s
e
c

message size in bytes

Figure 2.8. TCP bandwidth as a function of data generated by the application

2.7 TCP/IP and UDP/IP protocols 45

on by U-Net. A simple caching scheme of the control data structures (pcb) per
incoming channel allows for significant processing speedups, as described by [74].
The checksum adds a processing overhead of 1µs per 100 bytes on a SPARCStation
20 and can be combined with the copy operation that retrieves the data from the
communication segment. It can also be switched off by applications that use data
protection at a higher level or are satisfied with the 32-bit CRC at the U-Net AAL5
level.

The performance of U-Net UDP is compared to the kernel based UDP in Figures 2.7
and 2.9. The first shows the achieved bandwidth while the latter plots the end-to-end
round-trip latency as a function of message size. For the kernel UDP the bandwidth
is measured as perceived at the sender and as actually received: the losses can all be
attributed to kernel buffering problems at both sending and receiving hosts. With the
same experimental set-up, U-Net UDP does not experience any losses and only the
receive bandwidth is shown.

2.7.7 TCP

TCP adds two properties that make it an attractive protocol to use in a number
of settings: reliability and flow control. Reliability is achieved through a simple

0

200

400

600

800

1000

1200

1400

1600

0

20
0

40
0

60
0

80
0

10
00

Fore UDP

Fore TCP

U-Net UDP

U-Net TCP

r
o
u
n
d
t
r
i
p

i
n

m
i
c
r
o
s
e
c
o
n
d
s

message size in bytes

Figure 2.9. UDP and TCP round-trip latencies as a function of message size

46 U-Net: A User-Level Network Interface for Parallel and Distributed Computing

acknowledgment scheme and flow control through the use of advertised receive
windows.

The performance of TCP does not depend as much on the rate with which the data
can be pushed out on the network as on the product of bandwidth and round-trip
time, which indicates the amount of buffer space needed to maintain a steady reliable
high speed flow. The window size indicates how many bytes the module can send
before it has to wait for acknowledgments and window updates from the receiver. If
the updates can be returned to the sender in a very timely manner only a relatively
small window is needed to achieve the maximum bandwidth. Figure 2.8 shows that
in most cases U-Net TCP achieves a 14-15 Mbytes/sec bandwidth using an 8Kbyte
window, while even with a 64K window the kernel TCP/ATM combination will not
achieve more than 9-10 Mbytes/sec. The round-trip latency performance of both
kernel and U-Net TCP implementations is shown in Figure 2.9 and highlights the
fast U-Net TCP round-trip, which permits the use of a small window.

2.7.8 TCP tuning

TCP over high-speed networks has been studied extensively, especially over wide-
area networks [50] and several changes and extensions have been proposed to make
TCP function correctly in settings where a relatively high delay can be expected.
These changes need to be incorporated into the U-Net TCP implementation if it is to
function across wide-area links where the high latencies no longer permit the use of
small windows.

It has been argued lately that the same changes are also needed for the local area case
in order to address the deficiencies that occur because of the high latency of the ATM
kernel software. U-Net TCP shows that acceptable performance can be achieved in
LAN and MAN settings without any modifications to the general algorithms, without
the use of large sequence numbers, and without extensive buffer reservations.

Tuning some of the TCP transmission control variables is not without risk when
running over ATM [86] and should be done with extreme caution. The low latency
of U-Net allows for very conservative settings, therefore minimizing the risk while
still achieving maximum performance.

An important tuning factor is the size of the segments that are transmitted: using
larger segments it is more likely that the maximum bandwidth can be achieved in
cases where low latency is not available. Romanov & Floyd’s work [86] however

2.7 TCP/IP and UDP/IP protocols 47

has shown that TCP can perform poorly over ATM if the segment size is large, due to
the fact that the underlying cell reassembly mechanism causes the entire segment to
be discarded if a single ATM cell is dropped. A number of solutions are available, but
none provide a mandate to use large segment sizes. The standard configuration for
U-Net TCP uses 2048 byte segments, which is sufficient to achieve the bandwidth
shown in Figure 2.8.

Another popular approach to compensate for high latencies is to grow the window
size. This allows a large amount of data to be outstanding before acknowledgments
are expected back in the hope to keep the communication pipe filled. Unfortunately,
increasing the window has its drawbacks. First of all, the large amount of data
must be buffered to be available for retransmission. Furthermore, there is a risk of
triggering the standard TCP congestion control mechanism whenever there are two
or more segments dropped within a single window. Tuning the window size to a
large value will increase the chance of this situation occurring, resulting in a drain
of the communication pipe and a subsequent slow-start. It seems unavoidable to run
these risks, even in a LAN setting, when the protocol execution environment is not
able to guarantee low-latency communication.

A final tuning issue that needed to be addressed within U-Net TCP is the bad ratio
between the granularity of the protocol timers and the round-trip time estimates. The
retransmission timer in TCP is set as a function of the estimated round trip time,
which is in the range from 60 to 700 microseconds, but the BSD kernel protocol
timer (pr_slow_timeout) has a granularity of 500 milliseconds. When a TCP packet
is discarded because of cell loss or dropped due to congestion, the retransmit timer is
set to a relatively large value compared to the actual round-trip time. To ensure timely
reaction to possible packet loss U-Net TCP uses a 1-millisecond timer granularity,
which is constrained by the reliability of the user- level timing mechanisms.

Protocol Round-trip latency Bandwidth 4K packets
Raw AAL5 65 µs 120 Mbits/s
Active Messages 71 µs 118 Mbits/s
UDP 138 µs 120 Mbits/s
TCP 157 µs 115 Mbits/s
SPlit-C store 72 µs 118 Mbits/s

Table 2.3. U-Net latency and bandwidth summary.

48 U-Net: A User-Level Network Interface for Parallel and Distributed Computing

The BSD implementation uses another timer (pr_fast_timeout) for the transmission
of a delayed acknowledgment in the case that no send data is available for
piggybacking and that a potential transmission deadlock needs to be resolved. This
timer is used to delay the acknowledgment of every second packet for up to 200 ms.
In U-Net TCP it was possible to disable the delay mechanism and thereby achieve
more reliable performance. Disabling this bandwidth conserving strategy is justified
by the low cost of an active acknowledgment, which consists of only a 40-byte TCP/
IP header and thus can be handled efficiently by single-cell U-Net reception. As a
result, the available send window is updated in the timeliest manner possible laying
the foundation for maximal bandwidth exploitation. In wide-area settings, however,
the bandwidth conservation may play a more important role and thus the delayed
acknowledgment scheme may have to be enabled for those situations.

2.8 Summary

The two main objectives of U-Net—to provide efficient low- latency communication
and to offer a high degree of flexibility—have been accomplished. The processing
overhead on messages has been minimized so that the latency experienced
by the application is dominated by the actual message transmission time.
Table 2.3 summarizes the various U-Net latency and bandwidth measurements. U-
Net presents a simple network interface architecture which simultaneously supports
traditional inter-networking protocols as well as novel communication abstractions
like Active Messages.

Using U-Net the round-trip latency for messages smaller than 40 bytes is about
65 µsec. This compares favorably to other research results: the application device
channels (U. of Arizona) achieve 150 µsec latency for single byte messages and
16 byte messages in the HP Jetstream environment have latencies starting at
300 µsec. Both research efforts however use dedicated hardware capable of over
600 Mbits/sec compared to the 140 Mbits/sec standard hardware used for U-Net.

Although the main goal of the U-Net architecture was to remove the processing
overhead to achieve low-latency, a secondary goal, namely the delivery of maximum
network bandwidth, even with small messages, has also been achieved. With
message sizes as small as 800 bytes the network is saturated, while at smaller sizes
the dominant bottleneck is the i960 processor on the network interface.

U-Net also demonstrates that removing the kernel from the communication path can
offer new flexibility in addition to high performance. The TCP and UDP protocols

2.8 Summary 49

implemented using U-Net achieve latencies and throughput close to the raw
maximum and Active Messages round-trip times are only a few microseconds over
the absolute minimum.

The final comparison of the 8-node ATM cluster with the Meiko CS-2 and TMC
CM-5 supercomputers using a small set of Split-C benchmarks demonstrates that
with the right communication substrate networks of workstations can indeed rival
these specially- designed machines. This encouraging result should, however, not
obscure the fact that significant additional system resources, such as parallel process
schedulers and parallel file systems, still need to be developed before the cluster of
workstations can be viewed as a unified resource.

50 PB

Chapter 3

Evolution of the Virtual Interface
Architecture

The introduction of the VIA standard for cluster or system-area networks has opened
the market for commercial user-level network interfaces. The authors examine how
design decisions in prototype interfaces have helped shape this industry standard

3.1 Introduction

To provide a faster path between applications and the network, most researchers
have advocated removing the operating system kernel and its centralized networking
stack from the critical path and creating a user-level network interface. With these
interfaces, designers can tailor the communication layers each process uses to
the demands of that process. Consequently, applications can send and receive
network packets without operating system intervention, which greatly decreases
communication latency and increases network throughput.

Unfortunately, the diversity of approaches and lack of consensus has stalled progress
in refining research results into products—a prerequisite to the widespread adoption
of these interfaces. In 1997, Intel, Microsoft, and Compaq introduced the Virtual
Interface Architecture [33], a proposed standard for cluster or system-area networks.
Products based on the VIA have already surfaced, notably GigaNet’s GNN1000
network interface (http://www.giganet.com). As more products appear, research
into application-level issues can proceed and the technology of user-level network
interfaces should mature. Several prototypes—among them U-Net [37] which
is described in chapter 2 — have heavily influenced the VIA. In this chapter, we
describe the architectural issues and design trade-offs at the core of these prototype
designs, including

52 Evolution of the Virtual Interface Architecture 3.1 Introduction 5352 Evolution of the Virtual Interface Architecture 3.1 Introduction 53

• How to provide applications with direct access to the network interface
hardware, yet retain sufficient protection to ensure that applications can’t
interfere with each other.

• How to design an efficient, yet versatile programming interface. Applications
must be able to access the network interface and still control buffering,
scheduling, and addressing. The programming interface, on the other hand,
must accommodate a wide variety of hardware implementations.

• How to manage resources, in particular memory. Applications must consider
the costs of DMA transfers that map a virtual address to a physical one. At
the same time, implementation-specific details must be hidden from the
application, and the operating system must ultimately control all resource
allocation.

• How to manage fair access to the network without a kernel path which, in
traditional protocol stacks, acts as a central point of control and scheduling.

Figure 3.1. Round-trip times for a local remote procedure call (LRPC) under
Windows NT (COM local) versus a remote procedure call over the Virtual Interface
Architecture using GigaNet’s GNN1000 interface (Distributed COM with VIA). By
bypassing the kernel the remote call is actually faster than the local one. The round-
trip latency of raw messages over the VIA (VIA with raw messages) shows that there
is room for improvement in the DCOM protocol.

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000 7000

Message size in bytes

Ti
m
e

i
n

m
i
cr
os
ec
on

ds
COM local
Distributed COM with VIA
VIA with Raw Messages

52 Evolution of the Virtual Interface Architecture 3.1 Introduction 5352 Evolution of the Virtual Interface Architecture 3.1 Introduction 53

3.2 Performance factors

Network performance is traditionally described by the bandwidth achieved when
an infinite stream is transmitted. However, an increasing number of applications are
more sensitive to the network’s round-trip time, or communication latency, and the
bandwidth when sending many small messages.

3.2.1 Low communication latency

Communication latency is due mainly to processing overhead—the time the
processor spends handling messages at the sending and receiving ends. This may
include managing the buffers, copying the message, computing checksums, handling
flow control and interrupts, and controlling network interfaces. As Figure 3.1 shows,
the round-trip times for a remote procedure call with a user-level network interface
can actually be lower than for a local RPC under WindowsNT. The remote call
uses Microsoft’s distributed component object model (DCOM) with the VIA on
the GNN1000 interface. The local call uses Microsoft’s component object model
(COM). The figure also shows the round-trip latency of raw messages over the VIA,
which we used as a baseline in estimating the DCOM protocol overhead.

Low communication latency is key to using clusters in enterprise computing, where
systems must be highly available and scalable. Cluster management and cluster-
aware server applications rely on multiround protocols to reach agreement on the
system’s state when there are potential node and process failures. These protocols
involve multiple participants—all of which must respond in each round. This makes
the protocols extremely sensitive to any latency. Cluster applications that require
fault tolerance (for example through a primary/backup scheme or through active
replication) use extensive intracluster communication to synchronize replicated
information internally. These cluster applications can be scaled up only if the
intracluster communication is many times faster than the time in which the systems
are expected to respond to their clients. Recent experiments with Microsoft’s
Cluster Server have shown that without low-latency intracluster communication, the
scalability is limited to eight nodes [101].

On the parallel computing front, many researchers use networks of workstations to
provide the resources for computationally intensive parallel applications. However,
these networks are difficult to program, and the communication costs across LANs
must decrease by more than an order of magnitude to address this problem.

54 Evolution of the Virtual Interface Architecture 3.2 Performance factors 5554 Evolution of the Virtual Interface Architecture 3.2 Performance factors 55

3.2.2 High bandwidth for small messages

The demand for high bandwidth when sending many small messages (typically
less than 1 Kbyte each) is increasing for the same reasons industry needs low
communication latency. Web servers, for example, often receive and send many
small messages to many clients. By reducing the per-message overhead, user-level
network interfaces attempt to provide full network bandwidth for the smallest
messages possible. Reducing the message size at which full bandwidth can be
achieved may also benefit data-stream protocols like TCP, whose buffer requirements
are directly proportional to the communication latency. The TCP window size, for
example, is the product of the network bandwidth and the round-trip time. One way
to have maximum bandwidth at minimum cost is to achieve low latency in local area
networks, which will keep buffer consumption within reason.

3.2.3 Flexible communication protocols

The traditionally strict boundary between applications and protocols has made it
harder to develop more efficient networked applications. Two issues are central:
integrating the application and protocol buffer management, and optimizing the
protocol control path. In traditional systems, the lack of support for integrated buffer
management accounts for a significant part of the processing overhead. This affects
application-specific reliability protocols —RPCs, in particular —which must keep
data for retransmission. Without shared buffer management, for example, designers
cannot use reference count mechanisms to lower the overhead from copying and
from transferring buffers between the application and the kernel.

There are several ways to build flexible, optimal communication protocols. Designers
can use experimental or highly optimized versions of traditional protocols when
integrating the code path of generic and application-specific protocols. Advanced
protocol design techniques include application-level framing, in which the protocol
buffering is fully integrated with application-specific processing, and integrated-
layer-processing, in which many protocol layers are collapsed into highly efficient,
monolithic code paths.

Designers can also use a compiler to compile all protocols together instead of just a
small subset of application-specific protocols. Finally, new techniques, such as fast-
path generation in the Ensemble communication system [80], use formal verification
technology to automatically generate optimized protocol stacks. These techniques

54 Evolution of the Virtual Interface Architecture 3.2 Performance factors 5554 Evolution of the Virtual Interface Architecture 3.2 Performance factors 55

rely on control over the complete protocol stack, including the lowest layers, and
require the stack to run in a single address space.

3.3 Milestones in interface design

Message-based user-level network interfaces let applications exchange data by
sending and receiving explicit messages, similar to traditional multi-computer
message-passing interfaces, such as MPI, Intel’s NX, and Thinking Machines’
CMMD. All the user-level network interfaces we describe let multiple users on a
host access the network simultaneously. To provide protection, they separate the
communication setup from data transfer. During setup, the operating system is
involved and performs protection checks to ensure that applications cannot interfere
with each other. During data transfer, the interface bypasses the operating system
and performs simple checks to enforce protection.

B
u
f
f
e
r

B
u
f
f
e
r

B
u
f
f
e
r

B
u
f
f
e
r

Program Program Kernel

Device Driver

Application 1 Application 2 Operating System

Setup

D
M
A

C
o
n
t
r
o
l

User-level Network Interface

D
M
A

D
M
A

D
M
A

Figure 3.2. System memory with two applications accessing the network using a user-
level network interface. A conventional device driver in the operating system controls
the interface hardware. The device driver also sets up direct access to the interface for
applications(setup). The applications can then allocate buffers in their address space
and have the interface transfer message data into and out of these buffers directly
using direct memory access(DMA).

56 Evolution of the Virtual Interface Architecture 3.3 Milestones in interface design 5756 Evolution of the Virtual Interface Architecture 3.3 Milestones in interface design 57

Figure 3.2 shows system memory with two applications accessing the network
through a user-level network interface. A device driver in the operating system
controls the interface hardware in a traditional manner and manages the application’s
access to it.

Applications allocate message buffers in their address space and call on the device
driver to set up their access to the network interface. Once set up, they can initiate
transmission and reception and the interface can transfer data to and from the
application buffers directly using direct memory access.

User-level network interface designs vary in the interface between the application
and the network— how the application specifies the location of messages to be sent,
where free buffers for reception get allocated, and how the interface notifies the
application that a message has arrived. Some network interfaces, such as Active
Messages or Fast Messages, provide send and receive operations as function calls
into a user-level library loaded into each process. Others, such as U-Net and VIA,
expose per-process queues that the application manipulates directly and that the
interface hardware services.

3.3.1 Parallel computing roots

Message-based user-level network interfaces have their roots in traditional multi-
computer message-passing models. In these models, the sender specifies the
data’s source memory address and the destination processor node, and the receiver
explicitly transfers an incoming message to a destination memory region. Because of
the semantics of these send and receive operations, the user-level network interface
library must either buffer the messages (messages get transferred via the library’s
intermediate buffer) or perform an expensive round-trip handshake between the
sender and receiver on every message. In both cases, the overhead is high. Active
Messages [35] were created to address this overhead. Designs based on this notion
use a simple communication primitive to efficiently implement a variety of higher
level communication operations. The main idea is to place the address of a dedicated
handler into each message and have the network interface invoke the handler as soon
as the interface receives that message. Naming the handler in the message promotes
very fast dispatch; running custom code lets the data in each message be integrated
into the computation efficiently.

Thus, Active Message implementations did not have to provide message buffering
and could rely on handlers to continually pull messages out of the network. Active

56 Evolution of the Virtual Interface Architecture 3.3 Milestones in interface design 5756 Evolution of the Virtual Interface Architecture 3.3 Milestones in interface design 57

Message implementations also did not need to provide flow control or retransmit
messages because the networks in the parallel machines already implemented these
mechanisms.

Although Active Messages performed well on the first generation of commercial
massively parallel machines, the immediate dispatch on arrival became more and
more difficult to implement efficiently on processors with deepening pipelines.
Some implementations experimented with running handlers in interrupts, but the
increasing interrupt costs caused most of them to rely on implicit polling at the end
of sends and on explicitly inserted polls. Thus, the overhead problem resurfaced,
since polling introduces latency before message arrival is detected and incurs
overhead even when no messages arrive.

Illinois Fast Messages [73] addressed the immediacy problem by replacing the
handler dispatch with buffering and an explicit poll operation. With buffering, Fast
Messages can delay running the handlers without backing up the network, and
applications can reduce the frequency of polling, which in turn reduces overhead.
The send operation specifies the destination node, handler, and data location. The
Fast Message transmits the message and buffers it at the receiving end. When the
recipient calls are extracted, the Fast Message implementation runs the handlers of
all pending messages.

By moving the buffering back into the message layer, the layer can optimize buffering
according to the target machine and incorporate the flow control needed to avoid
deadlocks and provide reliable communication over unreliable networks. Letting
the message layer buffer small messages proved to be very effective—it was also
incorporated into the U.C. Berkeley Active Messages II (AM-II) implementations—
as long as messages could be transferred un-buffered to their final destination.

Myrinet U-Net VMMC-2 AM-II FM VIA
latency (µsec) 250 13 11 21 11 60
bandwidth (Mb/sec) 15 95 97 31 78 90

Table 3.1. Round-trip performance of standard sockets and user-level network
interfaces on Myricom’s Myrinet network.

58 Evolution of the Virtual Interface Architecture 3.3 Milestones in interface design 5958 Evolution of the Virtual Interface Architecture 3.3 Milestones in interface design 59

3.3.2 U-Net

U-Net was the first design to significantly depart from both Active Messages and
Fast Messages. Table 3.1 summarizes the performance of U-Net and four subsequent
designs as implemented on Myricom’s Myrinet network [13]. U-Net provides an
interface to the network that is closer to the functionality typically found in LAN
interface hardware. It does not allocate any buffers, perform any implicit message
buffering, or dispatch any messages. Instead of providing a set of API calls, as in
previous interfaces, it consists of a set of in-memory queues that convey messages
to and from the network. In essence, Active Messages and Fast Messages define a
very thin layer of software that presents a uniform interface to the network hardware.
U-Net, on the other hand, specifies the hardware’s operation so that the hardware
presents a standard interface directly to user-level software.

Application

U-Net Endpoint

Send
queue

Receive
queue

Free
queue

DMA
send

DMA
receive

User level network interface

Figure 3.3. U-Net architecture. Each application accesses the network through U-Net
endpoints. An endpoint contains send, receive, and free queues that point to buffers
the application has allocated. The interface hardware accesses the queues to determine
which buffer to transfer messages into, for reception (DMA receive), and out of, for
transmission (DMA send).

58 Evolution of the Virtual Interface Architecture 3.3 Milestones in interface design 5958 Evolution of the Virtual Interface Architecture 3.3 Milestones in interface design 59

The U-Net approach offered the hope of a better fit into a cluster environment. Such
an environment typically uses standard network technology such as Fast Ethernet
or Asynchronous Transfer Mode, and the network must handle not only parallel
programs, but also more traditional stream-based communication. Machines within
the cluster communicate with outside hosts using the same network.

3.3.3 Architecture

In U-Net, end points serve as an application’s handle into the network and contain
three circular message queues, as Figure 3.3 shows. The queues hold descriptors for
message buffers that are to be sent (send queue), are free to be received (free queue),
and have been received (receive queue). To send a message, a process queues a
descriptor into the send queue. The descriptor contains pointers to the message
buffers, their lengths, and a destination address. The network interface picks up the
descriptor, validates the destination address, translates the virtual buffer addresses to
physical addresses, and transmits the data using direct memory access (DMA).

When the network interface receives a message, it determines the correct destination
end point from the header, removes the needed descriptors from the associated free
queue, translates their virtual addresses, transfers the data into the memory using
DMA, and queues a descriptor into the end point’s receive queue. Applications
can detect the arrival of messages by polling the receive queue, by blocking until a
message arrives (as in a Unix select system call), or by receiving an asynchronous
notification (such as a signal) when the message arrives.

3.3.4 Protection

In U-Net, processes that access the network on a host are protected from one another.
U-Net maps the queues of each end point only into the address space of the process
that owns the end point, and all addresses are virtual. U-Net also prevents processes
from sending messages with arbitrary destination addresses and from receiving
messages destined to others. For this reason, processes must set up communication
channels before sending or receiving messages. Each channel is associated with
an end point and specifies an address template for both outgoing and incoming
messages. When a process creates a channel, the operating system validates the
templates to enforce system-specific policies on outgoing messages and to ensure
that all incoming messages can be assigned unambiguously to a receiving end
point.

60 Evolution of the Virtual Interface Architecture 3.3 Milestones in interface design 6160 Evolution of the Virtual Interface Architecture 3.3 Milestones in interface design 61

The exact form of the address template depends on the network substrate. In versions
for ATM, the template simply specifies a virtual channel identifier; in versions for
Ethernet, a template specifies a more elaborate packet filter.

U-Net does not provide any reliability guarantees beyond that of the underlying
network. Thus, in general, messages can be lost or can arrive more than once.

3.3.5 AM-II and VMMC

Two models provide communication primitives inspired by shared memory: the
AM-II, a version of Active Messages developed at the University of California at
Berkeley [17], and the Virtual Memory Mapped Communication model, developed
at Princeton University as part of the Shrimp cluster project [12].

The primitives eliminate the copy that both fast messages and U-Net typically
require at the receiving end. Both Fast Message implementations and U-Net
receive messages into a buffer and make the buffer available to the application. The
application must then copy the data to a final destination if it must persist after the
buffer is returned to the free queue.

AM-II provides put and get primitives that let the initiator specify the addresses of
the data at the remote end: put transfers a local memory block to a remote address;
get fetches a remote block. VMMC provides a primitive essentially identical to put.
In all these primitives, no receiver intervention is necessary to move the data to the
final location as long as the sender and receiver have previously coordinated the
remote memory addresses. AM-II associates an Active Message handler with each
put and get VMMC provides a separate notification operation.

VMMC requires that communicating processes pin down all memory used for
communication so that it cannot be paged. VMMC-2 [31] lifts this restriction by
exposing memory management as a user-managed translation look-aside buffer.
Before using a memory region for sending or receiving data the application must
register the memory with VMMC-2, which enters translations into the UTLB.
VMMC-2 also provides a default buffer into which senders can transmit data without
first asking the receiver for a buffer address.

3.3.6 Virtual Interface Architecture

The VIA combines the basic operation of U-Net, adds the remote memory transfers
of VMMC, and uses VMMC-2’s UTLB. Processes open virtual interfaces (VI) that

60 Evolution of the Virtual Interface Architecture 3.3 Milestones in interface design 6160 Evolution of the Virtual Interface Architecture 3.3 Milestones in interface design 61

represent handles onto the network, much like U-Net’s end points. As Figure 3.4
shows, each VI has two associated queues—send and receive—that are implemented
as linked lists of message descriptors. Each descriptor points to one or multiple buffer
descriptors. To send a message an application adds a new message descriptor to the
end of the send queue. After transmitting the message, the VIA sets a completion bit
in the descriptor, and the application eventually takes the descriptor out of the queue
when it reaches the queue’s head. For reception, the application adds descriptors for
free buffers to the end of the receive queue, which VIA fills as messages arrive.

Each VI represents a connection to a single other remote VI. This differs from the U-
Net end point, which can aggregate many channels. In the VIA, a process can create
one or more completion queues and associate each with multiple VIs. The network

R
e
c
e
i
v
e
q
u
e
u
e

VI

S
e
n
d
q
u
e
u
e

R
e
c
e
i
v
e
q
u
e
u
e

VI
S
e
n
d
q
u
e
u
e

DMA
receive

DMA
send

Completion
queue

Application

VIA hardware interface

Figure 3.4. Queuing in the Virtual Interface Architecture. Each application can open
multiple virtual interfaces (VIs), each with its own send and receive queues. Each VI
is associated with a completion queue to which the VIA adds a descriptor for every
completed transmission or reception. By sharing one completion queue across many
VIs, an application must check only a single queue to pick up all events related to its
network connections.

62 Evolution of the Virtual Interface Architecture 3.4 Design trade-offs 6362 Evolution of the Virtual Interface Architecture 3.4 Design trade-offs 63

interface fills entries in the completion queue to point to entries in the send or receive
queue that have been fully processed.

The VIA also provides direct transfers between local and remote memory. These
remote DMA writes and reads are similar to AM-II’s puts and gets and VMMC’s
transfer primitives.

To provide some protection, the VIA lets a process specify which regions of its
memory are available for RDMA operations. Memory management in the VIA is
very similar to the VMMC-2. A UTLB resides in the network interface. All memory
used for communication must be registered with the VIA before it is used, including
all queues, descriptors, and buffers. Registering a region returns a handle, and
all addresses must be specified using the appropriate region handle and a virtual
address.

3.4 Design trade-offs

As the previous description shows, the user-level network interface designs that have
shaped the VIA differ from each other in many respects. These differences reflect
attempts to optimize against network hardware and programming environments.
Trade-offs are most apparent in the choice of queue structure, memory management
strategy, and message multiplexing approach.

3.4.1 Queue structure

The queues in U-Net and the VIA expose a structure very similar to most hardware
network devices. Exposing the queues instead of providing a procedural interface (as
in Fast Messages and Active Messages) means that higher software layers can manage
the required descriptors and buffers directly. This, in turn, means that at no point is
an application’s executing thread required to yield control to complete an operation.
Exposing the queues also very naturally splits an operation’s initiation from its
completion. Pushing a descriptor into the send queue initiates the transmission; the
network interface signals completion using the descriptor. The actual transmission or
reception can thus occur asynchronously to the ongoing computation.

The queues are designed to accept scatter-gather descriptors, which allow
applications to construct messages from a collection of noncontiguous buffers. For
example, in a sliding window protocol (in which the transmission window moves
over a large data buffer), the protocol implementation places its information in

62 Evolution of the Virtual Interface Architecture 3.4 Design trade-offs 6362 Evolution of the Virtual Interface Architecture 3.4 Design trade-offs 63

a separate buffer. The network interface then concatenates the data and protocol
information.

3.4.2 Memory management

Integrating buffer management between the application and the network interface
is important in eliminating data copies and reducing allocations and de-allocations.
This integration gives rise to additional complexity, however, because the application
uses virtual addresses for its message buffers, whereas the network interface DMA
engine requires physical memory addresses for its transfers. Thus, a trusted entity
must translate a virtual address to a physical one each time a buffer is handed to the
network interface. In addition, the operating system must track the memory pages
available to the interface for DMA transfers so that the operating system can keep
mappings constant.

The VIA’s memory management is inspired by VMMC-2’s UTLB, which makes the
application responsible for managing virtual-to-physical address translations. The
application must request a mapping for a memory region from the operating system
before using any buffers in that region. The advantage is that the operating system
can install all mappings in the network interface, which can then translate all virtual
addresses using a simple lookup. The primary drawback is that the application must
take care to manage its memory regions judiciously. In simple cases, a fixed set of
buffers is allocated, so it is easy to keep the memory region handles in the buffer
descriptors. However, if the application transmits data out of internal data structures
directly, it may have to request a new translation for every transmission, which is
time-consuming.

In U-Net, in contrast, applications can place buffers anywhere in their virtual address
space and the network interface does the virtual-to-physical address translation
[105]. For this reason, the interface incorporates a TLB that maps <process ID,
virtual address> pairs to physical page frames and read/write access rights.

The disadvantage of U-Net’s approach is that the application may present an address
that has no mapping in the interface’s TLB. If the address is for a buffer to be
sent, the interface must request a translation from the host kernel, which requires
a somewhat complex and costly handshake (approximately 20 µs of overhead in
Windows NT, for example).

64 Evolution of the Virtual Interface Architecture 3.4 Design trade-offs 6564 Evolution of the Virtual Interface Architecture 3.4 Design trade-offs 65

To avoid TLB misses when a message arrives, the interface must pre-translate
entries in each free buffer queue. If a message arrives and no pre-translated buffer is
available, the interface drops the message. Requesting translation on-the-fly would
be very difficult because reception occurs within an interrupt handler, which has only
limited access to kernel data structures.

An important benefit of U-Net’s memory-allocation scheme is that the host kernel
can limit the amount of memory pinned down for the network by limiting the number
of valid entries in the interface’s TLB. This is somewhat analogous to pre-allocating
and pinning a fixed-size buffer pool in kernel-based network stacks. The difference
is that, in U-Net, the set of pages in the buffer pool can vary over time.

Shifting control over memory management from the operating system to the
application, as the VIA does, has a potentially more serious drawback. If an
application requests a mapping, the operating system must grant it or risk an
application failure. Once it grants a mapping, the operating system cannot revoke it to
shift resources, for example, to a higher priority process. If servers and workstations
host multiple applications with simultaneous open network connections, and each
application uses, say 200 to 300 Kbytes of buffer space, a significant fraction of the
physical memory must be dedicated to network activity.

In U-Net, in contrast, only entries in the interface’s TLB must be pinned in memory.
The interface can also remove mappings of applications not actively using their
network buffers, thereby making the memory eligible for paging and available to
applications in general.

3.4.3 Multiplexing and de-multiplexing

In user-level network interfaces, the network interface must de-multiplex arriving
messages onto the correct receive queue. Similarly, when sending a message,
the interface must enforce protection (by validating addressing information, for
example). The complexity of both operations depends heavily on the type of network
used.

The VIA’s approach to multiplexing is strictly connection oriented. Two virtual
interfaces must set up a connection before any data can be transmitted. The
specification does not prescribe how the connection must be represented at the
network level, so designers could run the VIA over an Ethernet or even over the
Internet Protocol by defining some handshake between the end points and by

64 Evolution of the Virtual Interface Architecture 3.4 Design trade-offs 6564 Evolution of the Virtual Interface Architecture 3.4 Design trade-offs 65

using a special field to differentiate connections. Because of the VIA’s connection
orientation, applications that use VIA networks cannot interoperate with applications
that use non-VIA networks. For example, a server cluster using the VIA internally
must use conventional network interfaces to communicate with clients outside the
cluster.

U-Net, in contrast, makes the multiplexing and de-multiplexing processes much
more flexible. In the Fast Ethernet version, the network interface implements a
full packet filter, which is not connection oriented. When an application opens a
communication channel, it specifies patterns for parsing the headers of incoming
and outgoing packets. The kernel agent validates the patterns to ensure that there
will be no conflict with other applications and enters them into the multiplexing
data structures. The generic nature of U-Net’s packet processing means that
communication with a generic protocol stack is possible, as is the sending and
receiving of multicast messages.

The filtering must be implemented as a dynamic packet parser to support a variety of
network protocols and accommodate the nature of identifying fields, which are not at
fixed locations in messages. The packet filter must be more sophisticated than those
used previously [4] because there is no backup processing path through the operating
system kernel for handling unknown packets. Such a fail-safe path is not an option
because the architecture would then force the operating system to jointly manage the
receive queues with the interface. The Fast Ethernet version of U-Net sidesteps the
issue by using a standard network interface and implementing its functionality in the
interrupt handler, where the complexity of the packet filter is tolerable.

3.4.4 Remote memory access

Handling RDMA reads and writes adds considerable complexity to VIA
implementations. When receiving a write, the interface must not only determine
the correct destination VI but also extract the destination memory address from the
message and translate it. The main issue here is how to handle transmission errors
correctly: The interface must verify the packet checksum before any data can be
stored into memory to ensure that no error affected the destination address. This
verification is not trivial because most networks place the checksum at the end of the
packet, and the interface must buffer the entire packet before it can start the DMA
transfer to main memory. Alternatively, a separate checksum could be included in
the header itself.

66 Evolution of the Virtual Interface Architecture Section PB

RDMA reads also present a problem. The network interface may receive read
requests at a higher rate than it can service, and it will have to queue the requests
for later processing. If the queue fills up, requests must eventually be dropped. To
ensure a safe implementation of RDMA reads, the VIA restricts read requests to
implementations that provide reliable delivery.

3.5 Conclusions

VIA designers succeeded in picking most of the cherries from extensive research in
user-level interfaces and in providing a coherent specification. Users familiar with
this research will have little difficulty in adapting to the VIA and will enjoy the
benefit of multiple off-the-shelf commercial hardware implementations. Because the
VIA’s primary target is server area networks, however, its designers did not provide
one important cherry from U-Net: The VIA does not provide interoperability with
hosts that use conventional network interfaces.

To fully exploit the promise of the VIA and of fast networks in general, significant
additional research is needed in how to design low-latency protocols, marshal
objects with low overhead, create efficient protocol timers, schedule communication
judiciously, and manage network memory. Memory management presents
particularly difficult trade-offs. The UTLBs in VMMC-2 and the VIA are easy to
implement but take away resources from the general paging pool. The TLB proposed
in U-Net implements a close interaction with the operating system and provides fair
memory management but is more complex and incurs extra costs in the critical path
whenever a miss occurs. Thus, although the VIA user-level network interfaces are
now available to everyone, many design issues must yet be solved before application
writers can enjoy painless benefits. Hopefully, research will break through some of
these issues as users begin to document their experiences in using VIA.

Chapter 4

Tree-Saturation Control in the AC3
Velocity Cluster Interconnect

In a multi-user production cluster there is no control over the intra-cluster
communication patterns, which can cause unanticipated hot spots to occur in the
cluster interconnect. In a multistage interconnect a common side effect of such a
hot-spot is the roll-over of the saturation to other areas in the interconnect that
were otherwise not in the direct path of the primary congested element. This chapter
investigates the effects of tree saturation in the interconnect of the AC3 Velocity
cluster, which is a multistage interconnect constructed out of 40 GigaNet switches.
The main congestion control mechanism employed at the GigaNet switches is a
direct feedback to the traffic source, allowing for fast control over the source of the
congestion, avoiding the spread from the congestion area. The experiments reported
are designed to examine the effects of the congestion control in detail.

4.1 Introduction.

An important issue in traffic management of multi-stage interconnects is the handling
of tree saturation (caused by hot spot traffic [75]), and the impact that tree saturation
can have on unrelated flows. In a production multi-user parallel machine such as
the AC3 Velocity cluster, this is particularly important as traffic patterns are not
predictable, and hot-spots cannot be avoided through application level structuring.

There are two aspects of the handling of the saturation effects that are of primary
importance; first there is the fairness among the flows that travel through a region of
the switch fabric that contains a ‘hot-spot’; flows that cause the congestion should be
reduced equally and fairly to relieve the congested link.

68 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.2 The AC3 Velocity Cluster 6968 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.2 The AC3 Velocity Cluster 69

Secondly there are the effects on flows that are not traveling over congested links,
but that do cross switches that are part of the tree that is saturated. Foremost of those
effects is second order head-of-line blocking, which can occur even if the individual
switches are constructed to handle head-of-line blocking gracefully.

This chapter describes the GigaNet multi-stage interconnect of the AC3 Velocity
cluster, which is constructed of 40 switching elements organized into a Fat-Tree.
A number of techniques are employed in the GigaNet interconnect that control the
saturation effects, and that allow the interconnect to gracefully adapt to occurrence
of hot-spots. The feedback and flow-control based techniques provide fairness in the
scheduling of the competing streams and predictable behavior of unrelated streams
that could potentially be impacted by second order effects.

This chapter is organized as follows: in sections 4.2 and 4.3 the cluster and the
interconnect are described in detail. Section 4.4 examines the problems that are
related to saturation in multistage interconnects, and section 4.5 describes the setup
of the experiments to investigate the saturation effects. In section 4.6 the results
of the experiments are presented with conclusions and related work following in
section 4.7 and 4.8.

4.2 The AC3 Velocity Cluster

AC3 Velocity is composed of 64 Dell PowerEdge servers, each of which has four
Intel Pentium III Xeon SMP processors running at 500 Mhz with 2 MB of Level 2
cache per processor. Each Power Edge contains 4 gigabytes RAM and 54 gigabytes
of disk space. Microsoft Windows NT 4.0 Server, Enterprise Edition, is the operating
system. Each rack holds eight servers. The switch fabric is comprised of 40 Giganet
cLAN 8x8 switch elements.

The experimental super computer and cluster facility is based at the Cornell Theory
Center: a high performance computing and interdisciplinary research center located
at Cornell University. AC3 is the center’s research and IT service consortium for
business, higher education, and government agencies interested in the effective
planning, implementation, and performance of commodity-based systems, software,
and tools.

68 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.2 The AC3 Velocity Cluster 6968 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.2 The AC3 Velocity Cluster 69

4.3 The GigaNet Interconnect

The interconnect of the AC3 Velocity cluster is a multistage interconnection network
constructed out of GigaNet cluster area network (cLan) switching elements and host
interfaces.

The host interface provides a hardware implementation of the Virtual Interface
(VI) Architecture specification [32], delivering the interconnect’s raw latency and
bandwidth directly into application processes, while maintaining full security [38].

Figure 4.1. Layout of the switches in the AC3 cluster interconnect.

70 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.3 The GigaNet Interconnect 7170 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.3 The GigaNet Interconnect 71

A cLan switch is designed using a single chip architecture based on GigaNet’s
proprietary chip for ATM switching. The first generation GigaNet chip is present in
the switches that make up the AC3 Velocity interconnect.

Cluster switching fabric switches at 8x1Gb/sec using a non-blocking, shared memory
architecture with 16 Gb/sec cross-sectional bandwidth. The switch uses the memory
to implement virtual buffer queue architecture, where cells are queued on a per VCI
per port basis. The host interface also implements a virtual buffer queue architecture,
where cells are queued on a per VCI basis. cLAN switches are shipped in eight port
1U and 32 port 2U configurations. These building blocks can be interconnected in a
modular fashion to create various topologies of varying sizes. In the AC3 Velocity
Cluster 40 eight port switches are deployed in a fat tree topology as shown in Figure
4.1. Each stage holds 8 switches, which results in that the maximum number of hops
between any two nodes in the system is 5.

The use of ATM for transport and routing of messages is transparent to the end host.
VI endpoints correspond directly to a VCI, using AAL5 encapsulation for message
construction, similar to [37]. Switching is performed on a per VCI basis; and no
grouping techniques are used at the switch, as flow control policies are implemented
on a per VCI basis.

Congestion is evaluated on a per VCI basis, taking into account VCI, link, and
general buffer utilization, as well as general system configuration. If flow control
is triggered, the switch will start sending Source Quench indications to VCI source,
which will respond immediately by shutting down the source until an unquench
indication arrives. The flow control mechanism is implemented in hardware and
quenches can be generated at very high frequency. In practice there are always a
large numbers of Quench/Unquench indications flowing through the network.

The very high frequency of the flow control indications allows the sources to
be bandwidth controlled in a relatively flat manner. It enables the switches that
experience potential congestion to schedule the competing streams in a fair
manner according to the overall traffic pattern. A second effect of this flow control
architecture is that the data sources can be constructed in a simple manner, executing
as greedy as possible, relying on the switch flow control indications to perform the
traffic shaping.

70 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.3 The GigaNet Interconnect 7170 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.3 The GigaNet Interconnect 71

The clan interconnect is loss-less. A special modification to the clan product allowed
flow control to be disabled and replaced with link-level flow control for the purpose
of the experiments in this chapter.

4.4 The Problem

Interconnect behavior under a variety of realistic workloads has been studied for a
long time and this resulted in improved switch and interconnect designs. One of the
problems that has been the hardest to solve is that of congestion management in the
face of unpredictable traffic patterns.

Feedback techniques [91] such as multi-lane backpressure [52] have been
experimented with and the results are promising. The flow-control techniques in a
GigaNet based interconnect are novel in that (1) the feedback is directly to the VCI
source and not to the predecessor switch in the path, (2) it does not employ any credit
based scheme, and (3) that the flow-control is used to perform traffic shaping in the
overall interconnect..

The AC3 velocity cluster provides an excellent opportunity to examine the
effectiveness of these techniques given the number of switches in the fabric. There
are three particular problem areas that are of interest, when examining congestion
control:

1. Tree-saturation. When a switch becomes congested will there be saturation
roll-over and spread the congestion to other switches in the region?

2. High-order head-of-line blocking. Even if individual switches are constructed
such that they exhibit no head-of-line blocking when ports become congested,
placing them in a multi-stage interconnect may trigger higher-order HOL
occurrences because of link and buffer dependencies between switches [51].

3. Fairness among congested streams. If a number of streams flow through
single congestion point, will the traffic shaping be such that all streams are
treated fairly.

To examine these three problem areas a number of experiments have been designed
that are described in detail in section 4.6. All experiments were performed with the
flow control enabled as well as disabled.

72 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.4 The Problem 7372 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.4 The Problem 73

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

microseconds

co
u
n
t

16-1 hop

16-3 hops

16-5 hops

1024-1 hop

1024-3 hops

1024-5 hops

0

200

400

600

800

1000

1200

1400

0 10000 20000 30000 40000 50000 60000 70000

message size in bytes

mi
cr
os
ec
on
ds

0

20

40

60

80

100

120

1 10 100 1000 10000 100000

Message size in bytes

Th
ro

ug
hp

ut
i
n

M
By
te
s/

se
c

Figure 4.4. Average throughput per message size

Figure 4.3. Average latency per message size

Figure 4.2. latency histogram of 16 and 1024 byte messages per number of hops

72 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.4 The Problem 7372 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.4 The Problem 73

4.5 Baseline Performance

In this section we briefly touch on the baseline performance of the interconnect.
Standard latency and throughput tests were conducted between sets of nodes in the
cluster. Bottom line latency is 10 usec, maximum throughput close to 114 Mbytes/
sec and the maximum message rate is over 250,000 messages/sec.

1 4 7

10 13 16 19 22 25 28 31 ftob
ftob2

ftob3
ftobmax

0

20

40

60

80

100

120

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 10 100 1000 10000 100000

ftob1
ftob2
ftob3
ftob4

Message size in bytes

Th
ro

ug
hp

ut
i
n

Ki
lo
By
te
s/

se
c

Figure 4.5. Histogram of the throughput in KBytes/sec of the individual streams in 4
different front-to-back tests.

Figure 4.6. Total fabric throughput in KBytes/sec per message size in the different
front-to-back tests

74 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.6 Tree Saturation Experiments 7574 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.6 Tree Saturation Experiments 75

In figure 4.2 a histogram of latency is shown of 16 and 1024 bytes messages in
relation to the number of hops between source and destination. Each additional
hop adds 1 usec to the latency. Figure 4.3 shows the average latency with respect
to message size. Figure 4.4 shows the bandwidth in relation to message size. For
bandwidth measurements of single streams, the number of switches in the stream
did not matter.

The maximum message throughput is 266,000 messages/sec, which is limited by the
host PCI bus, and which is achieved with messages with 4 bytes payload.

4.6 Tree Saturation Experiments

To investigate the effects of tree saturation we conducted four dedicated tests:

4.6.1 Front-to-back

A test where 32 connections are made between random nodes that all cross
the maximum number of stages of the interconnect, triggering hot-spots in the
communication. For practical execution of this experiment, all sources are chosen
from the nodes 01-32 (the front) while destinations come from nodes 33-64 (the
back). Four different connection layouts were tested with a variety of message sizes.
Each test was run for 30 seconds and the results were analyzed for variations in inter-

104

105

106

107

108

109

110

111

112

113

1 2 3 4 5 6

ID of the measured stream

T
h
r
o
u
g
h
p
u
t

i
n

M
B
y
t
e
s
/
s
e
c

no streams
1 stream
3 streams
5 streams
7 streams

Figure 4.7. The impact of adding congestion streams to the 6 background streams in
the slow-host-congestion-fabric test.

74 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.6 Tree Saturation Experiments 7574 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.6 Tree Saturation Experiments 75

arrival rates, in bandwidth over time, in comparative bandwidth among the streams
and overall throughput of the interconnect in relation to message size

Given the randomness in the connection setup, some hotspots occur within traffic,
while there are also some connections that share no links at all. Figure 4.5 shows a
histogram of the individual stream throughput measured in the four tests.

Figure 4.6 shows the overall throughput through the interconnect in relation to the
message size.

4.6.2 Slow Host Congestion Fabric

This test is used to examine if congestion will spread through the interconnect
when a host network interface controller (NIC) becomes congested. In the test up to
seven streams will come into node01, each entering a different port on switch01 and
exiting on the port connect to node01. The congested NIC will cause switches 01,
17 and 34 to congest, where switch 34 is a 3rd layer switch. Six large streams will
also flow through switch 34, each share an input port with the streams directed to
node01. In this test the congestion into node01 is varied and its impact on the overall
throughput of switch 34 is measured.

Without any traffic directed at node01 each of the stream achieves maximum
throughput (112 Mbytes/sec). The streams used to congest the NIC consist of
single cell messages (4 bytes payload) and the streams are added stepwise. The first

0

20

40

60

80

100

120

0% 5% 10% 20% 50% 100%

send rate of the congestion streams

t
h
r
o
u
g
h
p
u
t

i
n

M
B
y
t
e
s
/
s
e
c

port 1
ports 2-8

Figure 4.8. Throughput on each output port in the switch port contention test.

76 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.6 Tree Saturation Experiments 7776 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.6 Tree Saturation Experiments 77

stream reaches the maximum message throughput of 266,000 messages per second,
resulting in up to 1.05 Mbytes/sec. This throttles down the background stream that
shares the input port with the congestion stream to 107 Mbytes/sec while the other
streams remain unaffected.

Adding more streams towards the NIC causes the competing streams to drop towards
equal share of the maximum message throughput at the NIC, e.g. with 3 streams each
reaches a throughput of 88,000 per second (.35 Mbytes/sec). Each of the background
streams that now share an input port with a congested stream, throttle back slightly,
but not less then 110 Mbytes/sec.

In the test also one congested stream did not share an input port with a background
stream, and this stream did not receive any preferential treatment of the streams that
did share input ports.

Figure 4.9. Layout of the multi-stage-congestion test. The small dashed strreams are
the background traffic, the solid line is the congestion traffic and large dashed line is
the side-effect probe

76 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.6 Tree Saturation Experiments 7776 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.6 Tree Saturation Experiments 77

4.6.3 Switch Port Contention

This test exposes whether contention for a single port on a 3rd level switch will
affect other traffic flowing through the same switch. In this test there are seven
streams entering switch 40 on ports 2-8, while exiting at port 1. Seven other streams
are entering the switch at ports 2-8, but exiting the switch through the same set of
ports. The contention of port 1 is varied and the effect on the overall throughput is
measured.

Starting without the streams that will congest port 1, the seven background streams
all achieve continuously the maximum throughput off 112 Mbytes/sec each. When
the congestion streams are introduced their rates are varied from 5%-100% of
maximum throughput. At 20% each of the competing streams has reached is
maximum throughput of 15 Mbytes/sec, resulting in an output throughput of 91
Mbytes/sec. The background streams have been throttled back to 98 Mbytes/sec (see
figure 4.8).

Increasing the message rates, on the congested streams has no effect, their individual
throughput remains at 15 Mbytes/sec. Each of the seven input links continues to run
at maximum throughput with a background stream and a congestion stream coming
in on each link. The overall throughput in the switch remains at 780 Mbytes/sec
independent of how the input streams are varied. The balance among the streams
is close to ideal: the seven background stream throttle back to identical throughput,
while the congestion streams each use up 1/7th of the output on port 1.

Node 18 - I Node 18 - II Node 18 total Node 10
Test 1 115 9 115 0
Test 2 115 0 115 114
Test 3 - 5% 52 31 84 0
Test 3 - 20% 49 42 91 0
Test 3 - 100% 61 53 114 0
Test 4 - 5% 61 53 114 30
Test 4 - 20% 62 54 116 64
Test 5 - 100% 60 54 114 114

Table 4.1. The throughput in MBytes/sec measured at the destination nodes in the
multi-stage contention test. Node 18 is divided into teh set coming from switch 5 &12
(I), and from switch 36 (II).

78 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.6 Tree Saturation Experiments 7978 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.6 Tree Saturation Experiments 79

4.6.4 Multi-stage Congestion

In this test the effects of congestion in a switch on other switches in the fabric is
measured, and the fairness among flows through the congested points is examined.
For this test there is a set of six sources that each send to both nodes10 and 18,
causing contention to occur in switch 36 at port 2 and 3.

A second set of sources send to node 18, congesting switch 21 and 5. The traffic into
nodes 10 and 18 is varied and the effect on the overall throughput is measured as
well at the balance between the individual streams (see figure 4.9).

The first test is to only send data from the second set of sources, which enter through
switch 21 and 5. Jointly they reach a maximum throughput of the 115Mbytes/sec,
which is limited by the single link going into node 18. Each stream receives an equal
share of the bandwidth (17 Mbytes/sec).

Secondly the 6 streams flowing through switch 36 to node 10 are added, and the
results show that all streams run at maximum throughput.

In the third part of this test the streams to node 10 are stopped and the additional
streams for node 18 coming through switch 36 are introduced, in stepwise manner.
The total throughput arriving at node 18 drops to 91 Mbytes/sec when the new
streams come in at low rates, while higher rates push the throughput up to 114
Mbytes/sec. The throughput is equally divided over the 13 incoming streams.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Node ID of the stream origin

Th
ro

ug
hp

ut
i
n

M
By
te
s/

se
c Flow control on

Flow control off

Figure 4.10. The throughput in MBytes/sec achieved in a front-to-back test with
stream based flow control enabled (light bars) and disabled (dark bars).

78 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.6 Tree Saturation Experiments 7978 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.6 Tree Saturation Experiments 79

The fourth part of this test investigates the impact of this newly congested stream
on the traffic that flow through switch 36 to node 10. The congested streams and
the streams targeted towards node 10 originate at the same source nodes. The traffic
pattern for the streams to node 10 does not change when they have to share the same

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 10 100 1000 10000 100000

Message size

Th
ro

ug
hp

ut
in

Ki
lo
by
te
s/
se
c

Flow control on

Flow control off

0

20

40

60

80

100

120

140

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

send rates of the congestion streams

Th
ro

ug
ho

ut
i
n

M
by
te
s/

se
c

ports 1
ports 2-8

Figure 4.11. The overall fabric throughput in KBytes/sec for the first front-to-back
with stream based flow-control enabled (solid line) and disabled (dashed line).

Figure 4.12.Throughput seen at each of the output ports of the switch in the switch
port contention test with stream based flow-control disabled.

80 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.7 Experiments without Flow Control 8180 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.7 Experiments without Flow Control 81

links with the congested stream, each runs at 19 Mbytes/sec, delivering 114 Mbytes/
sec at node 10.

4.7 Experiments without Flow Control

To examine the effectiveness of the per stream flow control mechanism in GigaNet
the tests have been repeated with the source-quench flow control switched off. This
does not remove flow control completely as GigaNet also employs a link-level flow
control. The results in almost all the tests are identical; as soon as the host interface
or a switch port becomes congested this congestion spreads to the other switches in
fabric, reducing the overall utilized bandwidth by 50% or more, compared to the
bandwidth seen in the case where flow-control was enabled. There was no imbalance
noted in the reduction of the throughput over the different streams, suggesting that
the scheduling remained fair even under severe congestion. This section presents
the results for two tests, front-to-back and switch-port contention, which are
representative for the observations of all tests.

Front-to-back. In figure 4.10 the results of the tests with the first front-to-back
configuration are presented for the individual tests, with and without per stream
flow control. One observation from the first test was that stream originating at node
22, did not share any links with other streams and as such was able to traverse the
whole interconnect without any loss in bandwidth (112 Mbytes/sec). Because this
stream does not share any links with other streams it is never subject to congestion
and link-level flow control is almost as effective as the per stream flow control. All
other flows however are experiencing a reduction in throughput as flow-control is
exercised on a per link instead of a per flow basis. The non-discriminatory aspect
of link-level flow control effect streams at places where they may not be the cause
of congestion. The reduction in throughput for this particular test with a 2048 bytes
message size is on the average 27%. In figure 4.11 the overall throughput of the
interconnection fabric is presented in relation to message size. As soon as congestion
occurs at switches, which is already noticeable at 512 bytes, the overall throughput
is reduced. With all streams running at maximum message size the overall fabric
throughput is reduced to 58%.

Switch port contention. In this test 7 streams enter and exit the switch through port
2-8. Without any competing traffic each of the port outputs the maximum bandwidth.
When to each of the input ports an additional stream is added, targeted for port 1, the

80 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.7 Experiments without Flow Control 8180 Tree-Saturation Control in the AC3 Velocity Cluster Interconnect 4.7 Experiments without Flow Control 81

effect of link level flow control is visible as soon as these streams start. At 15% send
rate the flow control kicks in because of potential congestion at switch port 1.

Because the flow-control operates at link-level instead of individual stream level, it
causes all streams coming in over port 2-8 to be equally reduced. The congestion at
port 1 now determines the overall throughput of the switch: each stream destined for
port 1 runs at 1/7th of the throughput of port 1 (105 Mb/sec), but the other streams
are now reduced to run at equal throughput, given the interleaving of cells of both
streams at each link, combined with the link-level flow control. This reduces the
throughput per outgoing link to 15% of the result with stream based flow control
enabled.

4.8 Summary

This chapter detailed the multi-stage interconnect of the AC3 Velocity cluster. A set
of experiments was performed to investigate the effectiveness of the flow control
techniques employed by the GigaNet switches and host adapters. The results show
that the traffic shaping in face of congestion performs very well: hotspot regions do
not expand beyond the original switch, no higher order head-of-line blocking could
be detected and the resulting balancing between streams competing for bandwidth
is fair.

These are very important properties in a production switch were there is no advance
control over the communication pattern.

The experiments at the AC3 Velocity Cluster continue, with a focus on the impact
of non-uniform traffic patterns, impact of the flow control on message latency, the
impact of thousands of competing streams and the impact of burstiness in the traffic
sources.

82 PB

PART – II

Scalable Management Tools for Enterprise
Cluster Computing

Introduction

Performance and availability at cost linear to the system size. This premise was the
driving force behind the acceptance of cluster computing as a building block for
enterprise computing. There was no real technical evidence to support the claim, but
the only alternative to scale-out to improve performance was to scale-up using SMP
technology. Although SMPs were very effective in improving performance, using
SMPs to improve availability, while technically feasible, could only be achieved at
high cost.

The increased reliance of enterprises on powerful computing operations supporting
mission critical tasks created a growing commercial demand for improving the
performance and availability of the computing infrastructure. The sharp increase
in processor and network performance, combined with a dramatic drop in hardware
prices, made data-centers of medium and large enterprises ready to grow to thousands
of computers. But even though the hardware appeared to be ready to support scalable
rack&stack clusters, there were still significant software hurdles to take to enable
truly scalable cluster computing.

From a software perspective the scalability of the cluster management software
is crucial in enabling clusters to scale out. The functionality necessary to support
the management of enterprise clusters is often more complex than the applications
that will be run on the clusters, which puts tremendous pressure on the scalability
of the components that need to provide the core of the distributed operations.
These components also need to be modularized in such a way that they become

84 Scalable Management Tools for Enterprise Cluster Computing Classifying cluster applications 8584 Scalable Management Tools for Enterprise Cluster Computing Classifying cluster applications 85

building blocks that can be used to create services that are as scalable as the core
components.

Historically cluster management systems were developed by cluster hardware
vendors, and the scalability of the management system was limited to the particular
platforms for which they were developed. VaxClusters, Sysplex, NonStop [58,70,53],
all used software components that were scalable to tens of nodes at best, which was
sufficient to support the cluster products offered. The only scalable solution available
was the cluster management system for the IBM SP2 series, which was capable of
managing up to 250 nodes using a voting-based distributed systems technology [3].

Classifying cluster applications

Use of the traditional management technology for controlling the large-scale enterprise
cluster computing systems revealed the following problem: Each of the commercial
cluster management systems was developed with a particular application domain in
mind. The use of clusters in enterprise data-centers brought in a wide variety of new
applications and, none of the original management technologies provided an overall
solution or a general framework with which a coordinated approach could be taken
for managing such a diverse set of services.

One way to classify the new applications is to examine the structuring techniques
used to achieve scalability. Two main approaches can be distinguished through
which scalability on clusters is achieved: through cloning and through partitioning.

Cloning is used for applications that can be replicated onto many nodes and where
each node has access to the identical software and data set. This allows client
requests to be routed to any of the clones, with load-balancing as the main criteria
for assigning client-server relations. Web server-farms are an example of cloned
servers, and the premise is that under load additional nodes can be added to handle
the increased demand. Similarly, many enterprise parallel computing operations
can be improved by adding nodes to a pool of “workers”. In general the cloned
approach not only provides improved performance but also improved availability of
the application.

Partitioning is used for those applications that have a significant state to maintain
and where cloning the state would be impractical because of the overhead involved
with keeping the replicated state consistent. Instead the application data is partitioned
over the nodes in the cluster based on application specific criteria. For a database

84 Scalable Management Tools for Enterprise Cluster Computing Classifying cluster applications 8584 Scalable Management Tools for Enterprise Cluster Computing Classifying cluster applications 85

the partitions may be based on layout of the tables and the relations between tables
combined with the expected request patterns. Middle-tier application-server systems
divide tasks based on customers grouping, or a collaboration server will group
participants together based on real-time assessment. In general the partitioned
application does not provide improved availability without the use of additional
technology.

A second way to classify cluster applications is to examine their use of shared
storage. Both cloned and partitioned servers can be served from local storage
or from a shared storage infrastructure, usually in the form of network attached
storage devices. Cloning the data to local storage requires a strategy for ensuring the
consistency of the replicas with the master copy. Using shared storage, combined
with cloning the application can be seen as a hybrid approach that is used in cases
where the updates to the state are too frequent to warrant a fully cloned approach, but
where a large number of cloned application nodes is needed to support scalability.
An example is a large E-mail farm, where any of the application servers can handle
client requests accessing the data from central storage. The E-mail server cluster
is a particular example as the partitioned approach can also be used, either with or
without shared storage. In the partitioned case the mailboxes are distributed over the
nodes in the clusters, based on local access to the data.

Keep in mind that without shared storage a node crash in the partitioned case results
in the loss of availability of part of the data, unless the system makes use of other
application level replication techniques such as hot-standbys.

Evaluation of an enterprise-class cluster management system.

To better understand the problem space of building management systems for
these kinds of application clusters, an analysis was performed of one of the more
modern cluster management systems. The Microsoft Cluster Service (MSCS) was
first released in 1997 and specifically targeted the application fail-over market.
In a fail-over clusters the applications from a failed node can be restarted at the
remaining nodes in the cluster. Soon after its first release I lead a team of academics
and Microsoft research and product engineers to perform an in-depth analysis of
the system which resulted in a publication at the IEEE Fault-Tolerant Computing
Symposium (FTCS) in 1998 [100].

Although MSCS was successful in the market it was targeted at, the main question
remained whether it could scale beyond the initial 2-4 nodes on which it was shipping.

86 Scalable Management Tools for Enterprise Cluster Computing Lessons learned 8786 Scalable Management Tools for Enterprise Cluster Computing Lessons learned 87

There were no experiences with running MSCS at larger installations so I adapted
the software to run on a 32 nodes cluster at Cornell. The investigation focussed on
the scalability of the core distributed components: the cluster membership service
and the global update protocol. The results from these experiments were published
at the second Usenix Windows NT Symposium in 1998, and are presented in Chapter
7.

Lessons learned

One of the conclusions of the scalability experiments with MSCS was that the
transparent use of distributed systems technology, without taking into account the
specific properties of the technology, yielded a system that did not scale. Under
optimistic conditions the system could function with 10 nodes or more, but any
realistic load on the nodes would completely degradate the ability of the system to
perform updates or make membership changes. This degradation was not caused
by the particular distributed algorithms used to maintain membership and perform
updates but by the choice of standard RPC to implement the algorithms. Originally
the algorithms were developed to be executed over a high-performance broadcast
bus and in the MSCS case they were executed using repeated RPC calls, which very
quickly became a scalability bottleneck in the system.

These conclusions resonated with our earlier experiences of building advanced
distributed systems software. Our systems were used in a variety of complex
production environments, such as the stock-exchanges, air-traffic control and large
military systems. A decade of building software systems that transitioned into the
real-world thought us a number of valuable lessons. Many of our assumptions
about the real-world and how software was being used had been proven to be too
idealistic. The software was used in every possible situation, except for the ones
that it was originally intended for. These lessons have been very valuable and have
become a driving factor in our thinking about how to structure scalable distributed
systems. These lessons have been collected in a paper titled “Six Misconceptions
about Reliable Distributed Computing” which first was published at the 1998 ACM
SIGOPS European Workshop and later at the 1999 International Symposium on High
Performance Distributed Computing. The lessons are summarized in chapter 5.

86 Scalable Management Tools for Enterprise Cluster Computing Lessons learned 8786 Scalable Management Tools for Enterprise Cluster Computing Lessons learned 87

Applying the lessons

These conclusions drove much of my research agenda for 1997 and 1998 and I
architectured a new system, dubbed Quintet, in which distribution in all its aspects
was made explicit. Quintet provided high-level tools to help the application server
programmer with operations such as replication, but the developer decided, what,
where and when to replicate. Some of the management and support tools, such as a
shared data structure toolkit, relied on generic replication, but the developers that
use them are aware of the implications of importing this functionality. An overview
of Quintet can be found in chapter 6.

A framework for scalable cluster management

Using the experiences with traditional cluster management systems and the lessons
learned from developing scalable distributed components, I developed the Galaxy
Cluster Management Framework. Galaxy is a scalable solution for the management
of clusters in large data-centers. Its multi-tier management infrastructure provides
the ability to manage compute farms at multiple locations, with within a farm
islands of specialized clusters that are managed according to a cluster profile. A
profile describes the distributed systems services needed to support the operation of
the particular application cluster. The resulting architecture was first published in a
paper at the 2000 IEEE International Conference on Cluster Computing. Galaxy is
described in detail in chapter 8.

Continuing the quest for scalable cluster management

The world of enterprise cluster computing remains very much in flux. The experiences
with the demise of many e-commerce operations combined with sky-high energy
prizes have switched the focus of cluster management from optimal performance to
optimal energy usage. New computing devices based on blade architectures promise
lower power consumption if managed correctly.

Using the small blade architectures it is likely that the number of computing
devices in data centers will continue to increase, which will increase the pressure
on the scalability of the management system. One area that has only receive limited
attention over the past years is that of fully automated data-center management.
The drive will be to achieve autonomic systems that can be self-healing and self-
reconfigurable, probably based on complex rule-based systems.

88 Scalable Management Tools for Enterprise Cluster Computing Section PB

At the other end of the spectrum we find the new architectures for high-performance
servers that are build out of distributed components based on Infiniband or
ServerWorks hardware. These components are combined with intelligent storage
architectures that have significant processing power close to the disks itself. These
deeply distributed architectures introduce many new challenges for the scalability of
the cluster management systems for the years to come.

Chapter 5

Six Misconceptions about Reliable
Distributed Computing

This chapter describes how experiences with building industrial strength distributed
applications have dramatically changed the assumptions about what tools are
needed to build these systems.

5.1 Introduction

For the past decade the reliable distributed systems group at Cornell has been
building tools to support fault-tolerant and secure distributed systems [7]. These
tools (Isis, Horus and Ensemble) have been successful in an academic sense because
they functioned as research vehicles that allowed the community to explore the wide
terrain of reliability in distributed systems. They were also successful commercially
as they allowed industrial developers to build reliable distributed systems in a
variety of industrial settings. Through our interactions with industry we learned
a tremendous amount about the ways distributed systems were built and about the
settings in which the Cornell tools were employed.

What we found is that professional developers have applied these tools in almost
every possible way… except for the ways that we intended. By building major
distributed applications such as the New York & Swiss Stock Exchanges, the
French Air Traffic Control and CERN’s data collection facility, the professional
development community revealed that tools of the sort we offered are needed and
yet that our specific toolset was not well matched with the requirements of serious
practical builders [9]. This was not because the technology was somehow “incorrect”
or “buggy” but simply because of the particular ways in which distributed systems of

90 Six Misconceptions about Reliable Distributed Computing 5.2 The Misconceptions 9190 Six Misconceptions about Reliable Distributed Computing 5.2 The Misconceptions 91

a significant size are built. These surprising experiences led us to reevaluate our tools
and how we can improve support for building reliable distributed systems.

In this chapter we want to discuss the misconceptions we had about how distributed
systems are built. We believe that many others from the research community shared
our assumptions, and that they still are the basis for new research projects. It is thus
important that others learn from our mistakes

5.2 The misconceptions

The design of interfaces, tools and general application support in our systems was
based on beliefs concerning the manner in which developers would build distributed
applications under ideal circumstances. This methodology presumed that only
the lack of proper technology prevented the developer from using, for example,
transparent object replication. It is only now that the tools capable of supporting this
kind of advanced technology have been built and used by the larger public, that we
have come to recognize that some of the technology is just too powerful to be useful.
We offered a Formula One racing car to the average driver.

In this chapter we describe some of the more important idealistic assumptions made
in the earlier stages of our effort. In retrospect, we see that our assumptions were
sometimes driven by academic enthusiasm for great technology, sometimes overly
simplistic or sometimes just plain wrong.

5.2.1 Transparency is the ultimate goal

A fundamental assumption of our early work was that the developer seeks fault-
tolerance and hopes to achieve this by replacing a critical but failure-prone component
of an existing system by a high reliability version, obtained using some form of
active replication [8]. Thus although we considered client/server transparency as a
potential source for problems, we also believed that replication transparency from
the point of the server writer was a laudable goal. Developers should not have to
worry about replication strategies, failure conditions, state transfer mechanisms, etc.,
and be able to concentrate on the job at hand: implementing server functionality.

It turns out that server developers want to worry about replica configuration,
intervene in failure detection or enabling explicit synchronization between replicas.
There was only a small class of server applications where the designer did not care
about the impact of replication, and most of these involved server replicas that
needed no access to shared resources and were not part of a larger execution chain.

90 Six Misconceptions about Reliable Distributed Computing 5.2 The Misconceptions 9190 Six Misconceptions about Reliable Distributed Computing 5.2 The Misconceptions 91

The majority of systems in which transparent replication is used became more
complex, suffered reduced performance and exhibited potential incorrect behavior
traceable to the lack of control over how replication is performed. There is a strong
analogy with starting additional threads in a previously single threaded program,
where the designer is not aware of the added concurrency.

5.2.2 Automatic object replication is desirable

The prevailing thinking over the past decade has been that object systems represent
the pinnacle for transparent introduction and presentation of new system properties
(components did not exist until recently!). Objects provided an unambiguous
encapsulation of state and a limited set of operations. By using language or ORB
features we could automate the replication of objects without the need for any
changes to the objects, while using state machine replication. Products such as
Orbix+Isis [60] and projects such as Electra [63] have been successful in a technical
sense in that they succeeded in implementing these techniques, but their practical
success in the hands of users was very limited.

In addition to suffering the transparency limitations just described, automatic object
replication exposed problems in the area of efficiency. Apart from the fact that the
state machine replication was a very heavyweight mechanism when used with more
than two replicas, a generic replication mechanism needs to be conservative in its
strategies and may be very limited in terms of available optimizations. When allowing
the developer control over what and especially when to replicate, optimizations can
be made using the semantics of the application.

5.2.3 All replicas are equal and deterministic

One of the more surprising violations of our early assumptions was that many
services did not behave in a deterministic manner. The systems we were confronted
with were often complex multithreaded or multi-process systems, running on several
processors concurrently, containing massive subsystems designed and built by
different teams. Trying to isolate a generic template for transforming such systems
into reliable ones using a toolkit approach turned out to be impossible, because
generic solutions invariably depend upon strong assumptions about deterministic
behavior.

92 Six Misconceptions about Reliable Distributed Computing 5.2 The Misconceptions 9392 Six Misconceptions about Reliable Distributed Computing 5.2 The Misconceptions 93

5.2.4 Technology comes first

It makes good sense for an academic research group to focus on a technology for its
own sake. After all, academic research is rewarded for innovation and thoroughness.
As tool developers, however, we need to focus on the application requirements first
and then use technology only if it matches. When an academic group transitions
technology into commercial use it suffers from a deep legacy of this early set
of objectives. Obviously, there are success stories for academic-to-commercial
transition, but they rarely involve general-purpose tools. In particular, academics
tend to focus on the hardest 10% of a problem, but tool developers for industrial
settings need to focus first on doing an outstanding job on the easiest 90% of the
problem, and dealing with the residual 10% of cases only after the majority of cases
are convincingly resolved.

5.2.5 The communication path is most important

Many of the reliability techniques add extra complexity to the system design and
impose performance limitations. We spent years building super-efficient protocols
and protocol execution environments, trying to eliminate every bit of overhead, and
sometimes achieving truly dazzling performance. Developers, however, are less
concerned about state-of-the-art performance: their applications are heavyweight
and the processing triggered by the arrival of messages is significant. The parts
of the system they stress more and where performance really mattered is that of
management. Consistent membership reporting, bounded-delay failure handling,
guarantees on reconfiguration and bounds on the costs of using overlapping groups
are the issues they truly care about. Moreover, to slash performance we often
accepted large footprints, in the form of code bloat from inline expansion of critical
functions and increased memory for communication buffering. The user often
favors a smaller solution at the cost of lower performance.

5.2.6 Client management and load balancing can be made generic

We taught the user to replicate critical servers, then load balance for high performance,
and we argued that it could be done in a generic, very transparent manner. Indeed,
this fits the prevailing belief, since many RPC systems work this way (consider
cluster-style HTTP servers). But the situation for replicated servers proved much
more complex as soon as clients had a longer lasting relation with a server instance,
with state maintained at the server. In those cases client management could no longer
be made generic, without resulting to protocol specific tricks or using mechanisms

92 Six Misconceptions about Reliable Distributed Computing 5.2 The Misconceptions 9392 Six Misconceptions about Reliable Distributed Computing 5.2 The Misconceptions 93

that reduce performance significantly. Another aspect was that server developers
wanted to have strong control over the distribution of clients among the servers.
They almost always were interested in using application-specific knowledge to
group client connections together to maximize server-processing efficiency.

5.3 Conclusion

What conclusions can we draw from our experiences? The central theme in most of
the erroneous assumptions was that of transparency. Trying to achieve transparent
insertion of technology, to augment services with reliable operation, seemed a
laudable goal. Looking back we have to conclude that transparency has caused
more pain and tragedy than it has provided benefits to the programming community.
We believe the conclusion is warranted that we need to avoid including strong
transparency goals in our future work. Similar conclusions can be drawn from
experiences by other groups that are currently evaluating their research results [46].

This conclusion has driven a new research agenda and we have developed a new
system, dubbed Quintet, in which distribution in all its aspects is made explicit.
Quintet has high-level tools available to help the programmer with operations such
as replication, but the developer decides, what, where and when to replicate. Some
of the management and support tools, such as a shared data structure toolkit, rely on
generic replication, but the developers that use them are aware of the implications
of importing this functionality. A detailled description of Quintet can be found in the
next chapter.

The decision to give full control to the developer is in strong contrast with the current
trends in reliable distributed systems research, where transparency is still considered
the Holy Grail. These new systems [68,93,104] experience the same limitations that
the serious use of our systems exposed. Only by restricting the useable model will
these systems be able to support developers in a consistent manner. Quintet does
not restrict the traditional programming model in any way and while providing the
developer with more effective tools to do his/her job.

94 PB

 Chapter 6

Quintet, Tools for Reliable Enterprise
Computing

This chapter describes Quintet, a system for developing and managing reliable
enterprise applications. Quintet provides tools for the distribution and replication of
server components to achieve guaranteed availability and performance. It is targeted
to serve the application tier in multi-tier enterprise systems, with components
constructed using Microsoft COM. Quintet takes a radical different approach from
previous systems that support object replication, in that replication and distribution
are no longer transparent and are brought under full control of the developer.

6.1 Introduction

In enterprise settings computing systems are becoming more and more organized as
distributed systems. These systems are critical to the corporate operation and a strong
need arises for making these systems highly reliable. The first step in addressing
these needs has been taken by industry: based on their experiences with dedicated
cluster environments, as new cluster management software systems have been
developed that target off-the-shelf enterprise server systems. In general commercial
cluster products provide functionality for the migration of applications from failed
nodes to surviving nodes in the system. Although this offers some relief for systems
such as web servers, databases or electronic mail servers, it does not facilitate the
development of systems that are capable of exploiting the cluster environment to its
full potential.

Quintet addresses some of the problems that arise when building reliable distributed
enterprise applications. The system provides development and runtime support for
components that make up the application tier of multi-tier business systems. In the

96 Quintet, Tools for Reliable Enterprise Computing 6.2 Reliability 9796 Quintet, Tools for Reliable Enterprise Computing 6.2 Reliability 97

target systems this tier is constructed out of servers build as collections of COM
components. Components developed using the tools provided by Quintet are able to
guarantee reliable operation in a number of ways, and the system is extensible in that
new guarantees and interfaces can be added.

The project is concerned with research into two areas:

• What development tools are needed to build reliable distributed components
for enterprise computing? With a strong focus on efficiency, simplicity and
ease of use.

• What infrastructure is needed for reliability management on the high
performance cluster systems providing the component runtime environment?

The next two sections in this chapter provide some background on the way Quintet
addresses issues surrounding reliability and distribution transparency. This is
necessary to understand the design choices that have been made. The section
following the introduction provides an overview of Quintet’s functionality and the
solutions that can be built with the Quintet tools. After a description of the target
environment and relation between Quintet and the Microsoft Transaction Server, the
chapter provides details on the major system components that make up Quintet.

6.2 Reliability

Component reliability in Quintet addresses two aspects of distributed computing:
high-availability and scalable performance. The first is concerned with that given a
limit to the number of node failures, the system guarantees that the remaining set of
nodes continues to provide the required functionality. The second aspect ensures that
the system, using adaptive methods, distributes the load over available resources to
guarantee optimal performance.

Reliability in Quintet is described using a Quality-of-Service specification. When
a new component is added to the system, the administrator describes the reliability
requirements of the component, which are input for the runtime system and for the
component class factories. The specification can be changed on-line and the system
can be requested to reconfigure accordingly.

A simple approach for providing high-availability and scalable performance would
be to replicate components over several server nodes and to provide client fail-over
and load balancing to achieve the reliability goals. Although this is an approach that
certainly can be used in Quintet, several more tools to design the distribution of server

96 Quintet, Tools for Reliable Enterprise Computing 6.2 Reliability 9796 Quintet, Tools for Reliable Enterprise Computing 6.2 Reliability 97

components, beside active replication [8], are offered. The designer has a full range
of synchronization, replication, persistency, data sharing & consistency, checkpoint
& logging, coordination and communication tools available to construct components
that are distributed in a fashion that exactly match its reliability requirements.

6.3 Transparency

A decade of building large distributed systems in industrial settings (see chapter 5)
has shown a serious mismatch between the available tools for constructing reliable
systems and the requirements of professional system builders. Many of the problems
can be reduced to the fact that tool-builders were trying to achieve the transparent
insertion of their technology, while system-builders need full control to achieve
acceptable performance or efficient management.

The pinnacle of transparent operation can be found in the attempts to provide fully
automatic object replication. By using language or ORB features the replication of
objects could be automated without the need for any changes to the objects, while
using state machine replication. Products such as Orbix+Isis[60] and projects such
as Electra [63] have been successful in implementing these techniques, but their
success in the hands of users was very limited.

In all observed systems (see chapter 5) it turned out that server developers want to
worry about replica configuration, intervene in failure detection or enable explicit
synchronization between replicas. There was only a small class of server applications
where the designer did not care about the impact of replication, and most of these
involved server replicas that needed no access to shared resources and were not part
of a larger execution chain. The majority of systems in which transparent replication
is used, become more complex, and suffer reduced performance and potential
incorrect behavior. This is traceable to the lack of control, within the application,
concerning how replication is performed. There is a strong analogy with starting
additional threads in a previously single threaded program, while the designer is not
aware of any concurrency.

In addition to the transparency limitations just described, automatic object replication
exposed problems in the area of efficiency. Apart from the fact that the state-machine
replication is a very heavyweight mechanism when used with more than two replicas,
a generic replication mechanism needs to be conservative in its strategies and may
be very limited in terms of available optimizations. When allowing the developer

98 Quintet, Tools for Reliable Enterprise Computing 6.4 Quintet goals 9998 Quintet, Tools for Reliable Enterprise Computing 6.4 Quintet goals 99

control over what and especially when to replicate, optimizations can be made using
the semantics of the application.

These observations have resulted in that in Quintet distribution in all its aspects is
made explicit. Although there are many tools available to help with operations such
as replication, the developer decides, what, where and when to replicate. Some of
the management and support tools, such as the shared data structure toolkit, rely on
generic replication, but the developers that use them are aware of the implications of
importing this functionality.

The decision to give full control to the developer is in strong contrast with the trends
in reliable distributed object research, where transparency is still considered the
Holy Grail (chapter 5). These systems [68,93,104] experience the same limitations
that the serious use of our systems exposed. Only by restricting the useable model
will these systems be able to support developers in a consistent manner. Quintet
does not restrict the traditional programming model in any way and provides the
developer with more tools to do his/her job.

6.4 Quintet goals

Quintet targets the development of client/server computing in multi-tier enterprise
systems, where there are reliability requirements for the servers. In the prototype
system, the servers are implemented using Microsoft COM component technology.

The central research goal of Quintet is to find the collection of tools that is most
useful for the developers of reliable components. Given that this is not an area
where past experience can drive the selection of these tools, the project was started
with building a limited set of essential tools and interfaces. Iterative, based on user
feedback, the tool collection was changed to meet the real needs. One of the major
reasons for targeting COM based server environments was that these have a perceived
need for reliability and the project is very likely to get valuable feedback from the
user community to ensure the much needed improvement cycles. An overview of the
initial tool set appears in a later section of this chapter.

The server components developed with Quintet are COM aware as all services
offered are only available through COM interfaces. The expectation was that the
majority of client/server interaction in this environment is DCOM based, but there
is nothing in the system that inhibits client/server communication based on RPC,
HTTP-tunneling, sockets or to integrate an IIOP-bridge. What ever client/server

98 Quintet, Tools for Reliable Enterprise Computing 6.4 Quintet goals 9998 Quintet, Tools for Reliable Enterprise Computing 6.4 Quintet goals 99

access mechanism is used, the actual application tier components are implemented
as COM classes and instantiated through COM class factories.

In a traditional DCOM client/server system the event that triggers the instantiation of
a component in that of a CreateInstance call at the client system. For reliable COM
server components the rules for instantiation can be more complex and are often
based on the reliability QoS specification for the particular component. For example
server components can out-live client connections to ensure real-time volatile state
replication, where the component is only made persistent and decommissioned after
no new client connection was made within a given time period.

In the current set of tools offered in Quintet it is assumed that instances of the same
component have a certain need for cooperation. The basic communication tool is
pre-configured to provide a component with primitives to communicate with all
other instances of the same component and to receive membership style notifications.
Quintet based replicated components are not forced to maintain identical state, the
developer chooses when and what to replicate, to which components. How optimistic
(or pessimistic) the state replication strategy is, depends on application trade-offs,
and can be adjusted on the fly. Cooperation in Quintet is not limited to components
of the same class. Different components, can transfer state, synchronize, vote for
leadership, use shared data structures and use the communication tools in explicit
manners.

Given that all distribution is explicit, a major concern in Quintet is that the exposed
complexity could make the development task more hazardous, yielding systems that
are more error prone and thus implicitly defeating the reliability goals. The tools and
interfaces are designed with care to match the existing COM programming practices
as much as possible, making the transition for developers as simple as possible. In
good Windows tradition, a number of Programming Wizards are provided to assist
in the more complex tasks.

The second goal of Quintet was to build an efficient runtime environment to support
the development of complex tools. In Quintet new algorithms for scalable lightweight
object membership, fast distributed synchronization, efficient component migration,
have been applied. The Core Technology (QCT), which implements the underlying
communication system, is designed with high-performance cluster communication
interfaces in mind.

100 Quintet, Tools for Reliable Enterprise Computing 6.6 Target environment 101100 Quintet, Tools for Reliable Enterprise Computing 6.6 Target environment 101

6.5 Relation with MTS

Although the Microsoft Transaction Server (MTS) is concerned with offering
solutions to server components with a different set of requirements, Quintet has in
its implementation some solutions that are similar to MTS. The way the component
management service is the container server for the components it manages and the
way it maintains contexts for each component instance are similar to the way MTS
manages its components. The similarity is based on that this is the correct way of
managing COM objects.

Two other mechanisms in Quintet have identical counterparts in MTS: Security is
implemented using a role based management system and long running components
can be temporarily retired without notifying the connected clients. The role-based
security was chosen based on a research decision and its similarity to the MTS
solution can be seen as accidental. The retire operation was added to Quintet, based
on the argumentation by the MTS architects that memory consumption by long
running components is the limiting factor in scaling component servers such as
MTS and Quintet. We do not have any experiences that support this claim, but the
arguments seem reasonable and by implementing the facility Quintet can be used to
research this issue.

6.6 Target environment

Quintet is designed to function on a collection of server nodes, organized into a
cluster, with some form of cluster management software offering basic services
such as node addressing, node enumeration, object naming and basic security. The
prototype implementation of Quintet uses the Microsoft Cluster Service (MSCS)
[100], LDAP accessible naming service (Active Directory) and the standard
Windows NT/DCOM security mechanisms (LanManager).

The Quintet implementation assumes cluster sizes of 4 to 16 nodes. Although nothing
in its design prohibits the use of larger sized clusters, the distributed algorithms
used in the Core Technology are optimized towards clusters of this size. The
implementation is modular in the sense that the Core Technology components can
be replaced if the need for that arises. A fundamental assumption in the construction
of the system is that the intra-cluster communication can be performed an order of
magnitude faster than the client/server interaction.

100 Quintet, Tools for Reliable Enterprise Computing 6.6 Target environment 101100 Quintet, Tools for Reliable Enterprise Computing 6.6 Target environment 101

Although a first concern of Quintet is correctness of the services it offers, providing
scalable performance is an important second goal. In a related measurement
project MSCS and DCOM are thoroughly analyzed to understand the performance
boundaries of these technologies (see chapter 7), and to be able to offset Quintet
introduced overhead and costs correctly.

6.7 System overview

Components developed with Quintet are available on the server nodes through
application servers (Quintet Component Manager) that are configured to export the
components through the traditional component registration channels. Instantiation
requests arrive at the servers, which are responsible for the loading and unloading of
class factories, and tracking component instances.

A variety of different styles can be used in developing reliable components, all
depending on the reliability requirements of the application. Components can be
longer running, actively replicated components, where each new client connection
only triggers the instantiation of some client state. Or each new instantiation request
can result in the creation of two instances at different nodes that collaborate in a
primary/backup fashion.

In principle the class factories implement client management and replica instantiation,
while the components implement the replication strategy. In implementing each of
these tasks the developer is assisted by Quintet functionality. Quintet provides
default implementations for general cases.

The system implementation consists of sixmajor building blocks

1. Core Technology. The communication system on which the component
manager and the component runtime are based. It provides membership and
multicast communication functionality.

2. Server Component Management. Provides the registering and loading of the
server components. Manages component placement, fault monitoring and
handling, security and basic system management.

3. Server Component Development. The basic tools for the developer to construct
the server components

4. Server Component Runtime. Tool implementation and management, is part of
the component manager.

102 Quintet, Tools for Reliable Enterprise Computing 6.7 System overview 103102 Quintet, Tools for Reliable Enterprise Computing 6.7 System overview 103

5. System Management Tools. A collection of tools for administrators to monitor
and manage the system and its individual components.

6. Client Runtime. Mechanisms to support connections to potentially replicated
components by regular DCOM clients. Support for failover to alternative
component instances upon failure.

Each of the different building blocks is described in detail in following sections.

6.7.1 Core Technology

Quintet Core Technology (QCT) is the basic building block for the server
management and component runtime. It is a lightweight implementation of a Group
Communication Service [7], specifically targeted towards high-performance clusters.
It uses MSCS style addressing and makes use of some of the nodes management
features of the MSCS management software [100]. It uses this information to locate
other Quintet component managers, and to determine which network interfaces to
exploit for intra-cluster network communication.

QCT is designed to run over both reliable and unreliable interconnects and is
optimized towards user-level communication interfaces such as VIA [33] and U-Net
[37]. The low-level message handling interfaces make extensive use of asynchronous
message transfer and facilities such as Windows NT completion ports to optimize
interaction with the network.

QCT offers Virtual Synchrony guarantees [7] on its communication primitives,
ensuring the ordering of messages in relation to membership changes and atomicity
on all message delivery. The communication interface provides a multicast
primitive to send all members in a group and a send primitive to address a single
member. Messages sent with the multicast primitive can be sent with either the basic
guarantees (atomicity) or can be extended with a total order guarantee ensuring that
all members see all messages in this group in the same order.

QCT provides an internal interface, mainly used by the component managers (see
next section). The components and class factories see a higher level interface for
communication. To make the system scalable and not overuse the heavy weight
virtual synchronous membership for each instantiation of a component, a lightweight
component membership mechanism is layered over the basic system.

Each component is automatically a member of its ClassGroup, which provides
membership notification and communication to all instances of a single component

102 Quintet, Tools for Reliable Enterprise Computing 6.7 System overview 103102 Quintet, Tools for Reliable Enterprise Computing 6.7 System overview 103

class. All the class factories of the same component class, present at the different
component managers see membership change notifications whenever a component
is instantiated or destructed. The class factories also see membership changes
whenever a new instance of the particular class factory joins the system. The
components only see changes in the component membership, not of the factories,
and the components only receive membership updates if they explicitly register for
it. The virtual synchronous membership agreement algorithm is only run in case of
the failure of an object manager, or when a class factory at a component manager is
unloaded.

Components can make use of the group communication facilities outside of the
ClassGroups interface by using self-defined groups and names. The component can
choose to either use the lightweight component membership or the more heavyweight
low-level QCT interface.

6.7.2 Component Management

The Quintet Component Manager (QCM) is the central unit in the management
of the reliable components. The functionality of the manager includes: loading of
component libraries, starting of class factories, performing security checks, client
administration & configuration, failure handling, dynamic load management and
system administration. The manager contains the Core Technology and the runtime
for the tool collection.

QCM is registered at each server node to implement all the component classes it
manages, resulting in that the Service Control Manager at the node routes regular
DCOM instantiation requests for the components to QCM. The method by which a
client receives information about which node to contact for its instantiation request
depends on the particular client technique used, which are described in the section
on the client runtime. The class factories for the requested component are expected
to collaborate on providing a hint to the QCM at which node the instantiation is
preferred. This information is relayed to the client moniker object or the proxy
process. If the class factories suggest “don’t care” the QCM makes a decision based
on the QoS spec for the component.

For each component instance the QCM maintains a shadow object (context object in
MTS terms), where the object references, returned to the client, refer to. The shadow
object contains administration, statistical and debug information. Longer running
components, with a low method invocation frequency, can be requested to persist

104 Quintet, Tools for Reliable Enterprise Computing 6.7 System overview 105104 Quintet, Tools for Reliable Enterprise Computing 6.7 System overview 105

their state and then destruct themselves. At the next method request, directed to the
shadow object, the component is reloaded from the saved state. This mechanism
can not be used for all types of components, as for example components engaged in
active replication can not be decommissioned.

It is possible to migrate active components to other nodes in the system, and there are
two mechanisms from which the component state at the new node can be recreated:

1. The component can implement an IMigrateState interface, or
2. The manager can forcibly use the checkpoint and reload mechanism. Requests

from clients that are not yet updated with the new location of the migrated
component are forwarded based on indirection information in the shadow
object. The shadow object is garbage collected after the original component is
destructed.

Each node in the cluster runs one or more component managers. How many managers
run at a node depends on the particular component configuration. If a component is
considered to be unreliable, for example during a development phase, its potential
failure is isolated from the rest of the component system by running the component
in a separate address space attached to a private manager. If a component crashes
it will not cause the failure of the other components. For scheduling and network
efficiency it is desirable to have a single component manager per node, controlling
all components at that node. The first QCM process runs as a Windows NT service,
any additional processes are started by the first QCM process. The primary QCM
process is under control of an MSCS resource monitor to ensure automatic restart in
case of failure.

6.7.3. Component Development Tools

Quintet offers a collection of tools for the developer to use for the construction of
the class factories and the components. The following is a short list of the most
important tools.

• Basic membership & communication. As already described in the section
on Core Technology, each component and its class factory are automatically
a member of its ClassGroup. The components can register for receiving
membership change notifications, and additional interfaces are available to
query the membership through the runtime and from components such as
the shared data structures. Next to the use of the ClassGroup the component

104 Quintet, Tools for Reliable Enterprise Computing 6.7 System overview 105104 Quintet, Tools for Reliable Enterprise Computing 6.7 System overview 105

is free to create, join and leave other groups and communicate using those
groups. The component, however, cannot leave its ClassGroup other than
through destruction.

• State maintenance. A component can implement a shared state interface and
register this interface with the object manager. State update can be performed
manually by a component notifying the component manager that it now wants
its state transferred to all other components that have registered the same
component state interface. If needed, any synchronization before the state
update is to be handled by the component itself. The component manager
retrieves the state from requesting component and updates all components in
total order.
The developer can also choose for an automated version of state update.
Components notify the QCM whenever the state has changed, and whenever
they are in a position to receive the state update. As soon as all components
have signaled their availability the component manager updates the state. Any
conflict resolution needs to be implemented by the component state receive
routines. An example where this kind of automation is useful is when using a
primary component with a collection of hot standbys.

• Shared data structures. To support simplified state sharing strategies Quintet
offers a collection of data structures (hash table, associative sets, queues,
etc.) that can be shared among component instances. The object managers
implement the runtime for this and ensure that component instances which
share interface references to a shared datastructure, always have access to a
local copy. Updates to the data structures are guaranteed to keep all replicas in
a consistent state.

• Voting. A component can propose an action, on which the participating
components vote to accept or reject. More complex algorithms for quorum
techniques, barrier synchronization, distributed transactions and leader
election are implemented using this basic voting interface. This is similar to
the services in [3].

• State persistence. Quintet offers a persistent object store to the components
from which the components can be initialized. The mechanism is used for
crash recovery, system startup and the decommissioning and restart of long
running components. Components are not automatically persistent, they use a
checkpoint and logging interface to explicitly persist their state.

106 Quintet, Tools for Reliable Enterprise Computing 6.7 System overview 107106 Quintet, Tools for Reliable Enterprise Computing 6.7 System overview 107

6.7.4 Component Runtime

Many of the tools Quintet offers to the developer have a significant runtime
component to them. The majority of the tool collection is implemented using
the facilities offered by QCT. With the exception of some management modules,
the communication between tool instances runs over the same heavyweight
communication endpoint as the ClassGroup of the component that uses the tool.
The lightweight addressing space is divided such that class factories, component
instances and tools can be addresses separately and messages can be multicast to
the appropriate subsets. This sharing is an optimization, when the runtime detects
that a tool instance is use by different components, it creates its own heavyweight
endpoint.

An example of a tool with a major runtime component is the one that implements
shared data structures. The runtime implements the data structures itself, the
distributed access, the consistent updates, and the replica & location management to
ensure that components always have local read access.

To ease the development of new tools, a small support toolkit was built that
implements basic data types, message handling and the serialization of basic data
types through QCT.

A tool that does not make use of the QCS facilities is the Persistent Object Store,
which uses the checkpoint and logging facility offered by MSCS [100]. This ensures
that the data is always available to the nodes that are active in the cluster as MSCS
terminates minority partitions that have no access to the shared Quorum resource.
The Quorum resource is a shared disk, which also stores the checkpoints and logs.

6.7.5 System Management

Experiences show that complex server systems such as Quintet are only as useful as
the system management tools and interfaces that accompany it. Without these tools
the system becomes painful to use, difficult to monitor and diverts the attention of
the developer from the most important task: developing robust components.

The key system management tool is a traditional Win32 explorer style application,
which can be used for all the administrative tasks. The management tool is developed
as a traditional COM client/server application, with the server functionality
implemented in the Component Managers. There are command line counterparts of
the tool, but they are geared towards the use in shell scripts. Several tool instances

106 Quintet, Tools for Reliable Enterprise Computing 6.7 System overview 107106 Quintet, Tools for Reliable Enterprise Computing 6.7 System overview 107

can be running at the same time. The tools are augmented with failure detection
mechanisms outside of the scope of COM to ensure timely failover to another
component manager, in the case of a manager or node crash. The RPC timeout
mechanism in COM is very tolerant but a 30 seconds delay is unacceptable for
Quintet purposes.

The management tool provides developers with the ability to add components to
cluster through drag and drop, and to add a Reliability QoS specification as well
as the security information for the new component. The tool can be used to control
manager and component configuration, and runtime control tasks, such as component
migration, can be performed manually.

The Component Managers contain several methods to monitor the operation of the
system and to monitor components on an individual basis. Information ranging from
statistics to individual method invocation and results can be monitored and displayed
in the management tool.

The tool can be extended on a per-component basis with component specific control
and management functionality (see the section on extensibility).

6.7.6 Client Runtime

Client access to the component instances is still a major research issue. Currently
two approaches are implemented: In the first approach the client is failover aware
and uses a reconnect mechanism to hookup with an alternative component instance.
The second approach leaves the client unaware of the new situation and uses a local
proxy process through which all calls to the component replicas are routed.

Although prototypes of both approaches are implemented and running, the difficulty
is in determining whether all cases are handled correctly. Realistic COM client/
server applications often have very rich interaction patterns and some of the pre-built
MS components implemented using the ATL or MFC toolkits introduce additional
levels of complexity.

The failover aware approach has its limitations as COM insists on making
distribution of the component fully transparent and treats each component as if it is
local, providing no failure information about the distributed case. Quintet’s support
here consists of a set of moniker objects that internally interact with the component
managers to connect to a selected node and are also responsible for the selection of
new nodes after failure occurs. The developer in the design of the client needs to

108 Quintet, Tools for Reliable Enterprise Computing 6.8 Extensibility 109108 Quintet, Tools for Reliable Enterprise Computing 6.8 Extensibility 109

catch these failures and use the moniker to reconnect. This approach has only been
made to work in C/C++ COM environments and have not found their counterpart
(yet) in VB and Java.

The most promising of the two approaches is the one that uses a local proxy to
implement the client/server interaction. The proxy receives component information
from the component manager and registers itself at the local node as implementing
these components. The Service Control Manager at the local node then routes all
CreateInstance requests to the local proxy. The proxy interacts with the Component
Manager to create the correct forwarding path and upon server failure or component
migration adjusts the path accordingly. The proxy is efficient in that it inspects the
stack of the incoming RPC call to do some cut-through routing without the need to
implement the interface locally and fully execute each RPC invocation. As always
Connection Points (COM’s version of callbacks) make the whole mechanism
more complex, and are handled with support from the Component Managers. The
Managers keep track of this kind of full duplex connection, and ensure that upon
client handoff to another component instance, the component that now handles the
client has the right client routing information.

6.8 Extensibility

The base system is extensible by developers in a number of ways:

1. Component specific management modules can be added to the management
tools.

2. Component specific debug support can be added to component managers.
3. Runtime support for new tools can be added to the component managers.
4. General component management can be added to the component managers.

The extensions to the management tools and the component managers are
implemented as COM components and loaded on demand though the regular
configuration information in the NT registry. Each extension type needs to implement
a predefined interface through which the component can be initialized and given
access to environment it executes in.

To enable the development of these extensions, the component manager and the
administration tool export a set of interfaces that can be used by each extension to
implement its functionality.

108 Quintet, Tools for Reliable Enterprise Computing 6.8 Extensibility 109108 Quintet, Tools for Reliable Enterprise Computing 6.8 Extensibility 109

6.9 Future Work

There are a number of major research issues that have arisen but have not been
worked out yet. The most important issue is that of inter-component dependencies,
the obvious solution seems to hint to the use of component groups and manage the
groups as single units, but as yet it is uncertain what the best way is to express the
dependencies and how to manage them at runtime. Which approach to client runtime
is the right one, remains an open issue until there is more experience with actual
deployment of the system and more industrial-strength application development has
been done.

110 PB

Chapter 7

Scalability of the Microsoft Cluster Service

7.1 Introduction

An important argument for the introduction of software managed clusters is that of
scale: By constructing the cluster out of commodity compute elements, one can, by
simply adding new elements, improve the reliability of the overall system in terms
of performance and in availability. The limits to how far such a cluster can be scaled
seems to be dependent on the scalability of its management software, which in its
core has a collection of distributed algorithms to guarantee the correct operation of
the cluster. The complexity of these algorithms makes them a vulnerable component
of the system in terms of their impact on the overall scalability of the system.

This chapter examines two of the distributed components of the Microsoft Cluster
Service (MSCS) [100] that are most likely to have an impact on its scalability: the
membership and the global update managers. The first sections of the chapter will
provide some general background on these distributed services and related scalability
issues. After this introduction the algorithms used to implement these service are
described in detail and an analysis of their impact on scalability is presented. The
scalability analysis is based on an off-line analysis of the algorithms as well as the
results of on-line experiments on a cluster with a, in MSCS terms, large number of
nodes.

7.2 Distributed Management

In distributed management software, two components are considered basic
building blocks: a consistent view about which nodes are on-line, and the ability to
communicate with these nodes in an all-or-nothing fashion [8].

112 Scalability of the Microsoft Cluster Service 7.3 Practical Scalability 113112 Scalability of the Microsoft Cluster Service 7.3 Practical Scalability 113

The first building block is captured in a membership service: all nodes participate in
a consensus algorithm to agree on the current set of nodes that are up and running.
The system makes use of a failure detection mechanism that monitors heartbeat
signals or actively polls other nodes in the system. The failure detector will signal
the membership service whenever it suspects the failure of a node in the system. The
membership service will react to this by triggering the execution of a distributed
algorithm at all the nodes in the system, in which they agree upon which nodes have
failed and which are still available. The joining of a new member in the system, does
not require the nodes to run the agreement protocol, but can often be handled through
a simple update mechanism.

The second fundamental component provides a special communication facility, with
guarantees that exceed the properties provided by regular communication systems.
Often in the process of managing a distributed system it is necessary to provide
the same information to a set of nodes in the system. We can simplify the software
design of many of the components on the receiving side of this information if we
can guarantee that if one node receives this information, that all nodes will receive
it. This atomicity guarantee allows nodes to act immediately upon reception of
a message, without the need for additional synchronization. Often this atomicity
guarantee is not sufficient for a system, as it does not only need be assured that all
nodes will receive the update, but that all nodes will see the updates in the same
order. This total order property makes the communication module a very powerful
mechanism in the control of the distributed operation of the distributed system.

7.3 Practical Scalability

This chapter examines the membership and communication services of the Microsoft
Cluster Service (MSCS) with an emphasis on their impact on the scalability of the
system. MSCS, as shipped, officially supports 2 nodes, but in reality the software
can be run on a 16-node NT server cluster. For the purpose of the scalability tests we
extended the system software to run on 32 nodes.

Making systems scale in practice centers around the use of mechanisms to reduce the
dependency of the algorithms on the number of nodes. In the past, two approaches
have been successful in finding solutions to problems of scale: The first is to
reduce the synchronous behavior of the system by designing messaging systems
and protocols that allow high levels of concurrent operation, for example by de-
coupling the sending of messages from the collecting of acknowledgements. The

112 Scalability of the Microsoft Cluster Service 7.3 Practical Scalability 113112 Scalability of the Microsoft Cluster Service 7.3 Practical Scalability 113

second approach is to reduce the overall complexity of the system. By building the
system out of smaller (semi-)autonomous units and connecting these units through
hierarchical methods, growing the overall system has no impact on the mechanism
and protocols used to make the smaller units function correctly.

A third, more radical approach, which is under development at Cornell, makes use
of gossip based dissemination algorithms. These techniques significantly reduce the
number of messages and the amount of processing needed to reach a similar level of
information sharing among the cluster nodes, while maintaining a superior level of
robustness to various failures.

Given that cluster systems such as MSCS are used for enterprise computing, any
instability of the system can have severe economic results. There is a continuous
tradeoff between responsive failure handling and the cost of an erroneous suspicion.
The system needs to detect and respond to failures in a very timely matter, but
designers may choose a more conservative approach given the significant cost of an
unnecessary reconfiguration of the system, caused by an incorrect failure suspicion.
In general cluster server systems run compute and memory intensive enterprise
applications and these systems experience a significant load at times, reducing the
overall responsiveness. Scaling failure detection needs intelligent mechanisms for
fault investigation [81,99] and requires the failure detectors to be able to learn and
adapt to changes [80].

7.4 Scalability goals of MSCS

The Microsoft Cluster Service is designed to support two nodes, with a potential
to scale to more nodes, but in a very limited way. MSCS successfully addresses
the needs of these smaller clusters. The cluster management tools are a significant
improvement over the current practice and they are a major contribution to the
usability of clusters overall.

The research reported here is concerned with scaling MSCS to larger numbers of
nodes (16 - 64, or higher), which is outside of the scope of the initial MSCS design.
There are three areas of interest:

1. Can the distributed algorithms used in MSCS be a solid foundation for
scalable clusters?

2. Are there any architectural bottlenecks that should be addressed if MSCS
needs to be scalable?

114 Scalability of the Microsoft Cluster Service 7.6 Cluster Network 115114 Scalability of the Microsoft Cluster Service 7.6 Cluster Network 115

3. If MSCS is extended with development support for cluster aware applications
are the current distributed services a good basis for these tools?

This work should not be seen as criticism of the current MSCS design. Within the
goals set for MSCS it functions correctly and will scale to numbers larger then
originally targeted by the cluster design team.

7.5 Cluster Management

The algorithms used in MSCS for membership and total ordered messaging are
a direct derivative of those developed in the early eighties for Tandem as used in
the NonStop systems [16,53]. Nodes in a Tandem system communicated via pairs
of proprietary inter-processor busses, which, in 1985, provided a 100 Mbit/second
transfer rate. Parts of the messaging side of the algorithms was implemented in
interrupt handlers to provide minimal system overhead. It is also important to notice
that the bus provided a broadcast facility.

Although MSCS has a kernel module that implements some of the messaging and
failure detection, the membership and global update algorithms are implemented
in an NT service, the Cluster Service, which runs at user level. The Cluster Service
holds in total 11 managers, each responsible for a different part of the cluster service
functionality. Next to the membership and communication managers, there are
managers for resource and failover management, for logging and checkpointing, and
for configuration and network management.

In the following sections three of the components are examined in detail: first
the kernel module which holds the cluster communication and failure detection
functionality. Secondly the join process and the failure reconfiguration of the
membership module are analyzed. The last analysis is that of the global update
communication module.

7.6 Cluster Network

MSCS provides a kernel based cluster network interface, ClusNet, which presents a
uniform interface to networks available for intra-cluster communication. ClusNet
supports basic datagram communication to each of the nodes, using an addressing
scheme based on simple node identifiers which are assigned to nodes when they are
first configured for use in the cluster. To support reliable communication ClusNet
provides a transport interface used by MS-RPC, which is directly derived from DCE
RPC.

114 Scalability of the Microsoft Cluster Service 7.6 Cluster Network 115114 Scalability of the Microsoft Cluster Service 7.6 Cluster Network 115

ClusNet is capable of managing a redundant networking infrastructure, automatically
adapting packet routing in case of network failure.

7.6.1 Node Failure Detection

MSCS implements its Failure Detection (FD) mechanism using heartbeats.
Periodically every node sends a sequenced message to every other node in the
cluster, over the networks that are marked for internal communication. Whenever a
node detects a number of consecutive missing heartbeats from another node it sends
an event to the cluster service which uses this event to activate the membership
reconfiguration module.

In the current MSCS configuration heartbeats are sent every 1.2 seconds and the
detection period for a node suspicion is 7.2 seconds (6 missed heartbeats). The
timing values are not adaptive.

The cluster network module does not exploit any broadcast or multicast functionality,
and thus each heartbeat results in (number_of_nodes-1) point-to-point datagrams.
In our test setup of 32 nodes, the cluster background traffic related to heartbeats
is 800 messages per second. With 32 nodes active and an otherwise idle network
the mechanism works flawless and the packet loss observed was minimal. Tests
which replaced the Fast-Ethernet switches with hubs showed that the packet trains
sometimes caused significant Ethernet-level collisions on the shared medium.
Adding processing load to the systems resulted in variations in the inter-transmission
periods. False suspicions were never seen.

When adding processing load and additional load on the network frequently single
heartbeat misses were observed, but the timing values for generating a failure
suspicion events are set very conservative, and as such these missed heartbeats
never generate any false suspicions. The failure detection times could be set more
aggresively based on the network capabilities but field tests with varying heartbeat
configurations have shown that legacy hardware limitations warrant this conservative
approach.

7.7 Node Membership

The MSCS membership manager is designed into two separate functional modules:
the first handles the joining of nodes and a second, regroup, implements the
consensus algorithm that runs in case of a node failure.

116 Scalability of the Microsoft Cluster Service 7.7 Node Membership 117116 Scalability of the Microsoft Cluster Service 7.7 Node Membership 117

7.7.1 Join

The join algorithm starts with a discovery phase in which the joining node attempts
to find other nodes in the cluster. If this fails the node tries to form a cluster by itself,
the details of the cluster-form operation can be found in chapter 5. After the node
has discovered which cluster nodes are currently running it selects one of the nodes
and petitions for membership of the cluster. The selected node, dubbed the sponsor,
announces the new node to all active cluster members, transfers all the up-to-date
cluster configuration to the new node, and waits for the node to become active. The
different phases of the join and their distributed complexity are described in detail in
the following paragraphs

Phase 1: Discovery. When a cluster service starts it attempts to connect to each of
the other known nodes in the cluster, using RPC over a regular UDP transport. This
sponsor discovery mechanism has a high degree of concurrency: a thread is started
for each connection probe. The joiner waits for all threads to terminate, which occurs
when a connection is established or the RPC binding operation fails after a time-out.
As the joiner waits for all threads to terminate, the delay the joining node experiences
is based on the time-out period of a RPC connection to a single node that is not up.
The timeout value for RPC out-of-the-box is approximately 30 seconds, but it can be
manipulated to reduce the discovery phase to 10 seconds.

0

500

1000

1500

2000

2500

3000

1 4 7 10 13 16 19 22 25 28 31

#nodes

mi
ll

is
ec

on
ds

Figure 7.1. Join Latency under ideal conditions

116 Scalability of the Microsoft Cluster Service 7.7 Node Membership 117116 Scalability of the Microsoft Cluster Service 7.7 Node Membership 117

In all observed cases, the joining node always selected the holder of the cluster IP
address to sponsor its join. The cluster IP address is a single address that migrates to
a node that functions as the access point for administrative purposes: if the cluster is
running there is always a node that holds this IP address. By modifying the startup
phase to start by attempting to connect to this address first before probing all the
other nodes, it is possible to reduce this phase of the join process to under a second.
This approach also avoids starting a number of threads that is equal to the number of
nodes in the cluster.

Phase 2: Lock. From the nodes that are up, the joiner selects one node to sponsor its
membership in the cluster. The first action by the sponsor is to acquire a distributed
global lock to ensure that only a single join is in progress. Acquiring of the lock is
performed using a global update (GUP) method.

The use of GUP makes this phase dependend on the number of active nodes. Details
on the performance and scalability of GUP can be found in section 6.7.

Phase 3: Enable Network: Using a sequence of 5 RPC calls to the sponsor, the
joiner retrieves all information on current nodes, networks and network interfaces.
Following this the joiner performs an RPC to each active node in the cluster for each
network interface a node is listening on, and the contacted node in return performs
an RPC to the joiner to enable symmetric network channels. After this sequence
the node security contexts are established which again requires the joining node to
contact all other active nodes in the cluster, in sequence.

This phase depends on the number of active nodes in the cluster. An unloaded 31
nodes cluster, on average, performs this sequence of RPC’s in 2-4 seconds. On
a moderately loaded cluster, frequently this phase takes longer than 60 seconds,
causing the join operation to time-out at the sponsor, resulting in an abort of the
join.

Phase 4: Petition for Membership: The joiner requests the sponsor to insert the
node into the membership. This is a 5-step process directed by the sponsor.

1. The sponsor broadcasts to all current members the identification the joining
node.

2. The sponsor sends the membership algorithm configuration data to the joiner
3. The sponsor waits for the first heartbeat from the new joiner.
4. The sponsor broadcasts to all current members that the node is alive
5. The sponsor notifies the joiner that it is inserted in the membership

118 Scalability of the Microsoft Cluster Service 7.7 Node Membership 119118 Scalability of the Microsoft Cluster Service 7.7 Node Membership 119

The broadcasts are implemented as series of RPC calls, one to each active node in
the cluster. On an unloaded cluster and network the serialized invocation of RPC to
30 nodes takes between 100 and 150 milliseconds. When loading the systems with
compute and IO tasks, the RPC times vary widely from 3 millisecond to 3 second per
RPC. Broadcast rounds to all 30 nodes were observed taking more than 20 seconds
to complete (with exceptions up to 1 minute). As this phase is under control of the
sponsor the join is not aborted because of a time-out. It can abort on a communication
failure with any of the nodes.

In step 3 the detection of the new heartbeat is delegated to ClusNet, which performs
checks every 600 millisecond, resulting in an average waiting period between 0.6
and 1.2 seconds

Phase 5: Database synchronization. The joiner synchronizes its configuration
database with the sponsor. In the experimental setup this database was of minimal
size and never out-of-date. As the retrieving of the database updates is not dependent
on cluster size, no further tests were performed on this phase.

Phase 6: Unlock. The newly joined node uses its access to the global update
mechanism to broadcast to all nodes that it now is full operation and that the global
lock should be released.

The join operation is very much dependent on the number of nodes in the system.
Figure 7.1 shows the times for a join under optimal conditions. All RPC calls in the
algorithms are serialized and at minimum there are (10 + 7 * number_of_nodes)
calls. Joining the 32nd node to the cluster requires at least 227 sequential RPC’s.
This approach collapses under load, frequently it is impossible to join any nodes
if only a moderate load is placed on the nodes and the system has more than 10-12
nodes.

7.7.2 Regroup

Upon the receipt of a node failure event generated by ClusNet the Cluster Service
starts the reconfiguration algorithm, dubbed regroup. The algorithm runs in 5 phases,
with the transition to each new phase determined after it is believed that all other
nodes have finished this phase, or when, in the first two phases, timers expire.

During regroup the nodes periodically (300ms) broadcast their current state
information to all other nodes using unreliable datagrams. The state is a collection of
bitmasks, one for each phase, describing whether a node has indicated it has passed

118 Scalability of the Microsoft Cluster Service 7.7 Node Membership 119118 Scalability of the Microsoft Cluster Service 7.7 Node Membership 119

a phase. It is not necessary for each node to have heard for each other node in a
phase; information about which other nodes a certain node has heard of is shared.
For example if node 1 indicates that it has received a regroup message from node
2, node 3 uses this without that it actually needs to receive a message from node
2 in that phase. Also included in the state is a connectivity matrix in which nodes
record whether they have seen messages from the other nodes and what connectivity
information has been recorded by the other nodes.

The 5 phases of the regroup algorithm are the following:

Phase 1: Activate. Each node waits for a local clock tick to occur so that it knows
that its timeout system can be trusted. After that it starts sending and collecting status
messages. It advances to the next stage if

1. All current members have been detected to be active (e.g. there was a false
suspicion),

2. If there is one single failure and a minimal time-out has passed or,
3. When the maximum waiting time has elapsed and several members have not

yet responded.

0

5000

10000

15000

20000

25000

30000

35000

40000

1 3 5 7 9 1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

#nodes

#
m
e
s
s
a
g
e

2 failures 1 failure

Figure 7.2. Number of messages in the system during regroup

120 Scalability of the Microsoft Cluster Service 7.7 Node Membership 121120 Scalability of the Microsoft Cluster Service 7.7 Node Membership 121

The minimum timeout for phase 1 is 2.4 second, if all but one node have responded
in this time period it is assumed that there was a single failure and the algorithm
moves to the next phase. If multiple nodes do not respond, the algorithm waits for 9.6
seconds to move to the next phase. If for some reason the regroup algorithm times
out in a different phase or when there are cascading starts of the regroup algorithm
at several nodes, the algorithm executes in cautious mode and always waits for the
maximum timeout to expire.

Phase 2: Closing. This stage determines whether partitions exist and whether the
current node is in a partition that should survive. The rules for surviving are:

1. The current membership contains more than half the original membership.
2. Or, the current membership has exactly half the original members, and there

are at least two members in the current membership and this membership
contains the tie breaker node that was selected when the cluster was formed.

3. Or, the original membership contained exactly two members and the new
membership only has one member and this node has access to the quorum
resource.

After this the new members select a tie breaker node to use in the next regroup
execution. This tiebreaker then checks the connectivity information to ensure that the
surviving group is fully connected. If not it prunes those members that do not have
full connectivity. It records this pruning information in its regroup state, which is
broadcast to all other nodes. All move to stage 3 upon receipt of this information.

In case of incomplete connectivity information the tiebreaker waits for an additional
second to allow all nodes to respond.

Phase 3: Pruning. All nodes that have been pruned because of lack of connectivity
halt in this phase. All others move forward to the first cleanup phase once they have
detected that all nodes have received the pruning decision (e.g. they are in phase 3).

Phase 4: Cleanup Phase One. All surviving nodes install the new membership,
mark the nodes that did not survive the membership change as down, and inform
the cluster network to filter out messages from these nodes. Each node’s Event
Manger then invokes local callback handlers to notify other managers of the failure
of nodes.

Phase 5: Phase Two. Once all members have indicated that the Cleanup Phase One
has been successfully executed, a second cleanup callback is invoked to allow a

120 Scalability of the Microsoft Cluster Service 7.7 Node Membership 121120 Scalability of the Microsoft Cluster Service 7.7 Node Membership 121

coordinated two-phase cleanup. Once all members have signaled the completion
of this last cleanup phase they move to the regular operational state and seize the
sending of regroup state messages.

The regroup algorithm in its first two phases is timer driven and the algorithm
makes progress independent of the number of nodes in the cluster. The transitions
of the next 3 phases are dependent on the number of nodes in the system, but the
“information sharing” mechanism makes the system robust in dealing with sporadic
message loss.

The state information is broadcast by sending point-to-point datagrams to each node
in the cluster. With an inter-transmission period of 300 millisecond, and 31 nodes
in the cluster, this generates a background traffic of over 3000 messages/second. A
single failure reconfiguration has an average runtime of 3 seconds and thus generates
around 10,000 messages. A two-node failure, with a full running cluster is likely
to generate between 30,000 and 40,000 messages. Figure 7.2 details the observed
messages in the system during regroup.

LLL

L+1

L+7

L+6

L+5

L+4

L+3

L+2

Lo
ck

&
up
da
te

0

Upd
ate

1
Up
d
a
te

7

Update 3

Update 2

Un
lo
ck

U
p
d
a
t
e

6
Up
d
a
t
e
5

Update
4

Figure 7.3. Global Update Sequence

122 Scalability of the Microsoft Cluster Service 7.8 Global Update Protocol 123122 Scalability of the Microsoft Cluster Service 7.8 Global Update Protocol 123

7.8 Global Update Protocol

It is essential for a distributed management system to have access to a primitive that
allows consistent state updates at all nodes. MSCS uses the Global Update Protocol
(GUP) for this purpose. Although the protocol is described as providing atomicity,
its implementation has the stronger property of providing total ordering to its update
messages.

When a node starts an global update operation, it first competes for a transmission
lock managed by a node that is assigned the functionality of the locker node. Only
one transmission can be in progress at a time. If the sender can not obtain the lock it
is queued on the lock waiting list and blocks until it reaches the head of the queue.
With the lock request the sender also transmits its update information to the locker
node which applies it locally, and stores the message for later replay under certain
failure scenarios. While holding the lock the sender transmits its update to all other
active nodes in the cluster and terminates the transmission with a final message to the
locker node which releases the lock (see figure 7.3).

To transmit the messages to all other nodes, the sender organizes the cluster nodes
into a circular list, ordered by NodeId. After it acquired the lock, the sender sends
its updates starting with the node that is after the locker node in the list. The sender
works through the list in order, wrapping when it reaches the last node in the
cluster to the first node and stops when it once again reaches the locker node. The
transmission is finished with an unlock message to the locker node.

Acquiring the lock before performing the updates guarantees that only one update
is in progress at a given time, which gives the protocol the total ordering property.
Atomicity (if one surviving node applies the update, all other surviving nodes will) is
achieved through the implementation of a number of fault-handling scenarios.

1. The sender fails: the locker node takes over the transmission and completes
it.

2. A receiver fails: wait for the regroup to finish and then finish the
transmission.

3. The locker node fails: the next node in the node list is assigned locker
functionality and the sender treats it as such.

4. The sender and locker fail: if the node following the locker has received the
update already, in its role as new locker it takes over the transmission.

122 Scalability of the Microsoft Cluster Service 7.8 Global Update Protocol 123122 Scalability of the Microsoft Cluster Service 7.8 Global Update Protocol 123

0

50

100

150

200

250

300

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

#nodes

m
i
l
l
i
s
e
c
o
n
d
s

2 kByte 50 bytes

Figure 7.4. Latency of GUP under ideal conditions.

0

20

40

60

80

100

120

140

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

#nodes

#
m
e
s
s
a
g
e
/
s
e
c
o
n
d

2 Kbytes 50 bytes

Figure 7.5. GUP Throughput under ideal conditions

124 Scalability of the Microsoft Cluster Service 7.9 Discussion 125124 Scalability of the Microsoft Cluster Service 7.9 Discussion 125

5. All nodes that received an update and the sender fail: pretend the update never
happened.

The protocol is implemented as a series of RPC invocations. If an RPC fails, the
sender waits for the regroup algorithm to run and install a new membership. GUP
will then finish the update series based on the new membership.

Given the strict serial execution of the protocol, its performance is strongly dependent
on the number of nodes in the system. The implementation enforces no time bound
on the execution of an RPC and any node can introduce unbounded delays as long as
RPC keep-alives are being honored.

Repeated measurements show huge variations in results, with the variations being
amplified as the number of nodes increases. When a moderate load is placed on
the nodes it becomes impossible to produce stable results. These variations can be
contributed to the RPC trains, which repeatedly transfer control to the operating
system while blocking for the reply. Upon arrival of the reply at the OS level, the
Cluster Service needs to compete with other applications that are engaged in IO, to
regain CPU control. The non-determinism of the current load state of the system
introduces the variances.

The latency of the protocol in an ideal setting is shown in figure 7.4, the message
throughput in figure 7.5. With 32 nodes the system can handle 6 small (50 bytes)
updates/second or 4 larger (2 Kbytes) updates/second.

With systems under a load the protocol breaks down with more then 12 nodes in the
cluster. With 10 nodes frequently transmissions are observed that take 2-5 seconds to
complete. With 32 nodes transmission times up to one minute were recorded.

7.9 Discussion

When evaluating the scalability of the distributed components of MSCS it is necessary
to separate two issues: the algorithms used and their particular implementation.

7.9.1 Failure Detection

MSCS is willing to tolerate a long period of silence (7 seconds) before a failure
suspicion is raised. This allows for the implementation of mechanisms that can
easily deal with large number of nodes. The important scale factor is the number of
messages that the nodes need to process both at the sending and the receiving side.
Implementing the heartbeat broadcast using repeated point-to-point datagrams does

124 Scalability of the Microsoft Cluster Service 7.9 Discussion 125124 Scalability of the Microsoft Cluster Service 7.9 Discussion 125

not introduce any problems with 32 nodes, but there is a clear processing penalty at
the sender and it will limit the growth to larger numbers.

In an unstructured heartbeat scheme (every node sends heartbeats to all other
nodes), the load on the sender and on the network can be significantly reduced by
using a true multicast primitive for disseminating the heartbeats. It also removes the
sender’s dependency on the number of nodes in the system. However, the number
of messages a receiver has to process remains proportional to the number of nodes
in the system.

More structured approaches have been proposed to reduce the overall complexity of
failure detection by imposing a certain structure on the cluster, and localizing failure
detection within that structure. A popular approach is to organize the cluster nodes in
a logical ring [3,65] where nodes only monitor neighbor nodes in the ring and a token
rotates through the ring to disseminate status information. In this scheme however,
the token rotation time is dependent on the number of nodes, and the scheme thus
has clear scalability limits.

Another aspect of scaling failure detection is the increased chance of multiple
concurrent node failures in the cluster. The MSCS mechanism handles multiple
failures just as efficient as single failures, while most of the structured failure
detection schemes have problems with timely detection of multiple failures and fast
reconfiguration of the imposed structure.

The most promising work on failure detection for larger systems is the use of gossip
and other epidemic techniques to disseminate availability information [81]. These
detectors monitor hundreds of nodes while still providing timely and accurate
detection, without imposing any significant increased load on nodes and networks.

7.9.2 Membership Join

The observation that it frequently was impossible to join the 15th or higher node
into the cluster is an artifact of the fact that MSCS was not implemented with a large
number of nodes in mind. The join reject happens in the phase that is not under
control of the sponsor node and where the new node is setting up a mesh of RPC
bindings and security contexts with all other active nodes. With 32 nodes this phase
is close to a 100 RPCs and any load on the nodes causes significant variations in
these serialized executions.

126 Scalability of the Microsoft Cluster Service 7.9 Discussion 127126 Scalability of the Microsoft Cluster Service 7.9 Discussion 127

There is no fundamental solution to the problem; if the RPC infrastructure needs to
be maintained, the setup phase is needed and some tolerance is needed to allow the
mesh to be established. A possible solution would for the joiner to update the sponsor
on its progress in this phase to avoid a join rejection.

7.9.3 Membership Regroup

The membership reconfiguration algorithm works correct under all tested
circumstances, independent of the number of nodes used. There are two mechanisms
that ensure that the operation performs well, even with a larger number of nodes: (1)
The operation is fully distributed, the constant broadcasting of state allows nodes to
rely solely on local observation of global state. (2) The sharing of “I-have-heard-
from-node-X” information among nodes, makes that the nodes can move to the next
phase without having received status messages from all nodes.

Given that a node failure suspicion is not raised until 7 seconds of silence by a node
and the first phase of regroup waits for an additional 3 seconds, a problematic node
has 10 seconds to recover from some transient failure state. As no false suspicions
were ever observed, the timeouts in the first two phases of regroup can be considered
to be very conservative. In all observed cases the current membership state was
already established well within a second, the remaining time (2-9 seconds) was
spent waiting for the failed nodes to respond. As the first phase is dominant in the
execution time of the whole regroup operation, a reduction in time can be achieved
by combining the failure detection information with the observed regroup state.

A major concern in scaling the regroup operation is the number of messages
exchanged. A typical run with 32 nodes generates between 10,000 and 40,000
messages. The status message broadcasts are implemented as series of point-to-
point datagrams, which has two major effects: (1) the number of messages generated
for the regroup operation grows exponential with the number of nodes and (2) the
transmission of 32 identical messages every 300 milliseconds introduces a significant
processing overhead at the sender. The regroup algorithm is run at the cluster service,
which introduces a user-space/kernel transition for each message, with associated
overhead. Introduction of a multicast primitive will allow the implementation to
scale at least linearly with the number of nodes and would remove the processing
overhead from the sender of status messages. A second needed improvement is the
implementation of the memebrship engine at kernel level, allowing for lower system
overhead and a more predictable execution of the algorithms.

126 Scalability of the Microsoft Cluster Service 7.9 Discussion 127126 Scalability of the Microsoft Cluster Service 7.9 Discussion 127

7.9.4 Global Update Protocol

The absence of any concurrency in the message transmission in GUP causes a strict
linear increase in latency and decrease in throughput when the number of nodes in
the cluster grows.

The serialized and synchronous nature of the protocol is amplified in the particular
MSCS implementation. The protocol was originally developed for updating shared
OS data-structures, with the update routines running in device interrupt handlers.
In MSCS the protocol is implemented using a series of RPC calls to user-level
services. This change in execution environment exposes the vulnerability of the
strict serialized operation.

There is no quick solution for the problems that this GUP implementation presents us
with. To emulate the original Tandem execution environment the complete Cluster
Service would need to be implemented as a kernel service, which at this point seems
impractical.

Replacing GUP with a protocol that provides the same properties but exhibits a
more scalable execution style seems preferable. This introduces a number of other
complexities, for example many of the currently popular total ordering protocols rely
on a tight integration of membership and communication to ensure correct failure
handling. This would result in replacing regroup as well as GUP.

7.10 Conclusions

In this research some of the scalability aspects of the Microsoft Cluster Service were
examined. When revisiting the three questions from section 6.3 the following is
concluded:

Can the currently used distributed algorithms be a solid foundation for scalable
clusters?

Both failure detection and regroup scale to the numbers that were tested in the
experiments. When scaling to larger numbers the state processing at receivers will
become an issue. The serialized nature of GUP limits its scalability to 10-16 nodes
in the current MSCS setup.

Are there any architectural bottlenecks that should be addressed if MSCS needs to
be scalable?

128 Scalability of the Microsoft Cluster Service Section PB

The major issue in both failure detection and regroup is the implementation of
a broadcast facility using repeated point-to-point messages. This introduces a
significant overhead on the sender and on the network, and needs to be replaced by
a simple multicast primitive. The RPC trains in the membership join operation and
in GUP, create a major obstacle for scalability, especially when the systems operate
under a significant load.

If MSCS is extended with development support for cluster aware applications are the
current distributed services a good basis for these tools?

Support for cluster aware applications has strong requirements in the area of
application and component management and failure handling, and requires efficient
communication and coordination services. These services would need to be
implemented using GUP, which is, in its current form, unsuitable to provide such a
service.

To support cluster aware applications a better integration of membership and
communication is needed. This will allow for the implementation of a very efficient
communication service with properties similar to GUP. Such a service is capable of
providing a solid basis for application and component level management and failure
handling, and will offer efficient communication and coordination services.

Chapter 8

The Galaxy Framework for the Scalable
Managament of Enterprise-Critical
Cluster Computing

In this chapter we present the main concepts behind the Galaxy cluster management
framework. Galaxy is focused on servicing large-scale enterprise clusters through
the use of novel, highly scalable communication and management techniques.
Galaxy is a flexible framework built upon the notion of low-level management of
cluster farms, where within these farms islands of specific cluster management types
can be created. A number of cluster profiles, which describe the components used
in the different cluster types, are presented, as well as the components used in the
management of these clusters.

8.1 Introduction

The face of enterprise cluster computing is changing dramatically. Whereas in the
past clusters were dedicated resources for supporting particular styles of computing
(OLTP, large batch processing, parallel computing, high-availability)[27,49,58,70,
88,97], modern Data Centers hold large collections of clusters where resources can
be shared among the different clusters or at least easily re-assigned to hotspots
within the overall Data Center organization. A Data Center may see a wide variety
of cluster types; cloned services for high-performance document retrieval, dynamic
partitioning for application controlled load balancing, hot-standby support for
business-critical legacy applications, parallel computing for autonomous data-
mining and real-time services for collaboration support.

130 The Galaxy Framework 8.1 Introduction 131130 The Galaxy Framework 8.1 Introduction 131

It must be obvious that such a complex organization with a variety of cluster types
exceeds the scope of conventional cluster management systems. In the Galaxy
project we are concerned with constructing a framework for data-center-wide cluster
management. Using this framework a management organization can be constructed
that controls clusters and cluster resources in an integrated manner, allowing for a
unified, data-center-wide approach to cluster management.

Galaxy provides a multi-level approach. In its most basic configuration this offers
two abstractions; the first is the farm, which is the collection of all nodes that are
managed as a single organization, and the second is a cluster which is an island of
nodes within the farm that provides a certain cluster style management, based on
a cluster profile. A profile is a description of a set of components, implementing
advanced distributed services that make up the support and control services for that
particular cluster.

Extreme care has been given to issues related to scalability, especially with respect
to the components implementing the communication and distributed control
algorithms. The novel techniques used in the communication, membership and
failure detection modules allow scalability up to thousands of nodes. In our limited
experimental setup we have shown that scaling up to 300-400 nodes is possible,
giving us confidence that our future experiments with even larger sets of nodes will
continue to show excellent scalability.

The first phase of the development of Galaxy is complete; the framework and a set of
generic management components are implemented and a number of example cluster
profiles and their specialized management components are in daily use. The system
is developed for the Microsoft’s Windows 2000 operating system, integrating tightly
with the naming, directory, security, and other distributed services offered by the
operating system. Galaxy has been selected by a major operating system vendor as
the basis for its next generation cluster technology.

This chapter is organized as follows: in sections 8.2 and 8.3 the model underlying
the framework is presented and in sections 8.4 and 8.5 we provide some background
on our approach to building scalable distributed components. In sections 8.6 through
8.9 details are given on the design of the farm and cluster support. The chapter closes
with some references to related work, a description of our upcoming distribution,
and plans for the immediate future.

130 The Galaxy Framework 8.1 Introduction 131130 The Galaxy Framework 8.1 Introduction 131

8.2 General Model

Galaxy uses a multi-level model to deliver the cluster management functionality. The
basic abstraction is that of a Farm [27], which is a collection of managed machines
in a single geographical location. The farm can consist of potentially thousands of
nodes, and is heterogeneous in nature, both with respect to machine architectures and
network facilities. Galaxy provides a set of core components at each node in the farm
that implement the basic control functionally.

The administrative personnel responsible for the overall operation of the farm
has a set of farm management tools, within which the Cluster Designer is most
prominent. This tool allows an administrator to construct islands of clusters within
the farm, grouping nodes in the farm together in tighter organizations to perform
assigned functionality. Different cluster styles are defined using Cluster Profiles,
which describe the set of components that make up the management and application
support functionality for that particular cluster style. A new cluster is created based
on a profile, and when a node is added to the cluster it will automatically instantiate
the components described in the profile for the role this particular node is to play, and
join the cluster management group for purpose of intra-cluster failure monitoring
and membership management.

Both at the farm and cluster level, the system architecture at a node is identical. At
the core one finds a management component that implements membership, failure
detection and communication. This management service is surrounded with a set of
service components implementing additional functionality, such as an event service,
a distributed process manager, a load management service, a synchronization service
and others. These components export a public service specific API, to be used by
other management services or applications. Internally each of these components
implements a standard service API so that the components can be managed by
the farm or cluster management service. The components receive service specific
membership information, indicating the activity status of this service at the other
nodes in the cluster or the farm.

At a node that is part of a cluster, one would see two management services: one for the
farm and one for the cluster, each with its own set of managed service components.
To correctly visualize the hierarchy one should imagine an instance of the Cluster
management service as a component managed by the Farm management server. In
principle a node can be part of multiple clusters, although we have only found one

132 The Galaxy Framework 8.2 General Model 133132 The Galaxy Framework 8.2 General Model 133

case in which overlapping was practical. We believe however that if creation of
clusters as lightweight management entities is a simple enough action, we may see
scenarios in which overlapping does play an important role.

The existing case where overlapping clusters is used in Galaxy arises when grouping
a collection of nodes into a management cluster. This cluster runs a set of services
that is specific for controlling the overall management of the farm and configured
clusters. The nodes in this cluster can be dedicated management nodes or can be
part of other clusters, performing some general management tasks as background
activities. The services that are specific for the management cluster are mainly
related to event collection, persistency of overall management information and the
automatic processing of management events.

8.2.1 Extensions to the basic model

After Galaxy had been in use in production settings the need arose for two additional
management abstractions that were not targeted in the initial design of Galaxy.
The first extension, the notion of a meta-cluster, was introduced to deal with the
limited scalability of legacy cluster applications. The second extension, geoplex
management, addresses the need to have cluster management structures span nodes
in multiple farms, where the farms are geographically distributed.

Even though the distributed systems technology underlying Galaxy is highly
scalable, the technology on which legacy applications are based often is limited
in scale. Ideally an application cluster would consist of all the nodes necessary to
implement the functionality, but the limited scalability forces the cluster designer
to break the cluster into a set of smaller clusters based on the maximum scale of
the cluster application. To still be able to consistently manage the resources shared
among these smaller clusters, Galaxy implements a notion of a meta-cluster which
provides meta-cluster wide membership and communication primitives.

To manage clusters in a geoplex setting, Galaxy was augmented with a technology
similar to the meta-clusters, but which functions at the farm level instead of the
cluster level. In a geoplex membership entities are farms, and failure-detection and
membership tracking is performed at the level of complete farms. Through geoplex-
wide communication primitives the farms share node and cluster level membership
information.

132 The Galaxy Framework 8.2 General Model 133132 The Galaxy Framework 8.2 General Model 133

Galaxy does not allow clusters to span nodes in multiple farms; however it does
allow meta-clusters to encapsulate clusters that are in different farms to provide
management of functionality offered through geographical distribution.

8.3 Distribution model

Distribution support for clusters comes in two forms: first there are the distribution
services to support the farm and cluster management infrastructure itself, these
services provide the core mechanisms for all the distributed operations in Galaxy.
Secondly there is the support offered to the applications that run on the clusters.
In Galaxy the latter is offered through the services that are unique for each cluster
configuration.

A very natural approach in structuring these services is to model them as groups of
collaborating components [6,7]. This notion of groups naturally appears in many
places in the system, whether it is in naming, where one wants to be able to address
the complete set of components implementing a service, in communication where
one wants to send messages to all instances of a service, or in execution control
where you want to synchronize all service instances, etc. The notion of a group
appears from the core communication level all the way to the highest abstraction
level where one wants the farm and contained clusters to be viewed as groups, to
access and address them as single entities.

In Galaxy the process group model is used throughout the whole framework, both
in terms of conceptual modeling of the system, as in the technology used to provide
the distribution support. In a modern architecture such as Galaxy, groups no longer
necessarily consist of processes but are better viewed as interacting components.
The technology that allows us to design the distributed components using a group
abstraction provides at its core a view of the components in the group through a
membership service, identifying which instances are presently collaborating. The
service uses a failure detector to track the members of the group and to notify
members of changes in the membership. The membership also provides a naming
mechanism for communication, both for communication with the complete group
as well as with individual members [8]. Modeling collaboration components as a
group allows us to build support for complex interaction patterns where, for example
message atomicity, request ordering or consensus on joint actions, play an important
role. This core functionality is used to implement the various distributed operations
such as state sharing, synchronization, quorum based operations, etc.

134 The Galaxy Framework 8.4 Scalability 135134 The Galaxy Framework 8.4 Scalability 135

The communication and membership technology used to provide the group
abstraction as part of Galaxy is a crucial component in achieving scalability. In
Galaxy a new group communication system is used, where most of the limits on
scalability that these systems exhibited in the past have been overcome.

8.4 Scalability

Cornell’s Reliable Distributed Computing group has been building communication
support for advanced distributed systems for the past 15 years, resulting in systems
such as the Isis Toolkit and the Horus and Ensemble communication [8,80]
frameworks. Most recently, the Spinglass project focuses on issues of scalability in
distributed systems, with early results in the form of highly scalable communication
protocols [10], failure detection [81] and resource management [82]. The scalability
vision that drives the research in Spinglass, also has driven the design and
development of Galaxy.

Building on our experiences of building distributed systems, mainly in the industrial
sector, we have collected a set of lessons that are crucial to developing scalable
systems. These lessons drive our current research and are applied in the design of
Galaxy project. The five most important are:

1. Turn scale to your advantage. When developing algorithms and protocols you
have to exploit techniques that work better when the system grows in scale.
Adding nodes to a system must result in more stable overall system and that
provides more robust performance instead of less. Any set of algorithms that
cannot exploit scaling properties when a system is scaled up is likely be the main
bottleneck under realistic load and scaling conditions. Successful examples of
this approach can be found in the gossip-based failure detector work [81], the
bimodal multicast protocols [10], and the new multicast buffering techniques
[72].

2. Make progress under all circumstances. Whenever a system grows it is likely
that, at times, there will be components that are experiencing performance
degradations, transiently or permanently, or even may have permanently failed
or brought off-line. Traditionally designed cluster management systems all
experience an overall performance degradation whenever certain components
fail to meet basic performance criteria, often resulting in a system that runs at the
pace of its slowest participant. These dependencies need to be avoided at the level
of the cluster management infrastructure to avoid scenarios in which bad nodes

134 The Galaxy Framework 8.4 Scalability 135134 The Galaxy Framework 8.4 Scalability 135

in the system drag down the complete cluster or, at the worst case, the farm [11].
Systems built based on the epidemic technology provide a probabilistic window
within which the system is willing to tolerate failing components, without
affecting the overall system. If, after this time window, the component has not
recovered it is moved from the active set to the recovery set, where system
dependent mechanisms are deployed to allow the component to catch up. This
minimizes the impact on the overall system performance [8].

3. Avoid server-side transparency. If applications and support systems are designed
in a manner unaware of the distributed nature of the execution environment, they
are likely to exhibit limited scalability. Achieving true transparency for complex,
production quality distributed systems is close to impossible, as the past has
shown. Only by designing systems explicitly for distributed operation, will they
be able to handle the special conditions they will encounter and thus be able to
exhibit true scalability (see chapter 7).

4. Don’t try to solve all the problems in the middleware. As a consequence of a
misguided attempt to guarantee transparency, research systems have focused
providing support for all possible error conditions in the support software,
attempting to solve these without involving the applications they need to
support. The failure of this approach demonstrates a need for a tight interaction
between application and support system. For example, applications can respond
intelligently to complex conditions such as network partitioning and partition
repair [103].

5. Exploit intelligent, non-portable runtimes. Cross platform portability is a laudable
goal, but to build high performance distributed management systems one needs
to resort to construct modules that encapsulate environment specific knowledge.
For example the application must be able to inspect the environment using all
available technology, and use the resulting knowledge in an intelligent manner.
Any system that limits itself to technologies guaranteed to be available cross-
platform, condemns itself to highly inefficient management systems, that are
unable to exploit platform specific information which is necessary in achieving
high-performance.

An important example is failure detection of services, hosts and networks.
Approaching this problem in a cross-platform, portable manner is likely to result
in a system that can only exploit a heartbeat mechanism, possibly augmented

136 The Galaxy Framework 8.5 Distribution support system 137136 The Galaxy Framework 8.5 Distribution support system 137

with some SNMP status information [99]. Using specific knowledge about the
environment will allow for construction of highly efficient failure detectors. A
simple example is that some systems make ICMP error information available
to the sender of the UDP message that triggered the error response, often an
indication that the recipient is no longer available, and the failure detection can be
cut short. Another example arises in the case where nodes are connected through
a VIA interconnect, which provides ultra-reliable status information about the
interconnected nodes, providing failure detection without the need for nodes to
communicate.

8.5 Distribution support system

The Galaxy framework is designed with the assumption that there is access to a
high-performance communication package, which provides advanced, configurable
distributed systems services in style of the Horus and Ensemble systems. These
services have to exhibit the scalability properties needed to provide a solid base for
a scalable management system, as described in the previous section. In the current
implementation we use an advanced communication package based on the new
Spinglass protocols.

The Scalable Group Communication Service (SGCS) package is similar to the Horus
and Ensemble in that it is built around a set of configurable communication stacks,
which implement a unified mechanism for point-to-point and group communication,
and provides an abstraction for participant membership and failure detection. This
new system represents an advancement over these previous research systems in
that it is based on the scalable failure detection, communication and state sharing
protocols developed in the Spinglass project, and uses a next generation stack
construction mechanism, allowing for asymmetric, optimized send and receive
paths, and a message management paradigm that provides integration with user-
level network facilities.

The communication system provides mechanisms for the creation of communication
of multi-party communication channels with a number of reliability and ordering
guarantees, and offers a unified name space for group and point-to-point
communication.

The protocol core of the system is portable but its runtime is specifically adapted to
function well in kernel environments, and parts of the system used in this research

136 The Galaxy Framework 8.5 Distribution support system 137136 The Galaxy Framework 8.5 Distribution support system 137

runs as a kernel module in Windows 2000. The complete package is encapsulated as
a component server integrating well with existing development tools.

8.5.1 Failure detection and membership services

Essential for a reliable distributed system is the knowledge of which participants
are available and which are off-line or have failed. To achieve this most systems
deploy a failure detection service that tracks nodes and reports possible failures
to subscribers. In Galaxy a multi-level failure detection service is used that can
be configured to respond to failures in different time-frames. This gives us the
opportunity to make trade-offs between accuracy, speed of detection and resource
usage. For example in a cluster that runs a cloned application (i.e. a web server with
replicated content), the reconfiguration triggered by a false suspicion is simple and
can easily be undone when the system recognizes the mistake. However in the case
of a partitioned database server a failure notification triggers a reconfiguration of the
database layout and is likely to pull a standby server into the cluster configuration.
Such a false suspicion is considered a disaster.

The multi-level failure detector has several modules, of which the most important
are:

Gossip-based failure detector

The failure detector is part of the light-weight state service of SGCS, which provides
functionality for participants to share individual state, the consistency of which is
guaranteed through an epidemic protocol. A node includes in its state a version
number which it increments each time is contacts another node to gossip to. In this
gossip message the node will distribute a vector of node identifiers combined with
the latest version numbers and a hash of the state information it has. The receiver of
this message can decide, by comparing the version number and hash vectors, whether
it has information that is newer than the sender, or that the sender has information
that is newer. The receiver can then decide to push the newer information it has to
the original gossiper, and to request transmission of the updated information from
the gossiper. Failure detection can be performed without the need for an additional
protocol: whenever a node receives a version number for a node that is larger than
the one it has, it updates a local timestamp for that node. If for a certain amount of
time the version number of a node has not been incremented, the node is declared to
have failed. The rigorous mathematics unpinning the epidemic data dissemination

138 The Galaxy Framework 8.5 Distribution support system 139138 The Galaxy Framework 8.5 Distribution support system 139

theory allows for us to exactly determine the probability that a false suspicion will
be made based on the parameters such as gossip rate and group size. As such this
approach gives a clear control over the accuracy of the failure detection. A second
advantage of this technique is that it allows each node to completely autonomously
decide on whether another node has failed without the need for communication with
other nodes.

Hierarchical gossip-based failure detector

Even though the gossip techniques are highly scalable, to minimize the
communication and processing load needed to run the failure detector, a number of
additional techniques are used. The SGCS light-weight state service has a notion of
distance between nodes, which is partly based on operator configuration and partially
determined through network tracking. The service will gossip less frequently with a
node when the distance to that node increases. This has the additional advantage that
router overload will not have an averse effect on the overall distribution probability.
A second approach which yields an extremely scalable service is to organize the
nodes into zones and organize the zones into virtual information hierarchies. The
non-leaf zones in the hierarchy do not contain node information, but information on
the child zones which are summaries from the individual entries at that zone level.
This technique is successfully deployed in the Astrolabe tools and will be used for
further integration into Galaxy [83].

Fast failure detector.

The gossip based failure detector is highly accurate, but slow. Over common
communication links, with the communication load lower than 1% and a group size
up to a thousand nodes, Galaxy tunes the failure detection threshold to be around 7-8
seconds. This is convenient as a number of anomalies in PC and operating systems
architectures have shown that there are scenarios under which nodes can be network-
silenced for several seconds, which would cause false suspicions when using more
aggressive thresholds. Experiments with gossip-based failure detectors with more
aggressive thresholds have been successfully performed, but mainly in controlled
hardware and communication settings [79].

To address the need for faster failure detection, modules have been added to the
multi-level failure detector that use more traditional techniques to track other nodes.
These techniques are not as general and scalable as the gossip-based detector, and

138 The Galaxy Framework 8.5 Distribution support system 139138 The Galaxy Framework 8.5 Distribution support system 139

as such are only deployed on subsets of nodes. Most commonly used is the buddy
failure-detector module where in a group the individual nodes will ping each other
and the failure of a node to respond to pings will trigger a failure suspicion. This
suspicion decision is broadcast to the other nodes. This module is fully configurable
in how many nodes a single node will track and how many suspicions one needs to
receive before the node will indicate the suspicion to the other system modules. The
module makes use of the membership information produced by the light-weight state
service to configure which nodes to track.

In Galaxy the farm membership is based on the gossip-based failure detection
techniques, while the fast failure detectors are added to nodes based on management
configuration. This can be based on knowledge of specific node and network
configurations, or it can be part of a specific cluster profile.

Environmental failure detectors

The multi-level failure detector has a plug-in architecture for a class of very
specialized failure detectors. These modules can track the environment to make
intelligent and often highly accurate decisions about node availability. Examples of
modules developed for particular Galaxy deployments are

• UPS management-event processors, which using the power supply information
to determine the health of a node.

• SNMP monitors of switch link state information
• ICMP error message processors
• High-speed interconnect connection-state information

Consensus based membership

To support environments where agreement on the membership is essential, SGCS
provides a consensus based membership protocol that runs a traditional leader-based
consensus protocol. This membership module takes the suspicions generated by
the fast or gossip-based failure detectors and runs an agreement protocol to ensure
that all the participants in the group have seen the membership changes and have
taken actions accordingly. If the SGCS stack instance is configured which virtual
synchronous messaging, it will tag information onto the membership agreement
messages to ensure agreement on message delivery with respect to the membership
changes.

140 The Galaxy Framework 8.5 Distribution support system 141140 The Galaxy Framework 8.5 Distribution support system 141

The use of different membership views in Galaxy

There are five different membership views in Galaxy, each of them implemented
using some or all of the failure detectors described above.

1. Farm Service membership. This membership is based on the gossip based failure
detector, and the cluster administrator configures the threshold of when to switch
to the hierarchical gossip based failure detector. The cluster administrator also
has the option to add fast and environmental failure detectors to the farm service
but in general the gossip-based failure detector is sufficient to implement the farm
service membership functionality.

2. Cluster Service membership. This service uses the membership information from
the farm service as basic input and adds at least a fast failure detector to run within
the cluster group, possibly augmented with the consensus based membership
module. The exact modules to be used, including the additional environmental
modules, are based on the cluster profile constructed by the administrator.

3. Component membership. The cluster service maintains the membership list for
the local galaxy components that subscribe to the cluster service functionality,
and exchanges this information with the other nodes in the cluster. Given that this
shared state information is of the single-writer, multiple-reader kind, no special
communication properties are required except for a reliable group multicast.
When a new node joins the cluster it receives a state message from each of the
other cluster nodes. The components receive a membership view which includes
the state of each cluster node, information on which other nodes are running this
particular component.

4. Meta-cluster membership. Each of the clusters in the meta-cluster group elect
two nodes that will join a separate communication channel on which the elected
nodes will exchange membership information from their local cluster. Associated
with this communication channel is a failure detection module that runs less
aggressive than the failure detectors in the member clusters. If at the local cluster
the failure of an elected node is detected, a new node is elected to join the meta-
cluster membership, before the meta-cluster failure detector is triggered. If the
meta-cluster failure detector is triggered it is an indication that all the nodes in a
member cluster have failed.

5. Geoplex membership. This membership protocol uses a technique similar to the
meta-cluster. Each farm elects a number of nodes to participate in the geoplex

140 The Galaxy Framework 8.5 Distribution support system 141140 The Galaxy Framework 8.5 Distribution support system 141

membership protocol, where upon node failure new nodes are elected to maintain
the membership. The module is in general augmented with an environmental
failure-detector that tracks the availability of the communication links between
the data-centers.

8.5.2 Epidemic communication

Although a detailed description of the protocols used in SGCS is outside the scope
of this chapter, it is important to understand the nature of the new protocols used
to support the Galaxy operations. SGCS relies heavily on so-called epidemic or
gossip protocols. In such protocols, each member, at regular intervals, chooses
another member at random and exchanges information. Such information may
include the “sequence number of the last message received”, the “current view of
the group”, or the “version of the light-weight state”. This gossip is known to spread
exponentially fast to all members in spite of message loss and failed members, and
therefore communication systems based on this scale extremely well. In fact, this
dissemination process is a well-understood stochastic process about which we can
make several probabilistic guarantees. It allows the protocol designer to provide
guarantees such as “the probability that a message is not delivered atomically is
less than epsilon”. Here, epsilon can be configured to be a very small, configurable
constant.

Next to the excellent scalability of the information dissemination techniques,
protocols based on these techniques are also very robust to node failures and message
loss. Once information has been exchanged with a few nodes, the probability that
it will not reach all nodes eventually is very small. Experiments with 75% message
loss, or with nodes perturbed 50% of the time, show that it is almost impossible to
stop the information dissemination once a few nodes have been infected.

In SGCS the light-weight state service and the basic reliable multicast are
implemented using epidemic protocols. These group membership protocols
provide views to group members, which in turn, are built using information from
the light-weight state service, and are thus also probabilistic in nature. On top of
these protocols, SGSC provides lightweight versions of protocols that give more
traditional (non-probabilistic) guarantees, such as virtual synchrony, total order and
consensus. Because these protocols can now rely on the high probability of success,
the amount of work they have to put into buffering, for example, is drastically
reduced. These protocols do need to be aware that there are conditions under which

142 The Galaxy Framework 8.6 The farm 143142 The Galaxy Framework 8.6 The farm 143

the guarantees for success will be violated (i.e. a message will not be delivered or
recovered by the reliable multicast protocol). These conditions however are detected
by the lower-level protocols and indicated to its subscribers, which can then run
recovery protocols if necessary.

8.6 The farm

Essential to enterprise cluster management is that the set of nodes out of which
the clusters are created, can be viewed and managed as a single collection. This
provides the manager with a single access point through which the operation of the
complete data center clustering can be viewed and controlled. At this level Galaxy
provides the notion of a Farm, which brings together all managed nodes into a single
organizational unit.

To provide the farm abstraction, each node runs a farm service, which implements
farm membership, node failure detection, intra-farm communication and state
sharing. Additionally the farm service includes configuration and security services,
as well as management functionality for control of a collection of farm service
components. These components are separate from the farm service process, allowing
for the set of services used in a farm to be configurable, and extendable. Farm
service component must implement a service control interface used by the farm
service process to control the service components and to establish a communication
mechanism for components to communicate or exchange state.

The service components that are generally loaded at each farm node are:

• Event Service: this service monitors the state of local node and generates Farm
Events, which are disseminated to the collection of nodes that make up the
management cluster. At the management cluster the events are automatically
processed, and saved for off-line auditing. The event processors in the management
cluster have the ability to find correlations in generated events, and to generate
operator warnings. Future work in this area will include a capability for the event
processors to automate corrective actions for certain alarm conditions. We are
looking for integration of our event technology with current advances in online
data mining. The Event service is extensible and can use a variety of sources from
which events can be drawn; current mechanisms include the Windows2000 Event
log, WMI objects, performance counters and ODBC data sources. The set of
information sources to monitor, as well which objects to collect from the sources

142 The Galaxy Framework 8.6 The farm 143142 The Galaxy Framework 8.6 The farm 143

is configurable. The service distributes its events in an XML encapsulation,
allowing for easy extending at both event generator end process sides.

• Measurement Service: This service collects local performance information and
posts this information in the Farm Management Information Database. The type
and amount of information, as well as the update frequency is configurable at
runtime when the information is drawn from the WMI and performance counters
collections.

• Process and Job Control Service: This service implements functionality for
controlled execution of processes on farm nodes. The service provides full
security and job control, through an interface that allows authoritative users to
create jobs on sets of nodes, add processes to an existing job and control the
execution of the job. It provides full flexibility in client access. A client does not
necessarily need to connect to a node where it wants to start processes, but can
connect to any node in the farm to create and control jobs on any other node.

• Remote Script Service: Similar to the process service is the remote scripting
engine, which allows administrators to produce simple scripts and execute
these scripts concurrently on sets of nodes. This service is based on the Active
Scripting component, which is augmented with a set of simple synchronization
services, and output redirection and logging services.

• Component Installation Service: This is a simple service that ensures that
the current components versions are installed based on farm configuration
information and assigned cluster profiles.

8.6.1 Inserting nodes in the farm

To add a node to the farm, an administrator installs the basic farm management
service and components, and starts the farm service. The farm service at the node
uses a network resource discovery mechanism at startup time to locate basic
information about the farm it is to be active in; it then announces itself to the farm
controller service, which is part of the management cluster. The node will not
become part of the farm automatically, but instead its insertion request is queued
until an administrator has confirmed that this node is granted access to join the
farm. Included in the confirmation process is a set of security actions that will
enable the new node to access security tickets necessary for running a farm service,
and to retrieve the necessary key information to communicate with the other farm

144 The Galaxy Framework 8.7 Cluster design and construction 145144 The Galaxy Framework 8.7 Cluster design and construction 145

members. After the new node has joined the farm it retrieves the farm configuration,
which results in the launch of the service components.

8.6.2 The Farm Information Database

Information about the nodes in the farm is kept in the Farm Management Information
Database. In part this database is filled with static, administrator supplied information
about the nodes, but much of the information in the database is dynamic in nature and
updated constantly by the farm management components such as the measurement
and the process control services. The database is completely distributed in design
and can be accessed from each of the nodes in the farm without the need to contact
other nodes. The database is updated using an epidemic dissemination protocol to
ensure scalable operation, automatically controlling the update rates and the amount
of data transferred based on the number of nodes involved.

8.6.3 Landscapes

To manage very large farms Galaxy provides a mechanism for viewing the state
of the farm using different Landscapes. Landscapes are employed as a mechanism
for organizing nodes into smaller collections, such that the administrator can get
a detailed view of parts of the farm without being forced to deal with the overall
picture. Landscapes are created by specifying grouping criteria in the form of a
SQL statement, which is applied to the Farm Management Information Database.
There are two forms of landscapes, based on the actions that update the landscape
grouping: If the data used is static or changes only infrequently, a trigger is added
to landscape control components such that the landscape is recomputed whenever a
field changes. The second form handles landscapes that provide views of data that is
dynamic in nature, and where the landscape is recomputed on a periodic basis.

An example of the first form is grouping by physical location, by machine type
or by assigned functionality. The second form generally handles grouping based
on information such as compute load, number of active transaction components,
number of client connections serviced or available storage space, often using an
additional level of grouping based on cluster functionality.

8.7 Cluster design and construction

Although the farm provides the administrator with a set of new tools to manage
collections of nodes, they are too primitive to support the level of control, service

144 The Galaxy Framework 8.7 Cluster design and construction 145144 The Galaxy Framework 8.7 Cluster design and construction 145

provision and customization needed in the types of cluster computing one typically
encounters in an enterprise data center. To support the specialized operation each
cluster instance requires additional functionality, which must be added on a per-
application basis to nodes that make up a cluster1.

One of the most important tools in the farm management is the Cluster Designer, with
which the administrator can group nodes together into a cluster and assign additional
functionality in the form of cluster service components. Which components, and
which component versions are needed for the operation of a particular cluster is
specified in a predefined cluster profile, which is unique per type of cluster. The
Cluster Designer manages these profiles, and a simple composition scheme is used
to create new profiles for specialized clusters.

Basic in the operation of each cluster is a cluster service, which is a set of components
running at each node in a cluster. The cluster service provides functionality similar
to the farm service with which it cooperates in sharing network and state sharing
resources. The cluster service augments the functionality of the farm service
with additional failure detection, which is a more focused version that exploits
knowledge about the cluster to provide an as fast and reliable service as is possible,
and with a cluster membership abstraction. The cluster membership is maintained
using a consensus based membership protocol, guaranteeing that every member
sees identical changes in the membership in the same order. The cluster service
also provides additional communication services to the cluster components, and
it provides component control and membership functionality similar to that of the
farm service. The cluster service makes the cluster, the cluster member nodes and its
cluster service components available to its members through a single unified naming
scheme.

Using the Cluster Designer is often not sufficient to create a fully functional cluster.
Frequently the cluster service components need additional configuration. For
example the web-clone cluster component needs to be configured to find the source
of the document tree to be replicated or which cyclic multicast file transfer service
to subscribe to, to receive document updates. Other more complex configuration
situations arise when the nodes are physically sharing resources such as storage area
networks, which may need additional management actions. Even though Galaxy is
able to provide a large part of the cluster management and support infrastructure, the
administrator still will need to install application level functionality and provide the
configuration of application components.

146 The Galaxy Framework 8.9 Cluster profi les and examples 147146 The Galaxy Framework 8.9 Cluster profi les and examples 147

1 In the metaphor of farms and landscapes, clusters can be visualized as pastures,
and although we would have liked to use this term, we will continue to use cluster,
as it contributes to a better understand of the work.

8.8 Cluster communication services

When a cluster-service instantiates the components it manages, it provides the
components with an interface for intra-component communication and membership
notification, similar to the service the farm-service provides to its components.
The cluster-service communication facilities are different from those in the farm-
service as they allow the cluster components to select communication properties
such as reliability level and message ordering, or to provide flow and rate control
parameterization. Cluster service components also have the possibility to create
new communication channels within the cluster, to be used next to the basic intra-
component channel.

The communication package used by the cluster-service is internally configurable,
and the software components used inside the package are based on the particular
cluster profile. For example if the cluster has access to multiple networks, or
to a high-performance interconnect, it is the information in the cluster profile
that determines which networks to use for administrative and intra-component
communication, which networks can be used for additional communication created
by the cluster service components, and which networks and techniques to use for
failure detections.

8.9 Cluster profiles and examples

To support the initial Galaxy development goals we defined a number of cluster
types and the cluster profiles that describe them. For two profiles we have developed
a complete set of example cluster service components; the Development Server and
Component Server are in daily use to support related research. The components of
a third profile, the Internet Game Server, have been developed in the past months,
and are currently under stress test. Of the other examples, the Web-Clone and the
Primary-Backup profiles are making the transition from paper to real software
design. An overview of the example cluster profiles is in table 8.1. In Figure 8.1 an
example component layout is shown.

146 The Galaxy Framework 8.9 Cluster profi les and examples 147146 The Galaxy Framework 8.9 Cluster profi les and examples 147

8.9.1 Application development cluster

This is a cluster type that is in daily use within the research group, and handles the
functionality that is needed to support team development of cluster applications. The
majority of the functionality of the components deals with easy integration into a
development environment, with support for process & job control, install & version
control, logging and debug support, and resource usage measurement and reporting.
Process control, install services and debug message services have client parts that
are integrated into Microsoft Visual Studio, providing a single point of access for

Profile Cluster Service Components
Application Development
Cluster

Process & job control, install & versioning, debugging
and distributed logging, Visual Studio integration,
resource measurement.

Component Management
Cluster

System Services: Component Runtime, Component &
Component factory membership, Debugging, Logging
and Monitoring, Isolation Service
Application Services: State management, Global
snapshots & Check-pointing, Synchronization,
Consensus, Voting, Shared Data Structures

Game Server Cluster Client management, Application level
request routing, Specialized Measurement service,
Synchronization services, State Sharing services, Shared
VM service

Primary-Backup Cluster Distributed Log Service, VM replication Service,
Transaction service, Lock Manager, Fail-over &
reconfiguration service

MSCS – Compatible Cluster Fail-over Manager, Resource Manager &Controllers,
Node Manager, Membership Manager, Event Processor,
Database Manager, Object Manager, Global Update
Manager, Checkpoint Manager, Log Manager

Cloned Service Cluster Fail-over & reconfiguration service, Version & install
service, Multicast file transfer service, Cache Control
management.

Partitioned Service Cluster Client Request Redirector, Distributed Log service,
Synchronization service, Transaction service,
Lock Manager, Shared State Manager, Failover &
reconfiguration service

Parallel Computing Cluster Job Queuing Manager, Process & Job Control,
Synchronization service, Logging & Debugging service.

Table 8.1. Example Cluster Profiles

148 The Galaxy Framework 8.9 Cluster profi les and examples 149148 The Galaxy Framework 8.9 Cluster profi les and examples 149

development of cluster applications. Resource usage information is accessed at the
developer side through a version of the Windows NT task manager that provides a
cluster view instead of single node view.

8.9.2 Component management cluster

One of the main objectives of our cluster area research is to develop a programming
and execution environment for Cluster-Aware applications. This research is triggered
by our past failures to provide useful high-level programming concepts for building
advanced distributed systems. The services offered by the components in this cluster
make up an execution runtime for cluster application implemented as components
themselves, similar in concept to MTS or COM+/AppCenter [103].

The services are split into two categories: the first handles general management
functionality: Component runtime management, which includes a functionality for
providing component- & component factory membership, debugging, logging &
monitoring services, and component isolation mechanisms for fault-containment.
The second category handles the high-level distributed systems support for cluster-
aware application construction: state management, global snapshots & check-
pointing, synchronization, consensus, voting, shared data structures.

8.9.3 Game server cluster

One of the areas that provides us with the most complex technical challenges for
providing scalable services is that of real-time multi-user Internet Game Servers.
Clusters are an obvious match to provide a cost-effective “scale-out” solution, but
the server side of the most games has not been designed with any cluster-awareness.
In our research we are interested in investigating what support services are useful
to provide on a cluster dedicated to serving Game Engines. Our first experiments
involved restructuring one of the Quake server engines and build service components
that allowed load-balancing as well as client fail-over. The initial results are
promising, but the testing (simulating thousands of Quake clients) is still too difficult
to report on solid results.

The cluster services that are developed to support the cluster version of the Quake
game server are: client management, application level request routing, dedicated
load measurement service, synchronization and state sharing services, and a shared
VM service.

148 The Galaxy Framework 8.9 Cluster profi les and examples 149148 The Galaxy Framework 8.9 Cluster profi les and examples 149

8.10 Component development libraries

Building farm and cluster components and their clients is made easier through the
use of two libraries that we have developed. The first library supports the creation of
the cluster components by providing classes that handle the interaction with the farm
and cluster server, by parsing membership reports and incoming message types and
providing those through event based processing structure. This library also supplies
classes for handling clients from outside the cluster, in case this component supports
direct connections made by client programs. It provides a scheduler centralizing
the handling of input from the client, the cluster-services, and other component
instances communicating through the cluster service, making it easier to building
state machine structured distributed components.

Spinglass Communication Services

Farm Service

Cluster Service

IFarmManager

IFarmService

IFarmConfig

Spinglass Communication Components

IGcs

Process & Job
Control

IFarmProcess

IFarmComponent

Event Service

IFarmComponent

Measurement
Service

IFarmComponent

IFarmEventsIFarmPerformance

IFarmComponent
Manager

IFarmComponent

Client Manager

ICluster
Manager

ICluster
Service

ICluster
Component
Manager

IGcsChannel
Receiver

IGcsChannel

IGcsChannel
Receiver

ICluster
Component

Request
Router

ICluster
RequestRouter

IGcsChannel
Receiver

ICluster
Component

Synchroni-
zation Service

ICluster
Component

Resource
management

ICluster
Component

State Sharing

ICluster
Component

VM Sharing

ICluster
Component

IGcsChannel
Receiver

ICluster
VMSharing

ICluster
StateSharing

ICluster
Resources

ICluster
Sync

ICluster
ClientManager

Figure 8.1. Layout of the various components in the Game Server Profile

150 The Galaxy Framework 8.11 Related work 151150 The Galaxy Framework 8.11 Related work 151

The second library provides a collection of classes that makes it easier to build client
applications that do not run on the clusters themselves. The classes encapsulate
connection management such that a cluster name can be used at connection time,
and the support classes manage the connection to the nodes in the named cluster, and
automatically reconnecting on connection failure, possibly to another node in the
cluster. There are also classes in both libraries that deal with forwarding membership
information to clients, naming clients, and routing replies to client programs.

8.11 Related work

There is a significant body of work on cluster management systems, but none of
the previous work provides a framework for farm management and supports for
multiple styles as cluster computing in the way that Galaxy does. Most of the cluster
management systems provide only support for very specific styles of management
as they are built to support the operation of specific commercial clusters. Of these
commercial clusters VAXClusters [58] and Parallel Sysplex [70] deserve special
mention as they did groundbreaking work in building general distribution support
for clusters. Microsoft’s Cluster Service (MSCS) [100] has brought enterprise class
clustering to the masses through a low-cost solution for mainly fail-over scenarios.
MSCS is limited in scale [101] and other styles of clustering are offered through
separate Microsoft products such as NLB for web-site clustering or AppServer for
middle-tier cluster management. In the Open Source community large number of
packages are under development that support enterprise computing, of which two
receive most attention: Linux-HA [85] which provides failure detection using a heart
beat mechanism for Linux machines, and Compac’s Cluster-Infrastructure for Linux
[20] which provides a re-implementation of some of the Tandem NonStop Cluster
membership and inter-node communication technology for Linux machines.

Cluster management systems supporting compute clusters are ubiquitous, most of
them built at the major research labs to support custom clusters constructed over
the past decade, e.g. [39]. With the advent of a trend towards more cost effective
parallel computing, the Beowulf [97] package for parallel computing under Linux
has become very popular, supporting a large number of compute cluster over the
world. New directions in parallel computing require a more fine-grained, component
based approach, as found in NCSA’s Symera [40].

Historically there were only a few high-profile management systems for high-
available cluster computing, which often was supported by dedicated cluster

150 The Galaxy Framework 8.11 Related work 151150 The Galaxy Framework 8.11 Related work 151

hardware support such as the systems by Tandem and Stratus [49]. Since the move
to more cost enterprise systems most of the vendors have developed commercial
cluster management products for high availability. All of these systems have limited
scalability [28] and are very specific in terms of hardware support or supported
configurations. An overview of the various vendor products can be found in [77].

Scalability in cluster systems has been addressed in cluster research, but mostly
from an application specific viewpoint: The Inktomi [42] technology is a highly
scalable cluster targeted towards Internet search engines and document retrieval.
A cluster based SS7 call processing center [43] with good scalability from a real-
time perspective, was build in 1998 using Cornell communication technology.
Another cluster system that claims excellent scalability is Porcupine, which is very
specifically targeted towards Internet mail processing systems [88]. In terms of
specific distributed systems support for cluster management systems, there is only
limited published work. Next to the systems based on Cornell research technology,
the Phoenix system from IBM research has similar properties and is also applied
to cluster management [3]. In the Oceano project research at IBM have started to
experiment with automatic configuration and management of large datacenters,
the results of which are fueling the Autonomic computing projects that focus on
automatic management and self-healing systems.

8.12 Evaluating scalability

One of our activities that has not received much attention in this chapter but is a very
important part of our research is ongoing work on developing a systematic approach
to evaluating scalability. In this chapter we have made a number of claims about the
scalability of the Galaxy farm and cluster components based on our theoretical and
experimental results. It is outside of the scope of this chapter to present the detailed
experimental and usage results and we refer the interested reader to the papers on
probabilistic multicast [10,11], buffering and garbage collection techniques [72],
gossip based failure detection [81] and hierarchical epidemics & scalable datafusion
[82,83] for additional details.

There are many aspects to the scalability of distribution services. More research is
needed before we are able to identify, isolate and measure, in a scientific manner,
the scalability of systems. Providing a framework for reasoning about the scalability
of complex distributed systems such as Galaxy, is one of our highest research
priorities.

152 PB

PART - III

System experimentation and analysis of
large-scale systems

Introduction

Understanding the way systems are used in production settings is essential for
successful systems research. The design and development of Galaxy and the other
tools that came out of the Spinglass project was largely driven by the experiences
with deploying complex software systems that were a part of earlier research
prototypes or widely used commercial products.

Observing active production systems in a way that lets us draw valid conclusions
from the observations is a major challenge. Unlike a more traditional experiment
design, there is only limited control over the variables that determine the usage of
the system. Instrumentation, data collection and data analysis become very complex
operations, and frequently a number of iterations of all three phases is necessary
before the observation system meets the rigid requirements of proper system
analysis.

During 1997 and 1998, I designed a system for large scale tracing of file systems
usage on standard workstations. The work was triggered by the observation that it was
almost 10 years since the last general file system trace experiments were published,
and that the changes in both workstation hardware and computer usage no longer
warranted the usage of those older traces as predictors for modern system usage.
Thus we are building cluster out of components which have a poorly understood
behavior. A second motivation for the work was to understand the challenges in the
design of a scalable trace system that would collect the data in a rigorous scientific
manner. Analysis of the older traces has shown that those experiments were flawed

154 System experimentation and analysis of large-scale systems The case for rigorous statistical analysis 155154 System experimentation and analysis of large-scale systems The case for rigorous statistical analysis 155

by the lack of appropriate statistical analysis, and the absence of the relevant
information from the traces.

It took more than a year to refine the trace system and the analysis procedures to a
point where large scale tracing could be executed with confidence and the results
used for proper statistical analysis. The data collection phase resulted in almost 20
GByte of data representing over 190 million trace records. After the collection phase
it still took more than 8 months, and the use of advanced tools, to produce the first
results that could be seen as statistically significant. The sheer amount of trace data
required a non-traditional approach in processing the data. The results of the study
were published in the 1999 ACM Symposium on Operating Systems Principles
(SOSP) and can be found in chapter 9.

The case for rigorous statistical analysis

Section 6 of chapter 9 goes into details about the correctness of the statistical analysis
and emphasizes the importance of including tail-analysis in the experiment analysis.
Frequently, experimental results are described using simple statistical tools (average,
mean, variation, 95% mark) without actually testing whether the data distribution as
a whole meets the criteria of a normal distribution. The presence of heavy tails in a
workload can have a significant influence on the operation of a system, but by only
using simple statistical tests it is likely that a tail is never discovered. This will lead
to erroneous conclusions or under-performing systems if only the simple statistical
parameters are used to tune a system.

In the case of the file systems tracing, the statistical analysis process is complicated
by the difficulties of analyzing large amounts of trace data. In the statistical process it
is essential that the distributions are visually inspected for anomalies, which becomes
impossible when there are so many possible relations and time-scales to explore.
Although there aren’t many precendents in systems research of processing these large
amounts of data for exploring potential relations, it is a process that is quite common
in settings outside of research. The process of exploring the trace-data is similar
to the data-mining performed by many corporations on their customer and sales
databases. By switching to using commercial-grade Online Analytical Processing
(OLAP) tools and storing the trace data in a high-performance commercial database,
the processing could be done with confidence. So-called “drill-down” operations
into the many data-cubes constructed out of the data, provided clear insights and

154 System experimentation and analysis of large-scale systems The case for rigorous statistical analysis 155154 System experimentation and analysis of large-scale systems The case for rigorous statistical analysis 155

permitted us to reach conclusions that would not have been possible without the use
of these tools.

A final conclusion

The research cited above was primarily focused on the construction of the
experiments themselves and the analysis of the results., Thought should also be
given to how the results of these experiments might drive a new research agenda for
file system development.

If there is one clear observation on the differences between the earlier traces and the
new results it is that applications on the early Unix systems were quite uniform in the
way that they used the file system. In general they were developed by a small group of
developers who shared the same philosophy of application design. The newer traces
show that there is hardly any uniformity in the way that modern applications use the
file system. The developers are a large, diverse group with no common approach. One
application will close files immediately after reading them into memory, while others
may keep them open from complete duration of the applications lifetime. This leads
to the conclusion that it is almost impossible to construct generic workloads that one
can use to test file-system effectiveness. Using application centered workloads is
likely to be more successful and produce more useful insights.

An important research question to ask about the observation of lack of uniformity in
file systems programming is what triggers this diverse behavior. Could it be that the
limited functionality in the common file access application programming interface
(open-rw-close) also is a contributing factor to the chaos? An avenue to explore for
the future is whether a radical departure from the way developers use file access may
better serve the needs of applications developers and will provide file systems with
more predictable application behavior.

156 PB

Chapter 9

File system usage in Windows NT 4.0

We have performed a study of the usage of the Windows NT File System through
long-term kernel tracing. Our goal was to provide a new data point with respect to
the 1985 and 1991 trace-based File System studies, to investigate the usage details
of the Windows NT file system architecture, and to study the overall statistical
behavior of the usage data.

In this chapter we report on these issues through a detailed comparison with the
older traces, through details on the operational characteristics and through a usage
analysis of the file system and cache manager. Next to architectural insights we
provide evidence for the pervasive presence of heavy-tail distribution characteristics
in all aspect of file system usage. Extreme variances are found in session inter-
arrival time, session holding times, read/write frequencies, read/write buffer sizes,
etc., which is of importance to system engineering, tuning and benchmarking.

9.1 Introduction

There is an extensive body of literature on usage patterns for file systems
[5,45,59,66,71], and it has helped shape file system designs [56,69,87] that perform
quite well. However, the world of computing has undergone major changes since
the last usage study was performed in 1991; not only have computing and network
capabilities increased beyond expectations, but the integration of computing in all
aspects of professional life has produced new generations of systems and applications
that no longer resemble the computer operations of the late eighties. These changes
in the way computers are used may very well have an important impact on the usage
of computer file systems.

158 File system usage in Windows NT 4.0 9.1 Introduction 159158 File system usage in Windows NT 4.0 9.1 Introduction 159

One of the changes in systems has been the introduction of a new commercial
operating system, Microsoft’s Windows NT, which has acquired an important
portion of the professional OS market. Windows NT is different enough from Unix
that Unix file systems studies are probably not appropriate for use in designing or
optimizing Windows NT file systems.

These two observations have lead us to believe that new data about file systems usage
is required, and that it would be particularly interesting to perform the investigation
on a Windows NT platform.

In this chapter we report on a file system usage study performed mainly during 1998
on the Windows NT 4.0 operating system. We had four goals for this study:

1. Provide a new data point with respect to earlier file system usage studies,
performed on the BSD and Sprite operating systems.

2. Study in detail the usage of the various components of the Windows NT I/O
subsystem, and examine undocumented usage such as the FastIO path.

3. Investigate the complexity of Windows NT file system interactions, with a focus
on those operations that are not directly related to the data path.

4. Study the overall distribution of the usage data. Previous studies already hinted
at problems with modeling outliers in the distribution, but we believe that this
problem is more structural and warrants a more detailed analysis.

Next to these immediate goals, we wanted the investigation to result in a data
collection that would be available for public inspection, and that could be used as
input for file system simulation studies and as configuration information for realistic
file system benchmarks.

The complexity of Windows NT file usage is easily demonstrated. When we type a
few characters in the Notepad text editor, saving this to a file will trigger 26 system
calls, including 3 failed open attempts, 1 file overwrite and 4 additional file open and
close sequences.

The rest of this chapter is structured as follows: in section 9.2 we describe the systems
we measured, and in section 9.3 and 9.4, we describe the way we collected the data
and processed it. In section 9.5 we examine the file system layout information, and
in section 9.6 we compare our tracing results with the BSD and Sprite traces. Section
9.7 contains a detailed analysis of the distribution aspects of our collected data.

158 File system usage in Windows NT 4.0 9.1 Introduction 159158 File system usage in Windows NT 4.0 9.1 Introduction 159

In comparison with the Sprite and BSD traces
− Per user throughput remains low, but is about 3 times higher (24 Kbytes/sec)

than in Sprite (8 Kb/sec)
− Files opened for data access are open for increasingly shorter periods: 75% of

files remain open for less then 10 milliseconds versus a 75th percentile of 250
milliseconds in Sprite.

− Most accessed files are short in length (80% are smaller than 26 Kbytes), which
is similar to Sprite.

− Most access (60%) to files is sequential, but there is a clear shift towards
random access when compared to Sprite.

− The size of large files has increased by an order of magnitude (20% are 4Mbytes
or larger), and access to these files accounts for the majority of the transferred
bytes.

− 81% of new files are overwritten within 4 milliseconds (26%) or deleted within
5 seconds (55%).

Trace data distribution characteristics
− There is strong evidence of extreme variance in all of the traced usage

characteristics.
− All the distributions show a significant presence of heavy-tails, with values for

the Hill estimator between 1.2 and 1.7, which is evidence of infinite variance.
− Using Poisson processes and Normal distributions to model file system usage

will lead to incorrect results.
Operational characteristics
− The burstiness of the file operations has increased to the point where it disturbs

the proper analysis of the data.
− Control operations dominate the file system requests: 74% of the file opens are

to perform a control or directory operation.
− In 60% of the file read requests the data comes from the file cache.
− In 92% of the open-for-read cases a single prefetch was sufficient to load the

data to satisfy all subsequent reads from the cache.
− The FastIO path is used in 59% of the read and 96% of the write requests.
− Windows NT access attributes such as temporary file, cache write- through,

sequential access only, can improve access performance significantly but are
underutilized.

File system content
− Executables, dynamic loadable libraries and fonts dominate the file size

distribution.
− 94% of file system content changes are in the tree of user profiles (personalized

file cache).
− Up to 90% of changes in the user’s profile occur in the WWW cache.
− The time attributes recorded with files are unreliable

Table 9.1. Summary of observations

160 File system usage in Windows NT 4.0 9.2 Systems under study 161160 File system usage in Windows NT 4.0 9.2 Systems under study 161

Sections 9.8, 9.9 and 9.10 contain details about the operation of various Windows
NT file system components. Section 9.11 touches on related work and section 9.12
summarizes the major points of the study. An overview of our observations can be
found in table 9.1.

9.2 Systems under study

We studied a production environment in which five distinct categories of usage are
found:

• Walk-up usage. Users make use of a pool of available systems located in a
central facility. The activities of these users vary from scientific analysis and
program development to document preparation.

• Pool usage. Groups of users share a set of dedicated systems, located near their
work places. These users mainly are active in program development, but also
perform a fair share of multimedia, simulation and data processing.

• Personal usage. A system is dedicated to a single user and located in her office.
The majority of the activities is in the category of collaborative style applications,
such as email and document preparation. A smaller set of users uses the systems
for program development.

• Administrative usage. All these systems are used for a small set of general
support tasks: database interaction, collaborative applications, and some
dedicated administrative tools.

• Scientific usage. These systems support major computational tasks, such as
simulation, graphics processing, and statistical processing. The systems are
dedicated to the small set of special applications.

The first four categories are all supported by Pentium Pro or Pentium II systems
with 64-128 Mb memory and a 2-6 GB local IDE disk. The pool usage machines
are in general more powerful (300-450 MHz, some dual processors), while the
other machines are all in the 200 MHz range. The scientific usage category consists
of Pentium II 450 Xeon dual and quad processors with a minimum of 256 MB of
memory and local 9-18 GB SCSI Ultra-2 disks. All systems ran Windows NT 4.0
with the latest service packs applied. At the time of the traces the age of file systems
ranged from 2 months to 3 years, with an average of 1.2 years.

160 File system usage in Windows NT 4.0 9.2 Systems under study 161160 File system usage in Windows NT 4.0 9.2 Systems under study 161

There is central network file server support for all users. Only a limited set of personal
workstations is supported through a backup mechanism, so central file storage is
implicitly encouraged. All systems are connected to the network file servers through
a 100 Mbit/sec switched Ethernet. The users are organized in three different NT
domains, one for the walk-up usage, one general usage and one for experiments. The
experimental domain has a trust relationship with the general domain and network
file services are shared. The walk-up domain is separated from the other domains
through a network firewall and has its own network file services.

From the 250 systems that were available for instrumentation, we selected a set of
45 systems based on privacy concerns and administrative accessibility. A subset of
these systems was traced for 3 periods of 2 weeks during the first half of 1998 while
we adjusted the exact type and amount of data collected. Some of the changes were
related to the fact that our study was of an exploratory nature and the data collection
had to be adjusted based on the initial results of the analysis. Other adjustments
were related to our quest to keep the amount of data per trace record to an absolute
minimum, while still logging sufficient information to support the analysis. We were
not always successful as, for example, logging only the read request size is of limited
use if the bytes actually read are not also logged. The analysis reported in this chapter
is based on a final data collection that ran for 4 weeks in November and December of
1998. The 45 systems generated close to 19 GB of trace data over this period.

Since then we have run additional traces on selected systems to understand particular
issues that were unclear in the original traces, such as burst behavior of paging I/O,
reads from compressed large files and the throughput of directory operations.

9.3 Collecting the data

The systems were instrumented to report two types of data: 1) snapshots of the
state of the local file systems and 2) all I/O requests sent to the local and remote file
systems. The first type is used to provide basic information about the initial state of
the file system at the start of each tracing period and to establish the base set of files
toward which the later requests are directed. In the second type of data all file system
actions are recorded in real-time.

On each system a trace agent is installed that provides an access point for remote
control of the tracing process. The trace agent is responsible for taking the periodic
snapshots and for directing the stream of trace events towards the collection servers.
The collection servers are three dedicated file servers that take the incoming event

162 File system usage in Windows NT 4.0 9.3 Collecting the data 163162 File system usage in Windows NT 4.0 9.3 Collecting the data 163

streams and store them in compressed formats for later retrieval. The trace agent
is automatically started at boot time and tries to connect to a collection server; if it
succeeds, it will initiate the local data collection. If a trace agent loses contact with
the collection servers it will suspend the local operation until the connection is re-
established.

9.3.1 File system snapshots

Each morning at 4 o’clock a thread is started by the trace agent server to take a
snapshot of the local file systems. It builds this snapshot by recursively traversing
the file system trees, producing a sequence of records containing the attributes of
each file and directory in such a way that the original tree can be recovered from the
sequence. The attributes stored in a walk record are the file name and size, and the
creation, last modify and last access times. For directories the name, number of files
entries and number of subdirectories is stored. Names are stored in a short form as
we are mainly interested in the file type, not in the individual names. On FAT file
systems the creation and last access times are not maintained and thus ignored.

The trace agent transfers these records to the trace collection server, where they are
stored in a compressed format. Access to the collection files is through an OLE/
DB provider, which presents each file as two database tables: one containing the
directory and the other containing file information.

Producing a snapshot of a 2 GB disk takes between 30 and 90 seconds on a 200 MHz
P6.

9.3.2 File system trace instrumentation

To trace file system activity, the operating system was instrumented so that it would
record all file access operations. An important subset of the Windows NT file system
operations are triggered by the virtual memory manager, which handles executable
image loading and file cache misses through its memory mapped file interface. As
such, it is not sufficient to trace at the system call level as was done in earlier traces.
Our trace mechanism exploits the Windows NT support for transparent layering
of device drivers, by introducing a filter driver that records all requests sent to
the drivers that implement file systems. The trace driver is attached to each driver
instance of a local file system (excluding removable devices), and to the driver that
implements the network redirector, which provides access to remote file systems
through the CIFS protocol.

162 File system usage in Windows NT 4.0 9.3 Collecting the data 163162 File system usage in Windows NT 4.0 9.3 Collecting the data 163

All file systems requests are sent to the I/O manager component of the Windows
NT operating system, regardless of whether the request originates in a user-level
process or in another kernel component, such as the virtual memory manager or
the network file server. After validating the request, the I/O manager presents it to
the top-most device-driver in the driver chain that handles the volume on which the
file resides. There are two driver access mechanisms: one is a generic packet based
request mechanism, in which the I/O manager sends a packet (an IRP -- I/O request
packet) describing the request, to the drivers in the chain sequentially. After handling
a request packet a driver returns it to the I/O manager, which will then send it to the
next device. A driver interested in post-processing of the request, after the packet
has been handled by its destination driver, modifies the packet to include the address
of a callback routine. A second driver access mechanism, dubbed FastIO, presents
a direct method invocation mechanism: the I/O manager invokes a method in the
topmost driver, which in turn invokes the same method on the next driver, and so on.
The FastIO path is examined in more detail in section 9.10.

The trace driver records 54 IRP and FastIO events, which represent all major I/O
request operations. The specifics of each operation are stored in fixed size records
in a memory buffer, which is periodically flushed to the collection server. The
information recorded depends on the particular operation, but each record contains at
least a reference to the file object, IRP, File and Header Flags, the requesting process,
the current byte offset and file size, and the result status of the operation. Each record
receives two timestamps: one at the start of the operation and the other at completion
time. These time stamps have a 100 nanosecond granularity. Additional information
recorded depends on the particular operation, such as offset, length and returned
bytes for the read and write operations, or the options and attributes for the create
operation. An additional trace record is written for each new file object, mapping
object id to a file name.

The trace driver uses a triple-buffering scheme for the record storage, with each
storage buffer able to hold up to 3,000 records. An idle system fills this size storage
buffer in an hour; under heavy load, buffers fill in as little as 3-5 seconds. Were the
buffers to fill in less than 1 second, the increased communication latency between
the host and server could lead to the overflow of the tracing module storage buffer.
The trace agent would detect such an error, but this never occurred during our tracing
runs.

164 File system usage in Windows NT 4.0 9.3 Collecting the data 165164 File system usage in Windows NT 4.0 9.3 Collecting the data 165

Kernel profiling has shown the impact of the tracing module to be acceptable; under
heavy IRP load the tracing activity contributed up to 0.5% of the total load on a 200
MHz P6.

In a 24-hour period the file system trace module would record between 80 thousand
and 1.4 million events.

9.3.3 Executable and paging I/O

Windows NT provides functionality for memory mapped files, which are used
heavily by two system services: (1) the loading of executables and dynamic loadable
libraries is based on memory mapped files, and (2) the cache manager establishes a
file mapping for each file in its cache, and uses the page fault mechanism to trigger
the VM manager into loading the actual data into the cache. This tight integration of
file system, cache manager and virtual memory manager poses a number of problems
if we want to accurately account for all the file system operations.

The VM manager uses IRPs to request the loading of data from a file into memory and
these IRPs follow the same path as regular requests do. File systems can recognize
requests from the VM through a PagingIO bit set in the packet header. When tracing
file systems one can ignore a large portion of the paging requests, as they represent
duplicate actions: a request arrives from process and triggers a page fault in the
file cache, which triggers a paging request from the VM manager. However, if we
do ignore paging requests we would miss all paging that is related to executable
and dynamic loadable library (dll) loading, and other use of memory mapped files.
We decided to record all paging requests and filter out the cache manager induced
duplicates during the analysis process.

We decided in favor of this added complexity, even though it almost doubled the
size of our traces, because of the need for accuracy in accounting for executable-
based file system requests. In earlier traces the exec system call was traced to record
the executable size, which was used to adjust the overall trace measurements. In
Windows NT this is not appropriate because of the optimization behavior of the
Virtual Memory manager: executable code pages frequently remain in memory after
their application has finished executing to provide fast startup in case the application
is executed again.

164 File system usage in Windows NT 4.0 9.3 Collecting the data 165164 File system usage in Windows NT 4.0 9.3 Collecting the data 165

9.3.4 Missing and noise data

We believe the system is complete in recording all major file system IO events,
which is sufficient for getting insight into general Windows NT file system usage.
There are many minor operations for which we did not log detailed information
(such as locking and security operations), but they were outside of the scope of our
study. During our analysis we found one particular source of noise: the local file
systems can be accessed over the network by other systems. We found this access to
be minimal, as in general it was used to copy a few files or to share a test executable.
Given the limited impact of these server operations we decided to not remove them
from the trace sets.

9.4 The data analysis process

The data analysis presented us with a significant problem: the amount of data was
overwhelming. The trace data collection run we are reporting on totaled close to 20
GB of data, representing over 190 million trace records. The static snapshots of the
local disks resulted in 24 million records.

Most related tracing research focuses on finding answers to specific sets of questions
and hypotheses, which could be satisfied through the use of extensive statistical
techniques, reducing the analysis to a number crunching exercise. Given the
exploratory nature of our study we needed mechanisms with which we could browse
through the data and search for particular patterns, managing the exposed level of
details. Developing a representation of the data such that these operations could
be performed efficiently on many millions of records turned out to be a very hard
problem.

We were able to find a solution by realizing that this was a problem identical to
the problems for which there is support in data-warehousing and on-line analytical
processing (OLAP). We developed a de-normalized star schema for the trace data
and constructed corresponding database tables in SQL-server 7.0. We performed a
series of summarization runs over the trace data to collect the information for the
dimension tables. Dimension tables are used in the analysis process as the category
axes for multi-dimensional cube representations of the trace information. Most
dimensions support multiple levels of summarization, to allow a drill-down into the
summarized data to explore various levels of detail. An example of categorization is
that a mailbox file with a .mbx type is part of the mail files category, which is part of
the application files category.

166 File system usage in Windows NT 4.0 9.5 File system content characteristics 167166 File system usage in Windows NT 4.0 9.5 File system content characteristics 167

We departed from the classical data-warehouse model in that we used two fact
tables (the tables that hold all the actual information), instead of one. The first table
(trace) holds all the trace data records, with key references to dimension tables. The
second table (instance) holds the information related to each FileObject instance,
which is associated with a single file open-close sequence, combined with summary
data for all operations on the object during its life-time. Although the second table
could be produced by the OLAP system, our decision to use two fact tables reduced
the amount of storage needed in the trace table by references to the instance table,
reducing the processing overhead on operations that touch all trace records.

The use of a production quality database system provided us with a very efficient
data storage facility. An operation that would touch all trace data records, such as
calculation of the basic statistical descriptors (avg, stdev, min, max) of request inter-
arrival times, runs at 30% of the time a hand optimized C-process on the original
trace data takes. More complex statistical processing that could not be expressed
in SQL or MDX was performed using the SPSS statistical processing package that
directly interfaces with the database.

Because we processed the data using different category groupings (e.g. per day,
per node, per user, per process, etc.) our analysis frequently did not result in single
values for the statistical descriptors. In the text we show the ranges of these values
or, where relevant, only the upper or lower bound.

9.5 File system content characteristics

To accurately analyze the real-time tracing results we needed to examine the
characteristics of the set of files that were to be accessed in our trace sessions.
For this we took snapshots of each of the file systems that was used for tracing as
described in section 9.3.1. We collected file names and sizes, and creation and access
times, as well as directory structure and sizes.

We supplemented this data with periodic snapshots of the user directories at the
network file severs. However, the results of these snapshots cannot be seen as the
correct state of the system from which the real-time tracing was performed, as they
included the home directories of more users than those being traced. The network
file server information was used to establish an intuitive notion of the differences
between local and network file systems.

166 File system usage in Windows NT 4.0 9.5 File system content characteristics 167166 File system usage in Windows NT 4.0 9.5 File system content characteristics 167

Recently Douceur and Bolosky have published a study on the content of over 10,000
Windows NT file systems within Microsoft [28]. Most of our findings are consistent
with their conclusions, and we refer to their paper for a basic understanding of
Windows NT file system content. Our content tracing allowed us to track the state of
the file systems over time, and in this section we report from that specific view.

We see that the local file systems have between 24,000 and 45,000 files, that the file
size distribution is similar for all systems, and that the directory depth and sizes are
almost identical. File systems are between 54% and 87% full.

The network server file systems are organized into shares, which is a remote
mountable sub-tree of a file system. In our setting each share represents a user’s
home directory. There was no uniformity in size or content of the user shares; sizes
ranged from 500 Kbytes to 700 Mbytes and number of files from 150 to 27,000. The
directory characteristics exhibit similar variances.

Decomposition of the local and network file systems by file type shows a high
variance within the categories as well as between categories. What is remarkable
is that this file type diversity does not appear to have any impact on the file size
distribution; the large-sized outliers in the size distribution dominate the distribution
characteristics. If we look again at the different file types and weigh each type by
file size we see that the file type distribution is similar for all system types, even for
the network file systems. The file size distribution is dominated by a select group of
file-types that is present in all file systems. For local file systems the size distribution
is dominated by executables, dynamic loadable libraries and fonts, while for the
network file system the set of large files is augmented with development databases,
archives and installation packages.

When we examine the local file systems in more detail we see that the differences
in file system state are determined by two factors: 1) the file distribution within the
user’s profile, and 2) the application packages installed. Most of our test systems
have a limited number of user specific files in the local file system, which are
generally stored on the network file servers.

Of the user files that are stored locally between 87% and 99% can be found in the
profile tree (\winnt\profiles\<username>). Each profile holds all the files that are
unique to a user and which are stored by the system at a central location. These files
are downloaded to each system the user logs into from a profile server, through the
winlogon process. This includes files on the user’s desktop, application specific data

168 File system usage in Windows NT 4.0 9.5 File system content characteristics 169168 File system usage in Windows NT 4.0 9.5 File system content characteristics 169

such as mail files, and the user’s world-wide-web cache. At the end of each session
the changes to the profiles are migrated back to the central server. When we detect
major differences between the systems, they are concentrated in the tree under the
\winnt\profiles directory. For the “Temporary Internet Files” WWW cache we
found sizes between 5 and 45 Mbytes and with between 2,000 and 9,500 files in the
cache.

A second influence on the content characteristics of the file system is the set of
application packages that are installed. Most general packages such as Microsoft
Office or Adobe Photoshop have distribution dynamics that are identical to the
Windows NT base system and thus have little impact on the overall distribution
characteristics. Developer packages such as the Microsoft Platform SDK, which
contains 14,000 files in 1300 directories, create a significant shift in file-type count
and the average directory statistics.

When we examine the changes in the file systems over time, similar observations can
be made. Major changes to a Windows NT file system appear when a new user logs
onto a system, which triggers a profile download, or when a new application package
is installed. Without such events, almost all of the measured changes were related to
the current user’s activities, as recorded in her profile. A commonly observed daily
pattern is one where 300-500 files change or are added to the system, with peaks of
up to 2,500 and 3,000 files, up to 93% of which are in the WWW cache.

Changes to user shares at the network file server occur at much slower pace. A
common daily pattern is where 5-40 files change or are added to the share, with
peaks occurring when the user installs an application package or retrieves a large set
of files from an archive.

If we look at the age of files and access patterns over time, a first observation to
make is that the three file times recorded with files (creation, last access, last change)
are unreliable. These times are under application control, allowing for changes that
cause inconsistencies. For example, in 2-4% of the examined cases, the last change
access is more recent than the last access times. Installation programs frequently
change the file creation time of newly installed files to the creation time of the file
on the installation medium, resulting in files that have creation times of years ago on
file systems that are only days or weeks old. In [89] the creation times were also not
available and a measure used to examine usage over time was the functional lifetime,
defined as the difference between the last change and the last access. We believe that

168 File system usage in Windows NT 4.0 9.5 File system content characteristics 169168 File system usage in Windows NT 4.0 9.5 File system content characteristics 169

these timestamps in Windows NT are more accurate than the creation time, as the
file system is the main modifier of these timestamps, but we are still uncertain about
their correctness, and as such we cannot report on them.

9.6 BSD & Sprite studies revisited

One of the goals of this study was to provide a new data point in relation to earlier
studies of the file system usage in BSD 4.2 and the Sprite operating systems. These
studies reported their results in three categories: 1) user activity (general usage of the
file system on a per user basis), 2) access patterns (read/write, sequential/random),
and 3) file lifetimes. A summary of the conclusions of this comparison can be found
in table 9.1.

The Windows NT traces contain more detail than the BSD/Sprite traces, but in
this section we will limit our reporting to the type of data available in the original
studies.

Strong caution: when summarizing the trace data to produce tables identical to those
of the older traces, we resort to techniques that are not statistically sound. As we will
show in section 9.7, access rates, bytes transferred and most of the other properties
investigated are not normally distributed and thus cannot be accurately described by
a simple average of the data. We present the summary data in table 9.2 and 9.3 to
provide a historical comparison.

9.6.1 User activity

Table 9.2 reports on the user activity during the data collection. The tracing period
is divided into 10-minute and 10-second intervals, and the number of active users
and the throughput per user is averaged across those intervals. In the BSD and Sprite
traces it was assumed that 10 minutes was a sufficient period to represent a steady
state, while the 10-second average would more accurately capture bursts of activity.

The earlier traces all reported on multi-user systems, while the Windows NT
systems under study are all configured for a single user. A user and thus a system are
considered to be active during an interval if there was any file system activity during
that interval that could be attributed to the user. In Windows NT there is a certain
amount of background file system activity, induced by systems services, that was
used as the threshold for the user activity test.

170 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 171170 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 171

B
SD

31 12
.6

0.
4

(0
.4

)

N
A

N
A

N
A

2.
5

(1
.5

)

1.
5

(8
08

)

N
A

N
A

Sp
ri

te

27 9.
1

(5
.1

)

8.
0

(3
6)

45
8

68
1

12 1.
6

(1
.5

)

47
.0

 (2
68

)

98
71

99
77

W
in

do
w

s N
T

45 28
.9

 (2
1.

6)

24
.4

 (5
7.

9)

81
4

81
4

45 6.
3

(1
5.

3)

42
.5

 (1
91

)

89
10

89
10

U
se

r A
ct

iv
ity

M
ax

 N
um

be
r o

f a
ct

iv
e

us
er

s

Av
re

ga
e

nu
m

be
r o

f a
ct

iv
e

us
er

s

Av
er

ag
e

Th
ro

ug
hp

ut
 fo

r a
 u

se
r i

n
an

 in
te

rv
al

Pe
ak

 th
ro

ug
hp

ut
 fo

r a
n

ac
tiv

e
us

er

Pe
ak

 T
hr

ou
gh

pu
t s

ys
te

m
 w

id
e

M
ax

 N
um

be
r o

f a
ct

iv
e

us
er

s

Av
re

ga
e

nu
m

be
r o

f a
ct

iv
e

us
er

s

Av
er

ag
e

Th
ro

ug
hp

ut
 fo

r a
 u

se
r i

n
an

 in
te

rv
al

Pe
ak

 th
ro

ug
hp

ut
 fo

r a
n

ac
tiv

e
us

er

Pe
ak

 T
hr

ou
gh

pu
t s

ys
te

m
 w

id
e

In
te

rv
al

10
-m

in
ut

e
in

te
rv

al
s

10
-s

ec
on

d
in

te
rv

al
s

Ta
bl

e
9.

2.
 U

se
r a

ct
iv

ity
. T

he
 th

ro
ug

hp
ut

 is
 re

po
rte

d
in

 K
by

te
s/

se
co

nd
 (w

ith
 th

e
st

an
da

rd
 d

ev
ia

tio
n

in
 p

ar
en

th
es

es
)

170 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 171170 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 171

B
yt

es
 (%

)

S 89 5 7 69 19 11 0 0 0

+ 96 72 97 99 47 99 76 14 10
0

- 3 0 0 1 0 0 0 0 9

W 58 11 31 70 3 27 5 0 94

A
cc

es
se

s (
%

) S 78 19 3 67 29 4 0 0 10
0

+ 99 62 99 99 51 94 90 28 10
0

- 1 0 0 5 0 0 0 0 2

W 68 20 12 78 7 15 22 3 74

Ty
pe

 o
f t

ra
ns

fe
r

W
ho

le
 fi

le

O
th

er
 S

eq
ue

nt
ia

l

R
an

do
m

W
ho

le
 fi

le

O
th

er
 S

eq
ue

nt
ia

l

R
an

do
m

W
ho

le
 fi

le

O
th

er
 S

eq
ue

nt
ia

l

R
an

do
m

B
yt

es
(%

)

S 80 19 1

+ 99 73 70

- 21 0 0

W 59 26 15

A
cc

es
se

s (
%

) S 88 11 1

+ 97 77 16

- 21 3 0

W 79 18 3

F
ile

 U
sa

ge

Re
ad

-o
n;

y

W
ri

te
-o

nl
y

Re
ad

/W
ri

te

Ta
bl

e
9.

3.
 A

cc
es

s p
at

te
rn

s,
th

e
W

 c
ol

um
n

ho
ld

s t
he

 m
ea

n
fo

r t
he

 W
in

do
w

s N
T

tra
cs

es
, T

he
 S

 c
ol

um
ns

 h
ol

ds
 th

e
va

lu
es

 fr
om

 th
e

Sp
rit

e
tra

ce
s.

Th
e

- a
nd

 +
 c

ol
um

ns
 in

di
ca

te
 th

e
ra

ng
e

fo
r t

he
 W

In
do

w
s N

T
va

lu
es

. A
ll

nu
m

be
rs

 a
re

 re
po

rte
d

in
 p

er
ce

nt
ag

es

172 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 173172 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 173

The result of the comparison is in table 9.2. The average throughput per user has
increased threefold since the 1991 Sprite measurements. A remarkable observation
is that this increase can only be seen for the 10-minute periods, for the 10-second
period there was no such increase and the peak measurements are even lower.

The Sprite researchers already noticed that the increase in throughput per user was
not on the same scale as the increase of processor power per user. They attributed
this to the move from a system with local disk to a diskless system with network
file systems. In our traces we are able to differentiate between local and network
access, and when summarizing it appears that there is indeed such a difference in
throughput. However detailed analysis shows that the difference can be completely
attributed to the location of executables and large system-files such as fonts, which
are all placed on the local disk.

One of the reasons for the high peak load in Sprite was the presence of large files
from a scientific simulation. Although the scientific usage category in our traces uses
files that are of an order of magnitude larger (100-300 Mbytes), they do not produce
the same high peak loads seen in Sprite. These applications read small portions of the
files at a time, and in many cases do so through the use of memory-mapped files.

The peak load reported for Windows NT was for a development station, where in a
short period a series of medium size files (5-8 Mb), containing precompiled header
files, incremental linkage state and development support data, was read and written.

9.6.2 File access patterns

The BSD and Sprite (and also the VMS [78]) traces all concluded that most access
to files is sequential. Summaries of our measurements, as found in table 9.3, support
this conclusion for Windows NT file access, but there is also evidence of a shift
towards more randomized access to files when compared to the Sprite results.

A sequential access is divided into two classes: complete file access and partial file
access. In the latter case all read and write accesses are sequential but the access does
not start at the beginning of the file or transfers fewer bytes than the size of the file
at close time.

The Windows NT traces do not support the trend seen in Sprite, where there was a
10% increase in sequential access. On average 68% of the read-only accesses were
whole-file sequential, versus 78% in the Sprite traces. A significant difference from
Sprite is the amount of data transferred sequentially: in Sprite 89% of the read-only

172 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 173172 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 173

Figure 9.1. The cumulative distribution of the sequential run length weighted by the
number of files

run length (bytes)

10 100 1K 10K 100K

pe
rc
en
ta
ge

of
fi
le
s

0

20

40

60

80

100

read runs

write runs

run length(bytes)

10 100 1K 10K 100K

pe
rc
en
ta
ge

of
By
te
s
Tr
an
sf
er
ed

0

20

40

60

80

100

read runs

write runs

Figure 9.2. The cumulative distribution of the sequential run length weighted by
bytes transferred

174 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 175174 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 175

File Size (bytes)

1 10 100 1K 10K 100K 1M 10M 100M 1G

Pe
rc
en
ta
ge

of
Fi
le
s

0

20

40

60

80

100

Read-Only
Read-Write
Write-Only

Figure 9.3. The filesize cumulative distribution, weighted by the number of files
opened

File Size (bytes)

1 10 100 1K 10K 100K 1M 10M 100M

Pe
rc
en
ta
ge

of
By
te
s
Tr
an
sf
er
ed

0

20

40

60

80

100

Read-Only
Read-Write
Write-Only

Figure 9.4. The filesize cumulative distribution, weighted by the number of bytes
transfered

174 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 175174 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 175

data was transferred sequentially versus 58% in the Windows NT traces. When
comparing this type of trace summary there is a stronger presence of random access
to data both in number of accesses and in the amount of data accessed for all file
usage categories.

Another important access pattern examined is that of the sequential runs, which is
when a portion of a file is read or written in a sequential manner. The prediction of
a series of sequential accesses is important for effective caching strategies. When
examining these runs we see that they remain short; the 80% mark for Sprite was
below the 10 Kbytes, while in our traces we see a slight increase in run length with
the 80% mark at 11 Kbytes (figure 9.1).

An observation about the Sprite traces was that most bytes were transferred in the
longer sequential runs. The Windows NT traces support this observation, although
the correlation is less prominent (figure 9.2). Access to large files shows increasing
random access patterns, causing 15%-35% (in some traces up to 70%) of the bytes
to be transferred in non-sequential manner.

If we look at all file open sessions for which data transfers where logged, not just
those with sequential runs, we see that the 80% mark for the number of accesses

File open times

1 msec 1 sec 16 min 4 days

Pe
rc
en
ta
ge

of
Fi
le
s

0

20

40

60

80

100

all files
local file system
network file server

Figure 9.5. The file open time cumulative distribution, weighted by the number of
files.

176 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 177176 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 177

changes to 24 Kbytes. 10% of the total transferred bytes were transferred in sessions
that accessed at least 120 Kbytes.

When examining the size of files in relation to the number of sequential IO operations
posted to them we see a similar pattern: most operations are to short files (40% to
files shorter than 2K) while most bytes are transferred to large files (figures 9.3 and
9.4).

In Sprite the researchers found that, when examining the top 20% of file sizes, an
increase of an order of magnitude was seen with respect to the BSD traces. This
trend has continued: in the Windows NT traces the top 20% of files are larger than
4 Mbytes. An important contribution to this trend comes from the executables and
dynamic loadable libraries in the distribution, which account for the majority of
large files.

The last access pattern for which we examine the traces concerns the period of time
during which a file is open. In this section we only look at file open sessions that
have data transfer associated with them; sessions specific for control operation are
examined in section 9.8. The results are presented in figure 9.5; about 75% of the
files are open less than 10 milliseconds. This is a significant change when compared
to the Sprite and BSD traces, which respectively measured a quarter-second and a
half-second at 75%. The less significant difference between the two older traces was
attributed to the fact that in the BSD traces the I/O was to local storage while in the
Sprite the storage was accessed over the network. In the Windows NT traces we are
able to examine these access times separately, and we found no significant difference
in the access times between local and remote storage.

9.6.3 File lifetimes

The third measurement category presented in the BSD & Sprite traces is that of
the lifetime of newly created files. The Sprite traces showed that between 65% and
80% of the new files were deleted within 30 seconds after they were created. In the
Windows NT traces we see that the presence of this behavior is even stronger; up to
80% of the newly created files are deleted within 4 seconds of their creation.

In Windows NT we consider three sources for deletion of new files: (1) an existing
file is truncated on open by use of a special option (37% of the delete cases), (2) a
file is newly created or truncated and deleted using a delete control operation (62%),
and (3) a file is opened with the temporary file attribute (1%).

176 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 177176 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 177

lifetime of new files

100 usec 10 msec 1 sec 100 sec 10K sec

pe
rc
en
ta
ge

of
fi
le
s

0

20

40

60

80

100

overwrite/truncate
explicit delete

File size in bytes at overwrite time

0 10 100 1K 10K 100K 1M 10M

Li
fe
ti
me

of
ne
w
fi
le
s

100 usec

10 msec

1 sec

100 sec

10K sec

Figure 9.6. The lifetime of newly created filesgrouped by deletion method

Figure 9.7. When examining file sizes at overwrite time, we cannot find a correlation
between filesize and lifetime

178 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 179178 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 179

In about 75% of the delete-through-truncate cases a file was overwritten within 4
milliseconds after it was created. The distribution shows a strong heavy tail with the
top 10% having a lifetime of at least 1 minute, and up to 18 hours. If we inspect the
time between the closing of a file and the subsequent overwrite action, we see that
over 75% of these files are overwritten within 0.7 millisecond of the close.

In the case of explicitly deleted files, we see a higher latency between create and
delete action. 72% of these files are deleted within 4 seconds after they were created
and 60% 1.5 seconds after they were closed (see figure 9.6).

One of the possible factors in the difference in latency is related to which process
deletes the file. In 94% of the overwrite cases, the process that overwrites the file
also created it in the first place, while in 36% of the DeleteFile cases the same
process deletes the file. A second factor is that there are no other actions posted to
overwritten files, while in 18% of the DeleteFile cases, the file is opened one or more
times between creation and deletion.

The temporary file attribute not only causes the file to be deleted at close time,
but also prevents the cache manager’s lazy writer threads from marking the pages
containing the file data for writing to disk. Although it is impossible to extract the
exact persistency requirements for temporary file usage from the traces, analysis
suggests that at least 25%-35% of all the deleted new files could have benefited from
the use of this attribute.

In 23% of the cases where a file was overwritten, unwritten pages were still present
in the file cache when the overwrite request arrived. In the case of the CreateFile/
DeleteFile sequence 5% of the newly created files had still unwritten data present in
the cache when deleted. Anomalous behavior was seen in 3% of the cases where the
file was flushed from the cache by the application before it was deleted.

The apparent correlation between the file size and lifetime, as noticed by the Sprite
researchers, is tremendously skewed by the presence of large files. In the Windows
NT case only 4% of the deleted files are over 40 Kbytes and 65% of the files are
smaller than 100 bytes. In the traces we could not find any proof that large temporary
files have a longer lifetime. Figure 9.7 shows a plot of lifetime versus size of a trace
sample, and although there are no large files in this plot that are deleted in less then 1
second, there is no statistical justification for a correlation between size and lifetime
of temporary files.

178 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 179178 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 179

0
25
0

50
0

75
0

10
00

Openrequestsper10seconds

0

20
00

40
00

60
00

80
00

10
00
0

0
20
00

40
00

60
00

80
00

10
00
0

Openrequestsper100seconds

0

10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

Openrequestsper1second

0

20
0

40
0

60
0

80
0

10
00

0
20

40
60

80
10
0

0
20

40
60

80
10
0

Arrivalsper1second

0

20
0

40
0

60
0

80
0

0
20
0

40
0

60
0

80
0

10
00

Arrivalsper10seconds

10
00

20
00

30
00

40
00

0
20
00

40
00

60
00

80
00

10
00
0

0

10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

Arrivalsper100seconds

Fi
gu

re
 9

.8
. T

he
 to

p
ro

w
 d

is
pl

ay
s t

he
 in

te
r-a

rr
iv

al
 d

is
tri

bu
tio

n
of

 fi
le

 o
pe

n
ev

en
ts

 a
t 3

 d
iff

er
en

t o
rd

er
s o

f m
ag

ni
tu

de
. T

he
 b

ot
to

m
 ro

w
 c

on
ta

in
s

a
sy

nt
he

si
ze

d
sa

m
pl

e
of

 a
 P

oi
ss

on
 p

ro
ce

ss
 w

ith
 p

ar
am

te
rs

 e
st

im
at

ed
 fr

om
 th

e
sa

m
pl

e

180 File system usage in Windows NT 4.0 9.7 Data distribution 181180 File system usage in Windows NT 4.0 9.7 Data distribution 181

9.7 Data distribution

When analyzing the user activity in section 9.6.1 we were tempted to conclude
that for Windows NT the average throughput in general has increased, but that the
average in burst load has been reduced. The use of simple averaging techniques
allows us to draw such conclusions, in similar fashion one could conclude from
the file access patterns that most file accesses still occur in a read-only, whole-file
sequential manner. If we examine the result of analysis of the file access in table
9.3 once more, the truly important numbers in that table are the ranges of values
that were found for each of the statistical descriptives. The -/+ columns in the table
represent the min/max values found when analyzing each trace separately.

When we have a closer look at the trace data and the statistical analysis of it, we find
a significant variance in almost all variables that we can test. A common approach
to statistically control burstiness, which is often the cause of the extreme variances,
is to examine the data on various time scales. For example, in the previous two
file system trace reports, the data was summarized over 10-second and 10-minute
intervals, with the assumption that the 10-minute interval would smoothen any
variances found in the traces.

If, for example, we consider the arrival rate of file system requests to be drawn from
a Poisson distribution, we should see that the variances should diminish when we
view the distribution at coarser time granularity. In figure 9.8 we compare the request
arrival rates in one of our trace files, randomly chosen, with a synthesized sample
from a Poisson distribution for which we estimated its mean and variance from the
trace information (the details of this test are presented in [106]). When we view the
samples at time scales with different orders of magnitude, we see that at larger time
scales the Poisson sample becomes smooth, while the arrival data in our sample
distribution continues to exhibit the variant behavior.

In almost all earlier file system trace research there is some notion of the impact of
large files on the statistical analysis. In the Sprite research, for example, an attempt
was made to discard the impact of certain categories of large files, by removing
kernel development files from the traces. The result, however, did not remove the
impact of large files, leading the researchers to conclude that the presence of large
files was not accidental.

Analyzing our traces for the impact of outliers we find they are present in all
categories. For example if we take the distribution of bytes read per open-close

180 File system usage in Windows NT 4.0 9.7 Data distribution 181180 File system usage in Windows NT 4.0 9.7 Data distribution 181

Observed Value

10e78e76e74e72e70

De
v
i
a
t
i
o
n

f
ro
m
No

rm
a
l

8e9

6e9

4e9

2e9

0

-2e9

Observed Value

6e75e74e73e72e71e70

D
e
v
i
a
t
i
o
n
f
r
o
m
P
a
r
e
t
o 2e19

0

-2e19

-4e19

Figure 9.9. The arrival data from the sample used in figure 8 is tested against a
Normal and a Pareto distribution through a QQ plot. The plot tests to what extend
sample data follows a given distribution with estimated parameters.

182 File system usage in Windows NT 4.0 9.7 Data distribution 183182 File system usage in Windows NT 4.0 9.7 Data distribution 183

session, we see that the mean of the distribution is forced beyond the 90th percentile
by the impact of large file read sessions. If we visually examine how the sample
distribution from figure 9.8 departs from normality through a QQ plot (figure 9.9)
we see that values in the quartiles support the evidence that the distribution is not
normal. If we use a QQ plot to test the sample against a Pareto distribution, which
is the simplest distribution that can be used to model heavy-tail behavior, we see an
almost perfect match.

To examine the tail in our sample distribution we produced a log-log complementary
distribution plot (figure 9.10). The linear appearance of the plot is evidence of the
power-law behavior of the distribution tail; normal or log-normal distributions would
have shown a strong drop-off appearance in the plot. When we use a least-squares
regression of points in the plotted tail to estimate the heavy-tail α parameter1, we
find a value of 1.2. This value is consistent with our earlier observation of infinite
variance; however, we cannot conclude that the distribution also has an infinite mean
[84].

This observation of extreme variance at all time scales has significant importance for
operating system engineering and tuning: Resource predictions are often made based
on the observed mean and variance of resource requests, assuming that, over time,
this will produce a stable system. Evidence from our traces shows that modeling the
arrival rates of I/O request as a Poisson process or size distributions as a Normal
distribution is incorrect. Using these simplified assumptions can lead to erroneous
design and tuning decisions when systems are not prepared for extreme variance in
input parameters, nor for the long-range dependence of system events.

An important reason for the departure from a normal distribution in file system
analysis is that user behavior has a very reduced influence on most of the file
system operations. Whether it is file size, file open times, inter-arrival rates of write
operations, or directory poll operations, all of these are controlled through loops in
the applications, through application defined overhead to user storage, or are based
on input parameters outside of the user’s direct control. More than 92% of the file
accesses in our traces were from processes that take no direct user input, even though

1 A random variable X follows a heavy-tailed distribution if P[X > x] ~ x-α, as x → ∞, 0 < α <
2. A reliable estimator for α is the Hill estimator. We have computed this for our samples and
it confirms the more llcd plot estimation results. A value of α < 2 indicates infinite variance,
if α < 1 this also indicates an infinite mean.

182 File system usage in Windows NT 4.0 9.7 Data distribution 183182 File system usage in Windows NT 4.0 9.7 Data distribution 183

all the systems were used interactively. From those processes that do take user input,
explorer.exe, the graphical user interface, is dominant, and although the user controls
some of its operation, it is the structure and content of the file system that determines
explorer’s file system interactions, not the user requests. Unfortunately this kind of
information cannot be extracted form the older traces so we cannot put this into a
historical perspective.

This process controlled dominance of file system operations is similar to observations
in data-communication, where, for example, the length of TCP sessions are process
controlled, with only limited human factors involved. File system characteristics
have an important impact on the network traffic; as for example the file size is a
dominant factor in WWW session length. Given that the files and directories have
heavy-tailed size distributions, this directly results into heavy-tailed distributions for
those activities that depend on file system parameters [21,45].

Another important observation is that some characteristics of process activity,
independent of the file system parameters, also play an important role in producing
the heavy-tailed access characteristics. From the analysis of our traces we find that

Log(interarival rate) of the upper tail in milliseconds

1 2 3 4 5 6

Lo
g(
P[
X>
x]
)

-4

-3

-2

-1

0

Sample Data

Estimated Slope

Figure 9.10. A log-log complementary distribution plot for the tail of the sample from
figure 8, combined with a fitted line for the estimation of the α parameter

184 File system usage in Windows NT 4.0 9.8 Operational characteristics 185184 File system usage in Windows NT 4.0 9.8 Operational characteristics 185

process lifetime, the number of dynamic loadable libraries accessed, the number
of files open per process, and spacing of file accesses, all obey the characteristics
of heavy-tail distributions. Some of these process characteristics cannot be seen as
completely independent of the file system parameters; for example, the lifetime of
the winlogon process is determined by the number and size of files in the user’s
profile.

Our observations of heavy-tail distributions in all areas of file system analysis lead
to the following general conclusions:

1. We need to be very careful in describing file system characteristics using
simple parameters such as average and variance, as they do not accurately
describe the process of file system access. At minimum we need to describe
results at different granularities and examine the data for extreme variances.

2. In our design of systems we need to be prepared for the heavy-tail
characteristics of the access patterns. This is particularly important for the
design and tuning of limited resource systems such as file caches, as there
is important evidence that heavy-tail session length (such as open times and
amount of bytes transferred) can easily lead to queue overflow and memory
starvation [48].

3. When constructing synthetic workloads for use in file system design and
benchmarking we need to ensure that the infinite variance characteristics are
properly modeled in the file system test patterns. In [92], Seltzer et al. argue
for application-specific file system benchmarking, which already allows more
focused testing, but for each test application we need to ensure that the input
parameters from the file system under test and the ON/OFF activity pattern of
the application is modeled after the correct (heavy-tailed) distributions.

4. When using heuristics to model computer system operations it is of the highest
importance to examine distributions for possible self-similar properties, which
indicate high variance. Exploitation of these properties can lead to important
improvements in the design of systems, as shown in [47].

9.8 Operational characteristics

There were 3 focus points when we analyzed the traces to understand the specifics of
the Windows NT file system usage:

• Examine the traces from a system engineering perspective: the arrival rate of
events, the holding time of resources, and the resource requests in general.

184 File system usage in Windows NT 4.0 9.8 Operational characteristics 185184 File system usage in Windows NT 4.0 9.8 Operational characteristics 185

Interarrival period of open requests

1 msec 10 msec 100 msec 1 sec 10 sec

Pe
rc
en
t
ag
e
of

t
he

re
qu
es
t
s

0

20

40

60

80

100

open for I/O
open for control

File open times

1 msec 1 sec 16 min 4 days

Pe
rc
en
ta
ge

of
Fi
le
s

0

20

40

60

80

100

all files
local file system
network file server

Figure 11. Cumulative distributionof the inter-arrival periods of the files system open
requests, per usage type

Figure 9.12. Cumulative distributionof the periods that files are open per usage type.

186 File system usage in Windows NT 4.0 9.8 Operational characteristics 187186 File system usage in Windows NT 4.0 9.8 Operational characteristics 187

• Gain understanding in how applications use the functionality offered through
the broad Windows NT file system interface and how the various options are
exploited.

• Investigate the complexity of the Windows NT application and file system
interactions.

In this section we explore these points by looking at the different file system
operations, while in the next 2 sections we will investigate cache manager related
technologies from these perspectives.

9.8.1 Open and close characteristics

Any sequence of operations on a file in Windows NT is encapsulated in an Open/
Close sequence of events. Some operating systems have core primitives such
as rename and delete which do not require the caller to open the file first, but in
Windows NT these operations are generic file operations on files that have been
opened first. For example, the deletion of a file or the loading of an executable can
only be performed after the file itself has been opened.

Figure 9.11 displays inter-arrival times of open requests arriving at the file system:
40% of the requests arrive within 1 millisecond of a previous request, while 90%
arrives with 30 milliseconds. When we investigate the arrivals by grouping them
into intervals, we see that only up to 24% of the 1-second intervals of a user’s session
have open requests recorded for them. This again shows us the extreme burstiness
of the system.

If we examine the reuse of files, we see that between 24% and 40% of the files that
are opened read-only are opened multiple times during a user’s session. Of the files
accessed write-only, 4% are opened for another write-only session, while 36%-52%
are re-opened for reading. 94% of the files that were open for reading and writing are
opened multiple times, in the same mode.

An important measurement for resource tuning is the time that files are kept open
(file session lifetime). In figure 9.12 we present the session lifetimes for a number
of cases. The overall statistics show that 40% of the files are closed within one
millisecond after they were opened and that 90% are open less then one second.
Of the sessions with only control or directory operations 90% closed within 10
milliseconds.

186 File system usage in Windows NT 4.0 9.8 Operational characteristics 187186 File system usage in Windows NT 4.0 9.8 Operational characteristics 187

When we investigate session times for the type of data access, we see that 70% of
read-write access happens in periods of less then 1 second, while read-only and
write-only accesses have this 1 second mark at 60% and 30%, respectively.

The session length can also be viewed from the process perspective. Some processes
only have a single style of file access and the session time for each access is similar.
The FrontPage HTML editor, for example, never keeps files open for longer then a
few milliseconds. Others such as the development environments, databases control
engines or the services control program keep 40%-50% of their files open for the
complete duration of their lifetime. Programs such as loadwc, which manages a
user’s web subscription content, keep a large number of files open for the duration of
the complete user session, which may be days or weeks. The first approach, opening
a file only for the time necessary to complete IO, would produce a correlation
between session time and file size. When testing our samples for such a correlation
we could not find any evidence.

In general it is difficult to predict when a file is opened what the expected session
time will be. All session distributions, however, had strong heavy-tails, from which
we can conclude that once a file is open for a relatively long period (3-5 seconds,
in most cases) the probability that the file will remain open for a very long time is
significant.

Windows NT has a two stage close operation. At the close of the file handle by the
process or kernel module, the IO manager sends a cleanup request down the chain
of drivers, asking each driver to release all resources. In the case of a cached file,
the cache manager and the VM manager still hold references to the FileObject, and
the cleanup request is a signal for each manager to start releasing related resources.
After the reference count reaches zero, the IO manager sends the close request to
the drivers. In the case of read caching this happens immediately as we see the close
request within 4-8 μsec after the cleanup request. In the case of write caching the
references on the FileObject are released as soon as all the dirty pages have been
written to disk, which may take 1-4 seconds.

9.8.2 Read and write characteristics

The burst behavior we saw at the level of file open requests has an even stronger
presence at the level of the read and write requests. In 70% of the file opens, read/
write actions were performed in batch form, and the file was closed again. Even in
the case of files that are open longer than the read/write operations require, we see

188 File system usage in Windows NT 4.0 9.8 Operational characteristics 189188 File system usage in Windows NT 4.0 9.8 Operational characteristics 189

that the reads and writes to a file are clustered into sets of updates. In almost 80% of
the reads, if the read was not at the end-of-file, a follow-up read will occur within 90
microseconds. Writes occur at an even faster pace: 80% have an inter-arrival space
of less than 30 microseconds. The difference between read and write intervals is
probably related to the fact that the application performs some processing after each
read, while the writes are often pre-processed and written out in batch style.

When we examine the requests for the amount of data to be read or written, we find
a distinct difference between the read and write requests. In 59% of the read cases
the request size is either 512 or 4096 bytes. Some of the common sizes are triggered
by buffered file i/o of the stdio library. Of the remaining sizes, there is a strong
preference for very small (2-8 bytes) and very large (48 Kbytes and higher) reads.
The write sizes distribution is more diverse, especially in the lower bytes range (less
then 1024 bytes), probably reflecting the writing of single data-structures.

9.8.3 Directory & control operations

The majority of file open requests are not made to read or write data. In 74%, the
open session was established to perform a directory or a file control operation.

There are 33 major control operations on files available in Windows NT, with many
operations having subdivisions using minor control codes. Most frequently used are
the major control operations that test whether path, names, volumes and objects are
valid. In general the application developer never requests these operations explicitly,
but they are triggered by the Win32 runtime libraries. For example, a frequently
arriving control operation is whether the “volume is mounted”, which is issued in
the name verification part of directory operations. This control operation is issued
between up to 40 times a second on any reasonably active system.

Another frequently issued control operation is SetEndOfFile, which truncates the file
to a given size. The cache manager always issues it before a file is closed that had
data written to it. This is necessary as the delayed writes through the VM manager
always have the size of one or more pages, and the last write to a page may write
more data than there is in the file. The end-of-file operation then moves the end-of-
file mark back to the correct position.

9.8.4 Errors

Not all operations are successful: of the open requests 12% fail and of the control
operations 8% fail. In the open cases there are two major categories of errors: the

188 File system usage in Windows NT 4.0 9.8 Operational characteristics 189188 File system usage in Windows NT 4.0 9.8 Operational characteristics 189

file to be opened did not exist in 52% of the error cases and in 31% the creation of a
file was requested, but it already did exist. When we examine the error cases more
closely we see that a certain category of applications that uses the “open” request
as a test for the existence of the file: the failure is immediately followed by a create
action, which will be successful.

Reads hardly ever fail (0.2%); the error that does occur on the read are attempts to
read past the end-of–file. We did not find any write errors.

9.9 The cache manager

An important aspect of the Windows NT file system design is the interaction with
the cache manager. The Windows NT kernel is designed to be extensible with
many third party software modules, including file systems, which forces the cache
manager to provide generalized support for file caching. It also requires file system
designers to be intimately familiar with the various interaction patterns between file
system implementation, cache manager and virtual memory manager. A reasonably
complete introduction can be found in [67].

In this section we will investigate two file system and cache manager interaction
patterns: the read-ahead and lazy-write strategies for optimizing file caching. The
cache manager never directly requests a file system to read or write data; it does this
implicitly through the Virtual Memory system by creating memory-mapped sections
of the files. Caching takes place at the logical file block level, not at the level of disk
blocks.

A process can disable read caching for the file at file open time. This option is hardly
ever used: read caching is disabled in only 0.2% of all files that had read/write
actions performed on them. 76% of those files were data files from opened by the
“system” process. All of these files were used in a read-write pattern with a write-
through option set to also disable write caching. Developers using this option need to
be aware of the block size and alignment requirements of the underlying file system.
All of the requests for these files will go through the traditional IRP path.

9.9.1 Read-ahead

When caching is initialized for a file, the Windows NT cache manager tries to predict
application behavior and to initiate file system reads before the application requests
the data, in order to improve cache hit rate. The standard granularity for read-ahead
operation is 4096 bytes, but is under the control of the file system, which can change

190 File system usage in Windows NT 4.0 9.9 The cache manager 191190 File system usage in Windows NT 4.0 9.9 The cache manager 191

it on a per file basis. In many cases the FAT and NTFS file systems boost the read-
ahead size to 65 Kbytes. Caching of a file is initiated when the first read or write
request arrives at the file system driver.

Of all the sessions that performed reads 31% used a single IO operation to achieve
their goal, and although this caused the caching to be initiated and data to be loaded
in the cache, the cached data was never accessed after the first read.

Of the sequential accesses with multiple reads, which benefit from the read-ahead
strategy, 40% used read sizes smaller than 4Kbytes and 92% smaller than 65Kbytes.
This resulted in that only 8% of the read sequences required more than a single read-
ahead action.

The cache manager tries to predict sequential access to a file so it can load data
even more aggressively. If the application has specified at open time that the file
data will be processed through sequential access only, the cache manager doubles
the size of the read-ahead requests. Of file-opens with sequential read accesses
only 5% specified this option. Of those files 99% were smaller than the read-ahead
granularity and 80% smaller than a single page, so the option has no effect.

The cache manager also tries to predict sequential access by tracking the application
actions: read-ahead is performed when the 3rd of a sequence of sequential requests
arrives. In our traces this happened in 7% of the sequential cases that needed data
beyond the initial read-ahead.

The cache manager uses a fuzzy notion of sequential access; when comparing
requests, it masks the lowest 7 bits to allow some small gaps in the sequences. In
our test in section 9.6.2, this would have increased the sequential marked trace runs
by 1.5%.

9.9.2 Write-behind

Unless explicitly instructed by the application, the cache manager does not
immediately write new data to disk. A number of lazy-write worker threads perform
a scan of the cache every second, initiating the write to disk of a portion of the dirty
pages, and requesting the close of a file after all references to the file object are
released. The algorithm for the lazy-writing is complex and adaptive, and is outside
of the scope of this description. What is important to us is the bursts of write requests
triggered by activity of the lazy-writer threads. In general, when the bursts occur,
they are in groups of 2-8 requests, with sizes of one or more pages up to 65 Kbytes.

190 File system usage in Windows NT 4.0 9.9 The cache manager 191190 File system usage in Windows NT 4.0 9.9 The cache manager 191

Applications have two methods for control over the write behavior of the cache.
They can disable write caching at file open time, or they can request the cache
manager to write its dirty pages to disk using a flush operation.

In 1.4% of file opens that had write operations posted to them, caching was disabled
at open time. Of the files that were opened with write caching enabled, 4% actively
controlled their caching by using the flush requests. The dominant strategy used by
87% of those applications was to flush after each write operation, which suggests
they could have been more effective by disabling write caching at open time.

9.10 FastIO

For a long time the second access path over which requests arrived at the file system
driver, dubbed the FastIO path, has been an undocumented part of the Windows NT
kernel. The Device Driver Kit (DDK) documentation contains no references to this
part of driver development, which is essential for the construction of file systems.
The Installable File System Kit (IFS) shipped as Microsoft’s official support for file
system development, contains no documentation at all. Two recent books [67,96]
provide some insight into the role of the FastIO path, but appear unaware of its key
role in daily operations. In this section we will examine the importance of this access
path, and provide some insight into its usage.

For some time the popular belief, triggered by the unwillingness of Microsoft to
document FastIO, was that this path was a private “hack” of the Windows NT kernel
developers to secretly bypass the general IO manager controlled IRP path. Although
FastIO is a procedural interface, faster when compared with the message-passing
interface of the IO manager, it is not an obscure hack. The “fast” in FastIO does
not refer to the access path but to the fact that the routines provide a direct data
path to the cache manager interface as used by the file systems. When file system
drivers indicate that caching has been initialized for a file, the IO manager will try
to transfer the data directly in and out of the cache by invoking methods from the
FastIO interface. The IO manager does not invoke the cache manager directly but
first allows file system filters and drivers to manipulate the request. If the request
does not return a success value, the IO manager will in most cases retry the operation
over the traditional IRP path. File system filter drivers that do not implement all
of methods of the FastIO interface, not even as a passthrough operation, severely
handicap the system by blocking the access of the IO manager to the FastIO interface
of the underlying file system and thus to the cache manager.

192 File system usage in Windows NT 4.0 9.10 FastIO 193192 File system usage in Windows NT 4.0 9.10 FastIO 193

request completion latency (microseconds)

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5

pe
rc
en
ta
ge

of
op
er
at
io
ns

0

20

40

60

80

100

FastIO Read
FastIo Write
IRP Read
IRP Write

Requested data size

0 10 100 1K 10K 100K

Pe
rc
en
ta
ge

of
op
er
at
io
ns

0

20

40

60

80

100 FastIO Read
FastIO Write
IRP Read
IRP Write

Figure 9.13. The cumulative distribution of the service period for each of the 4 major
request types.

Figure 9.14. The cumulative distribution of the data request size for each of the 4
major request types

192 File system usage in Windows NT 4.0 9.10 FastIO 193192 File system usage in Windows NT 4.0 9.10 FastIO 193

Caching is not performed automatically for each file; a file system has to explicitly
initialize caching for each individual file and in general a file system delays this until
the first read or write request arrives. This results in a file access pattern where the
traces will log a single read or write operation through the IRP interface, which sets
up caching for that file, followed by a sequence of FastIO calls that interact with the
file cache directly. The effect on latency of the different operations is shown in figure
9.13.

If we examine the size of the read requests in figure 9.14, we see that FastIO requests
have a tendency towards smaller size. This is not related to the operation itself,
but to the observation that processes that use multiple operations to read data, in
general use more targeted sized buffers to achieve their goal. Processes that use only
a few operations do this using larger buffers (page size, 4096 bytes, being the most
popular).

Some processes takes this to the extreme; a non-Microsoft mailer uses a single
4Mbyte buffer to write to its files, while some of the Microsoft Java Tools read files
in 2 and 4 byte sequences, often resulting in thousands of reads for a single class
file.

The cache manager has functionality to avoid a copy of the data through a direct
memory interface, providing improved read and write performance, and this
functionality can be accessed through the IRP as well as the FastIO interface. We
observed that only kernel-based services use this functionality.

9.11 Related work

File tracing has been an important tool for designing file systems and caches. There
are 3 major tracing studies of general file systems: the BSD and Sprite studies [5,71],
which were closely related and examined an academic environment. The 3rd study
examined in detail the file usage under VMS at a number of commercial sites [78].
One of our goals was to examine the Windows NT traces from an operating system
perspective; as such we compared our results with those found in the BSD and Sprite
studies. The VMS study focused more on the differences between the various usage
types encountered, and a comparison with our traces, although certainly interesting,
was outside of the scope of this research.

194 File system usage in Windows NT 4.0 9.12 Summary 195194 File system usage in Windows NT 4.0 9.12 Summary 195

A number of other trace studies have been reported, however, they either focused on
a specific target set, such as mobile users, or their results overlapped with the 3 major
studies [25,59,66,107].

There is a significant body of work that focuses on specific subsets of file system
usage, such as effective caching, or file system and storage system interaction.

There have been no previous reports on the tracing of file systems under Windows
NT. A recent publication from researchers at Microsoft Research examines the
content of Windows NT file systems, but does not report on trace-based usage [28].

With respect to our observations of heavy-tails in the distributions of our trace data
samples; there is ample literature on this phenomenon, but little with respect to
operating systems research. A related area with recent studies is that of wide-area
network traffic modeling and World Wide Web service models.

 In [45], Gribble, et al. inspected a number of older traces, including the Sprite traces,
for evidence of self-similarity and did indeed find such evidence for short, but not for
long term behavior. They did conclude that the lack of detail in the older traces made
the analysis very hard. The level of detail of the Windows NT traces is sufficient for
this kind of analysis.

9.12 Summary

To examine file system usage we instrumented a collection of Windows NT 4.0
systems and traced, in detail, the interaction between processes and the file system.
We compared the results of the traces with the results of the BSD and Sprite studies
[5,71] performed in 1985 and 1991. A summary of our observations is presented in
table 9.1.

We examined the samples for presence of heavy-tails in the distributions and for
evidence of extreme variance. Our study confirmed the findings of others who
examined smaller subsets of files: that files have a heavy-tail size distribution. But
more importantly we encountered heavy-tails for almost all variables in our trace set:
session inter-arrival time, session holding times, read/write frequencies, read/write
buffer sizes, etc. This knowledge is of great importance to system engineering, tuning
and benchmarking, and needs to be taken into account when designing systems that
depend on distribution parameters.

194 File system usage in Windows NT 4.0 9.12 Summary 195194 File system usage in Windows NT 4.0 9.12 Summary 195

When we examined the operational characteristics of the Windows NT file system
we found further evidence of the extreme burstiness of the file systems events. We
also saw that the complexity of the operation is mainly due to the large number
of control operations issued and the interaction between the file systems, cache
manager and virtual memory system.

The file system cache manager plays a crucial role in the overall file system
operation. Because of the aggressive read-ahead and write-behind strategies, an
amplification of the burstiness of file system requests occurs, this time triggered by
the virtual memory system.

We examined the undocumented FastIO path and were able to shed light on its
importance and its contribution to the overall Windows NT file system operation.

In this chapter we reported on the first round of analysis of the collected trace data.
There are many aspects of file system usage in Windows NT that have not been
examined such as file sharing, file locking, details of the control operations, details
of the various file cache access mechanisms, per process and per file type access
characteristics, etc. We expect to report on this in the future.

196 PB

Bibliography

[1] Abbot, M., and Peterson, L., Increasing Network Throughput by Integrating
Protocol Layers, IEEE/ACM Transactions on Networking, Vol. 1, No. 5, pages
600-610, Oct. 1993.

[2] Anderson, T.E., Culler, D.E., Patterson, D.A., and the NOW Team, A Case for
NOW (Networks of Workstations), IEEE Micro, Feb. 1995, pages 54-64.

[3] Badovinatz, P., Chandra, T.D., Gopal, A., Jurgensen, D., Kirby, T., Krishnamur,
S., and Pershing, J., GroupServices: infrastructure for highly available,
clustered computing, unpublished document, December 1997.

[4] Bailey, M., Gopal, B., Pagels, M., Peterson, L., and. Sarkar, P., Pathfinder: A
pattern Based Packet Classifier, in Proceedings of the Usenix Symposium on
Operating Systems Design and Implementation, pages 115-124, Nov. 1994.

[5] Baker, M.G., Hartmann, J.H., Kupfer, M.D., Shirriff, K.W. and Ousterhout,
J.K., Measurement of a Distributed File System, in Proceedings of the
Thirteenth ACM Symposium on Operating Systems Principles, pages 198-212,
Pacific Grove, CA, October 1991.

[6] Birman, K.P, The Process Group Approach to Reliable Distributed Computing,
Communications of the ACM, vol. 36, no. 12, December 1993.

[7] Birman, K.P., and Renesse, R. van, Software for Reliable Networks, Scientific
American, May, 1996.

[8] Birman, K.P., Building Secure and Reliable Network Applications. Manning
Publishing Co. and Prentice Hall, 1997.

[9] Birman, K.P., Reliable Multicast Goes Mainstream, Bulletin of the Technical
Committee on Operating Systems and Application Environments (TCOS)
Spring 1998 (Volume 10, Number 1).

198 Bibliography Bibliography 199198 Bibliography Bibliography 199

[10] Birman, K.P, Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M. and Minsky, Y.,
Bimodal Multicast. ACM Transactions on Computer Systems, vol. 17, no. 2,
May 1999.

[11] Birman, K.P., A Review of Experiences with Reliable Multicast. Software
Practice and Experience, vol. 9, 1999.

[12] Blumrich, M., Dubnicki, C., Felten, E. W., and Li, K., Virtual- Memory-
Mapped Network Interfaces, IEEE Micro, Feb. 1995, pages 21-28.

[13] Boden, N.J., Cohen, D., Felderman, R.E., Kulawik, A.E., Seitz, C.L., Seizovic,
J.N. and Su, W., Myrinet: A Gigabit-per-Second Local Area Network, IEEE
Micro, Feb. 1995, pp. 29-36.

[14] Brakmo, L., O’Malley, S. and Peterson, L. TCP Vegas: New Techniques for
Congestion Detection and Avoidance, in Proceedings of ACM SIGCOMM-94,
pages 24-35, Aug 1994.

[15] Braun, T., and Diot, C., Protocol Implementation Using Integrated Layer
Processing, in Proceedings of ACM SIGCOMM-95, Sept 1995.

[16] Carr, R., Tandem Global Update Protocol, Tandem Systems Review, V1.2
1985.

[17] Chun, B.N., Mainwaring, A.M., and Culler, D.E., Virtual Network Transport
Protocols for Myrinet, IEEE Micro, Jan.-Feb. 1998, pp. 53-63.

[18] Clark, D., and Tennenhouse, D., Architectural Considerations for a New
Generation of protocols, in Proceedings of ACM SIGCOMM-87, pages 353-
359, Aug. 1987.

[19] Clark, D., Jacobson, V., Romkey, J. and Salwen, H., An Analysis of TCP
Processing Overhead, IEEE Transactions on Communications, pages 23-29,
June 1989.

[20] Cluster Infrastructure for Linux, http://ci-linux.sourcefourge.net, December,
2001.

[21] Crovella, M., Taqqu, M., Bestevaros, A., Heavy-Tailed Probability
Distributions in the World Wide Web, in A Practical Guide to Heavy-Tails:
Statistical Techniques and Applications, R. Adler, R. Feldman and M.S.
Taqqu, Editors, 1998, Birkhauser Verlag, Cambridge, MA.

198 Bibliography Bibliography 199198 Bibliography Bibliography 199

[22] Culler, D. E., Dusseau, A., Goldstein, S. C., Krishnamurthy, A., Lumetta,
S., von Eicken, T., and Yelick, K., introduction to Split-C, in Proceedings of
Supercomputing `93, 1993

[23] Culler, D. E., Dusseau, A., Martin, R., Schauser, K. E., Fast Parallel Sorting:
from LogP to Split-C, in Proceedings of WPPP`93, July 93.

[24] Culler, D.E., Keeton, K., Krumbein, L., Liu, L.T., Mainwaring, A. R. Martin,
R., Rodrigues, S., Wright, K., and Yoshikawa, C., Generic Active Message
Interface Specification, version 1.1, February 1995, available at http://
now.cs.berkeley.edu/Papers/Papers/gam_spec.ps.

[25] Dahlin, M., Mather, C., Wang, R., Anderson, T. and Patterson, D., A
Quantitative Analysis of Cache Policies for Scalable Network File Systems,
in Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages 150 - 160, Nashville, TN, May
1994.

[26] Dalton, C., Watson, G., Banks, D., Calamvokis, C., Edwards, A. and Lumley,
J., Afterburner, IEEE Network Magazine, Vol 7, No. 4, pages 36-43, July
1993.

[27] Devlin, B.; Gray, J.; Laing, B.; Spix, G., Scalability Terminology: Farms,
Clones, Partitions, and Packs: RACS and RAPS, Microsoft Research
Technical Report, December, 1999.

[28] Douceur, John, and William Bolosky, A Large Scale Study of File-System
Contents, in Proceedings of the SIGMETRICS’99 International Conference
on Measurement and Modeling of Computer Systems, pages 59-70, Atlanta,
GA, May 1999.

[29] Druschel, P., and Peterson, L., Fbufs: A High-Bandwidth Cross-Domain
Transfer Facility, in Proceedings of the 14th Symposium on Operating Systems
Principles, pages 189-202. December 1993.

[30] Druschel, P., Peterson, L., and Davie, B.S., Experiences with a High-
Speed Network Adaptor: A Software Perspective, in Proceedings of ACM
SIGCOMM-94, pages 2-13, Aug 1994.

[31] Dubnicki, C., Bilas, A., Chen, Y., Damianakis, S.N., and Li. K., Myrinet
Communication, IEEE Micro, Jan.-Feb. 1998, pp. 50-52.

200 Bibliography Bibliography 201200 Bibliography Bibliography 201

[32] Dunning, D. and Regnier, G., The Virtual Interface Architecture, in Proceedings
of the Symposium on Hot Performance Interconnect Architectures, Stanford
University, 1997.

[33] Dunning, D., G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry,
A.M. Merritt, E. Gronke, and C. Dodd, The Virtual Interface Architecture,
IEEE Micro, Mar.-Apr. 1998, pp. 66-76.

[34] Edwards, A., Watson, G., Lumley, J., Banks, D., Calamvokis, C. and Dalton,
C., User-space protocols deliver high performance to applications on a low-
cost Gb/s LAN, in Proceedings of ACM SIGCOMM-94, pages 14-23, Aug.
1994.

[35] Eicken, T. von, Culler, D. E., Goldstein, S. C., and Schauser, K. E., Active
Messages: A Mechanism for Integrated Communication and Computation, in
Proceedings of the 19th International Symposium on Computer Architecture,
pages 256-266, May 1992.

[36] Eicken, T. von, Basu, A., and Buch, V., Low-Latency Communication over
ATM Networks Using Active Messages, IEEE Micro, Feb. 1995, pages 46-
53.

[37] Eicken, T von, Basu, A., Buch, V., and Vogels, W., U-Net: A User-Level
network Interface for Parallel and Distributed Computing, in Proceedings of
the 15th ACM Symposium on Operating System Principles, Copper Mountain,
CO, Dec 1995, pp 40-53.

[38] Eicken, T von, and Vogels, W., Evolution of the Virtual Interface Architecture,
IEEE Computer, Nov 1998.

[39] Fineberg, S.A., and Mehra, P., The Record Breaking Terabyte Sort on a
Compaq Cluster, in Proceedings of the 3rd Usenix Windows NT Symposium,
Seattle, WA, July 1999.

[40] Flanigan, P. and Jawed Karim J., NCSA Symera Distributed parallel-
processing using DCOM, Dr. Dobb’s Journal, November 1998.

[41] Floyd, S., Jacobson, V., and McCanne, S., A Reliable Multicast Framework
for Light-weight Sessions and Application Level Framing, in Proceedings of
ACM SIGCOMM-95, Sept 1995.

[42] Fox, A., Gribble, S.D., Chawathe, Y., Brewer, E.A., Gauthier, P., Cluster-Based
Scalable Network Services, in Proceedings of the 16th ACM Symposium on
Operating Systems Principles, Sant Malo, France, September 1997.

200 Bibliography Bibliography 201200 Bibliography Bibliography 201

[43] Friedman R., and Birman, K.P., Using Group Communication Technology to
Implement a Reliable and Scalable Distributed IN Coprocessor, in Proceedings
of TINA 96, Heidelberg, Germany, 1996.

[44] Gray, J., and Reuter A., Transaction Processing Concepts and Techniques,
Morgan Kaufmann, 1994.

[45] Gribble, Steven, Gurmeet SinghManku, Drew Roselli, Eric A.Brewer, Timothy
J.Gibson, and Ethan L.Miller; Self-similarity in file systems , in Proceedings
of the SIGMETRICS’98 / PERFORMANCE’98 joint International Conference
on Measurement and Modeling of Computer Systems, pages 141 - 150,
Madison, WI, June 1998.

[46] Guerraoui, R., Felber, P., Garbinato, B., and Mazouni, K., System Support
for Objects Groups in Proceedings of ACM Conference on Object Oriented
Programming Systems, Languages and Applications (OOPSLA’98) , October
1998 .

[47] Harchol, Mor, and Allen Downey, Exploiting Process Lifetime Distributions
for Dynamic Load Balancing, in ACM Transactions on Computer Systems,
volume 15, number 3, pages 253-285, August 1997.

[48] Heath, D., Resnick, S., and Samorodnitsky, G., Patterns of Buffer Overflow in
a Class of Queues with Long Memory in the Input Stream, School of OR & IE
technical report 1169, Cornell University, 1996.

[49] Horst, R.W., and Chou, T.C.K., An Architecture for High-Volume Transaction
Processing, in Proceedings of the 12th International Symposium on Computer
Architecture, Boston, MA, 1995.

[50] Jacobson, V., Braden, R., and Borman, D., TCP Extensions for High
Performance, IETF Request for Comments 1323, May 1992.

[51] Jurczyk, M., Performance and implementation aspects of higher order head-
of-line blocking switch boxes, in Proceedings of the 1997 International
Conference on Parallel Processing, 1997., 1997 , Page(s): 49 -53.

[52] Katevenis, M., Serpanos, D., Spyridakis, E., Switching Fabrics with Internal
Backpressure using the Atlas I Single Chip ATM Switch, in Proceedings of the
GLOBECOM’97 Conference, Phoenix, AZ, Nov. 1997.

[53] Katzman, J.A., et al, A Fault-tolerant multiprocessor system, United States
Patent 4,817,091, March 28, 1989.

202 Bibliography Bibliography 203202 Bibliography Bibliography 203

[54] Kay, J., and Pasquale, J., The importance of Non-Data Touching Processing
Overheads, in Proceedings of ACM SIGCOMM-93, pages 259-269, Aug.
1993.

[55] Kent, C., and Mogul, J., Fragmentation Considered Harmful, in Proceedings
of ACM SIGCOMM-87, pages 390-410. Aug 1987.

[56] Kistler, James J., and M. Satyanarayanan, Disconnected Operation in the Coda
File System, ACM Transactions on Computer Systems, volume 10, number 1,
pages 3-25, February 1992. .

[57] Krishnamurthy, A., Lumetta, S., Culler, D. E. and Yelick, K., Connected
Components on Distributed Memory Machines, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science.

[58] Kronenberg, N., Levy, H., and Strecker, W.,VAXclusters: A Closely Coupled
Distributed System, ACM Transactions on Computer Systems, vol. 4, no. 2
(May 1986).

[59] Kuenning, G. H., Popek, G.J. and Reiher, P.L., An Analysis of Trace Data for
Predictive File Caching in Computing, in Proceedings of the USENIX Summer
1994 Technical Conference, pages 291-303, Boston, MA, June 1994.

[60] Landis, S.,and Maffeis, S. Building reliable distributed systems with CORBA,
Theory and Practice of Object Systems, John Wiley & Sons, New York,
1997.

[61] Laubach, M., Classical IP and ARP over ATM, IETF Request for Comments
1577, January 1994.

[62] Maeda, C. and Bershad, B.N., Protocol Service Decomposition for High-
Performance Networking, in Proceedings of the 14th ACM Symposium on
Operating System Principles, pages 244-255. Dec. 1993.

[63] Maffeis, S., Adding group communication and fault-tolerance to CORBA, in
Proceedings of the Usenix Conference on Object-Oriented Technologies, June
1994.

[64] Majumdar, S., and Bunt, R.B., Measurement and Analysis of Locality Phases
in File Referencing Behavior, in Proceedings of the 1986 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, pages 180-
192, Raleigh, NC, May 1986.

202 Bibliography Bibliography 203202 Bibliography Bibliography 203

[65] Moser, L., Melliar-Smith, M., D. A. Agarwal, D., Budhia, R., and Lingley-
Papadopoulos, C., Totem A Fault-Tolerant Multicast Group Communication
System, Communications of the ACM, April 1996.

[66] Mummert, L.B., and M. Satyanarayanan, Long Term Distributed File
Reference Tracing: Implementation and Experience, Software: Practice and
Experience, volume 26, number 6, pages 705-736, June 1996.

[67] Nagar, R., Windows NT File System Internals, O’Reilly & Associates,
September 1997.

[68] Narasimhan, P., Moser, L.E., and Melliar-Smith, P.M., Exploiting the Internet
Inter-ORB Protocol interface to provide CORBA with fault tolerance, in
Proceedings of the 3rd Conference on Object-Oriented Technologies and
Systems, Portland, OR, June 1997.

[69] Nelson, M.N., Welch, B.B., and Ousterhout, J.K., Caching in the Sprite
Network File System, ACM Transactions on Computer Systems, volume 6,
number 1, pages 134-154, February 1988.

[70] Nick, J.M., Moore, B.B., Chung, J.-Y., and Bowen, N., S/390 cluster
technology: Parallel Sysplex, IBM Systems Journal, Vol32, No. 2, 1997.

[71] Ousterhout, John K., Da Costa, H., Harrison, D., Kunze, J.A., Kupfer M., and
Thompson, J.G., A Trace-Driven Analysis of the UNIX 4.2BSD File System,
in Proceeding of the Tenth ACM Symposium on Operating Systems Principles,
pages 198-121, Orcas Island, WA, October 1991.

[72] Ozkasap, O., Renesse, R. van, Birman, K.P., and Zhen Xiao, Z., Efficient
Buffering in Reliable Multicast Protocols, in Proceedings of the International
Conference on Networked Group Communication (NGC’99). Pisa, Italy,
November 1999.

[73] Pakin, S., Lauria, M., and Chien, A., High Performance Messaging on
Workstations: Illinois Fast Messages (FM) for Myrinet, in Proceedings of
ACM SuperComputing ‘95, ACM Press, New York, 1995.

[74] Partridge, C., and Pink, C., A Faster UDP, IEEE/ACM Transactions on
Networking, Vol. 1, No. 4, pages 429-440, Aug. 1993.

[75] Pfister, G.F. and V.A. Norton, Hot Spot Contention and Combining Multistage
Interconnection Networks, IEEE Transactions on Computers, C-34(10).
1985.

204 Bibliography Bibliography 205204 Bibliography Bibliography 205

[76] Pfister, G.F., In Search of Clusters: The Coming Battle in Lowly Parallel
Computing, Prentice Hall, 1995.

[77] Pfister, G.F.,In Search of Clusters: The Ongoing Battle in Lowly Parallel
Computing, Prentice Hall, 1998.

[78] Ramakrishnan, K. K., P. Biswas, and R. Karedla, Analysis of File I/O
Traces in Commercial Computing Environments, in Proceedings of the
1992 ACM SIGMETRICS and Performance `92 International Conference
on Measurement and Modeling of Computer Systems, pages 78-90, Pacific
Grove, CA, June 1992.

[79] Ranganathan, S., George, A., Todd, R., and Chidester, M., Gossip-Style
Failure Detection and Distributed Consensus for Scalable Heterogeneous
Clusters, Cluster Computing, Vol. 4, No. 3, July 2001.

[80] Renesse, R. van, Birman, K., Hayden, M., Vaysburd, A., and Karr, D., Building
Adaptive Systems Using Ensemble, Software--Practice and Experience,
August 1998.

[81] Renesse, R. van, Yaron Minsky, Y., and Hayden, M., A Gossip-Based Failure
Detection Service, in Proceedings of ACM/IFIP Middleware `98, Lancaster,
England, September 1998.

[82] Renesse, R. van, Scalable and Secure Resource Location, in Proceedings of
the 33rd Hawaii International Conference on System Sciences, Maui, Hawaii,
January 2000.

[83] Renesse, R. van, and Birman, K., Astrolabe: A Robust and Scalable Technology
for Distributed System Monitoring, Management and Data Mining, submitted
to ACM Transactions on Computer Systems, November 2001.

[84] Resnick, S.I., Heavy Tail Modeling and Teletraffic Data, school of OR & IE
technical report 1134, Cornell University, 1995.

[85] Robertson, A., Linux-HA Heartbeat System Design, in Proceedings of the 4th
Annual Linux Showcase and Conference, Atlanta, GE, October, 2000.

[86] Romanow, A. and Floyd. S., Dynamics of TCP traffic over ATM networks, in
Proceedings of ACM SIGCOMM-94, pages 79-88, Aug. 94.

[87] Rosenblum, M., and Ousterhout, J.K., The Design and Implementation of a
Log-Structured File System, ACM Transactions on Computer Systems, 10(1),
pages 26-52, February 1992.

204 Bibliography Bibliography 205204 Bibliography Bibliography 205

[88] Saito, Y., Bershad, B.N., and Levy, H.M, Manageability, Availability and
Performance in Porcupine: A Highly Scalable, Cluster-based Mail Service,
in Proceeding of the 16th ACM Symposium on Operating Systems Principles,
Charleston, December 1999.

[89] Satyanarayanan, M., A Study of File Sizes and Functional Lifetimes, in
Proceedings of the 8th ACM Symposium on Operating Systems Principles,
pages 96-108, Pacific Grove, CA, December 1981.

[90] Schauser, K. E. and Scheiman. C. J., Experience with Active Messages on
the Meiko CS-2, in Proceedings of the 9th International Parallel Processing
Symposium (IPPS’95), Santa Barbara, CA, April 1995.

[91] Scott, S.L.; Sohi, G.S., The use of feedback in multiprocessors and its
application to tree saturation control, IEEE Transactions on Parallel and
Distributed Systems, Volume: 1 4, Oct. 1990 , Page(s): 385 -398.

[92] Seltzer, M., Krinsky, D., Smith, K., and Zhang, X., The Case for Application-
Specific Benchmarking, in Proceedings of the 1999 Workshop on Hot Topics
in Operating Systems, Rico, AZ, 1999.

[93] Singhai, A., Sane, A., and Campbell, R.H., Quarterware for Middleware,
Proceedings of the International Conference on Distributed Computing
Systems, Amsterdam, The Netherlands, 1998.

[94] Smith, A.J., Analysis of Long Term File Reference Patterns for Application
to File Migration Algorithms. IEEE Transactions on Software Engineering,
volume 7, number 4, pages 403-417, July 1981. .

[95] Smith. B.C., Cyclic-UDP: A Priority-Driven Best-Effort Protocol, http://
www.cs.cornell.edu/Info/Faculty/bsmith/nossdav.ps.

[96] Solomon, D., Inside Windows NT, Second Edition, Microsoft Press, 1998.

[97] Sterling, T.L., Salmon, J., Becker, D.J., Savarese, D.F., How to Build a
Beowulf: A Guide to the Implementation and Application of PC Clusters, MIT
press, June 1999.

[98] Thekkath, C. A., Levy, H. M., and Lazowska, E. D., Separating Data and
Control Transfer in Distributed Operating Systems, in Proceedings of the
6th International Conference on Architectural Support for Programming
Languages and Operating Systems, Oct 1994.

206 Bibliography Bibliography PB

[99] Vogels, W., World Wide Failures, in Proceedings of the 7th ACM SIGOPS
European Workshop, Conamora, Ireland, September 1996.

[100] Vogels, W., Dumitriu, D., Birman, K. Gamache, R., Short, R., Vert, J., Massa,
M., Barrera, J., and Gray, J., The Design and Architecture of the Microsoft
Cluster Service -- A Practical Approach to High-Availability and Scalability,
in Proceedings of the 28th IEEE Symposium on Fault-Tolerant Computing,
Munich, Germany, June 1998.

[101] Vogels, W., Dumitriu, D., Agrawal, A., Chia, T., and Guo K., Scalability of the
Microsoft Cluster Service, in Proceedings of the Second Usenix Windows NT
Symposium, Seattle, WA, August 1998. .

[102] Vogels, W., van Renesse, R., and Birman, K., Six Misconceptions about
Reliable Distributed Computing, in Proceedings of the 8th ACM SIGOPS
European Workshop, Sintra, Portugal, September 1998.

[103] Vogels, W., Chipalowsky, K., Dumitriu, D., Panitz, M., Pettis, J., Woodward,
J., Quintet, tools for building reliable distributed components, in Proceedings
of the 2nd International Enterprise Distributed Object Computing Workshop,
San Diego, November, 1998.

[104] Wang, Y., and Lee, W., COMERA: COM Extensible Remoting Architecture, in
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies
and Systems, Santa Fe, NM, April 1998.

[105] Welsh, M., Basu, A., Huang, X.W. and Eicken T. von, Memory Management
for User-Level Network Interfaces, IEEE Micro, Mar.-Apr. 1998, pp. 77-82.

[106] Willinger, W., and Paxson, V., Where Mathematics meets the Internet, in
Notices of the Amercian Mathematical Society, volume 45, number 8, 1998.

[107] Zhou, S., Da Costa, H., and Smith, A.J., A File System Tracing Package for
Berkeley UNIX, in Proceedings of the USENIX Summer 1985 Technical
Conference, pages 407-419, Portland Oregon, June 1985.

Samenvatting

In de afgelopen tien jaar heeft Enterprise Computing een aantal belangrijke
veranderingen doorgemaakt. Voorheen lag de nadruk op een centrale verwerking van
gegevens door een beperkt aantal database servers, voornamelijk ter ondersteuning
van online transaction processing en verwerking van batch-opdrachten. Deze
gegevensverwerking geschiedt nu door groepen applicatie-servers die een grote
verscheidenheid van diensten verzorgen voor de verschillende bedrijfsprocessen.
Inbegrepen in deze diensten zijn nog steeds de traditionele orderverwerking
en inventarisbeheer, maar zij bevatten nu ook de interne en externe informatie
portals, verschillende email- en samenwerkingsdiensten, de alom doorgedrongen
integratie van customer relationship management in allerlei processen, alsmede
diverse rekendiensten ter ondersteuning van de enterprise management processen
zoals bijvoorbeeld de financiële voorspellings-technologie en het ononderbroken
verwerken van de gegevens van de onderneming door datamining-processen.

Het is van belang te onderkennen dat deze diensten centraal zijn komen te staan
in het functioneren van de onderneming en dat vertraging van of het volledig
uitvallen van deze diensten de hele onderneming kan stil leggen. Deze diensten
zijn dus van mission-critical aard voor het functioneren van de onderneming en als
zodanig dienen zij schaalbaar en foutbestending te zijn en hun prestaties zo volledig
mogelijk gegarandeerd. Om aan deze eisen tegemoet te kunnen komen, leek het de
aangewezen weg om deze diensten te organiseren in compute-clusters, aangezien
deze technologie de mogelijkheid bood om zowel schaalbaar als foutbestendig te
opereren.

In het begin van de jaren negentig was de cluster-computing technologie voornamelijk
beperkt tot OLTP en parallel computing. Deze technologie was onvoldoende om
de schaalbare en betrouwbare diensten te ontwikkelen die de nieuwe informatie
georiënteerde onderneming nodig had. De problemen waarmee enterprise cluster
computing geconfronteerd werden zijn het best weergegeven door Greg Pfister in
zijn boek “In Search of Clusters ...”:

208 Samenvatting Samenvatting 209208 Samenvatting Samenvatting 209

“Pogingen om parallel processing te gebruiken zijn in het verleden gestruikeld
over slappe micro-processoren, overbodige communicatie-patronen en de
noodzaak om de parallelle programmatuur iedere keer weer opnieuw van de
grond af op te bouwen. Deze situatie heeft geleid tot de volledig begrijpelijke
overtuiging dat deze vorm van gegevensverwerking geen toekomst had indien
niet enorme vooruitgang zou worden geboekt in prestaties of functionaliteit”

In dit proefschrift worden de resultaten beschreven van mijn onderzoek naar
oplossingen voor een aantal van de problemen waarmee mission-critical enterprise
cluster-computing geconfronteerd werd. Deze problemen leken aanvankelijk
onoverkomelijke barrières voor de wijdverspreide introductie van cluster-computing
in de enterprise. Mijn onderzoek heeft zich voornamelijk toegespitst op de volgende
vier gebieden:

• De eliminatie van de barrières die het gebruik van hoge-snelheids netwerken
in standaard werkstations en servers in de weg stonden.

• Het ontwerp van efficiënte runtime-systemen voor cluster-bewuste enterprise-
applicaties.

• Het opzetten van een gestructureerd beheer van grootschalige enterprise
cluster-computing systemen.

• De analyse van grootschalige systemen door middel van instrumentatie en
gebruiks-monitoring.

De resultaten van mijn onderzoek, als beschreven in dit proefschrift hebben in grote
mate bijgedragen aan het creëren van de mogelijkheid om nu wel cluster-applicaties
te bouwen die in staat zijn om de diensten te verlenen die tegemoet komen aan
de schaalbaarheids- en beschikbaarheids eisen van de moderne onderneming. De
ontworpen technologieën hebben hun toepassing gevonden in industrie standaards
zoals de Virtual Interface Architecture, zijn gebruikt in commercieel beschikbare
applicatie-servers en zijn gebruikt voor het ontwerp van een nieuw commercieel,
grootschalig cluster-beheerssysteem, dat ondersteuning geeft aan enterprise-wide,
geografisch verspreid beheer van cluster diensten. In dit proefschrift wordt een
overzicht gegeven van de meest belangrijke onderzoeksresultaten. Echter het
aantal resultaten waartoe dit onderzoek heeft geleid is veel groter, en strekt zich uit
ook buiten deze vier gebieden. Deze zijn terug te vinden middels de referenties in
Appendix A.

208 Samenvatting Samenvatting 209208 Samenvatting Samenvatting 209

Een aantal onderdelen van de Quintet software zijn overgenomen door commerciële
applicatie servers, en zij vormen ook de basis voor de applicatie ondersteuning in
het Galaxy cluster-beheerssysteem. Sommige specifieke onderdelen zoals de multi-
level failure detector zijn opnieuw gebruikt in cluster-beheerssystemen, maar ze zijn
ook beschikbaar gemaakt als op zichzelf staande software voor het onderhouden van
kleinere web- en compute-clusters.

In deel II van dit proefschrift wordt mijn onderzoek naar cluster-runtime en cluster-
beheerssystemen behandeld. In hoofdstuk 5 worden de ervaringen met het toepassen
van academisch ontwikkelde software in productie systemen beschreven, terwijl in
hoofdstuk 6 een overzicht wordt gegeven van de Quintet applicatie server.

Gestructureerd beheer van grootschalige enterprise cluster- computing
systemen

De verbeteringen in zowel de processor- als de communicatietechnologieën in het
begin van de jaren negentig waren op zichzelf niet voldoende om cluster-computing
beschikbaar te maken voor de algemene enterprise-computing wereld. Software
ondersteuning voor enterprise cluster-computing, zowel op het systeem- als op
het applicatie niveau, werd nog steeds ernstig geplaagd door structurerings- en
schaalbaarheidsproblemen. Dit was het duidelijkst op het terrein van de cluster-
beheerssystemen, waar de traditionele beheerssystemen waren ontworpen voor
zeer kleinschalige systemen, en vaak gebaseerd op een zeer specifiek hardware
platform.

Waar de kosten-effectieve parallelle gegevensverwerking op grote schaal
werd mogelijk gemaakt door het Beowulf cluster-beheerssysteem, was er geen
vergelijkbare oplossing voor mission-critical enterprise computing. De voornaamste
reden voor het ontbreken van enige vooruitgang op dit gebied was het feit dat
een cluster-beheerssysteem voor enterprise-computing een grote variëteit van
applicatietypes moest ondersteunen, ieder met zeer specifieke eisen met betrekking
tot de uitvoering van schaalbaarheid en beschikbaarheid. De software-technologie
die nodig was om deze ondersteuning te geven was in vele gevallen complexer dan
de applicatie-software waarvan het de ondersteuning diende te zijn.

Het Galaxy Cluster Management Framework was het eerste beheerssysteem dat een
schaalbare oplossing bood voor het beheer van clusters in grootschalige datacenters.
In Galaxy is de beheers- infrastructuur opgebouwd uit verschillende lagen, waardoor
het mogelijk is om grote groepen (farms) van clusters te beheren terwijl deze farms

210 Samenvatting Samenvatting 211210 Samenvatting Samenvatting 211

Hieronder volgt nu een meer gedetailleerde beschrijving van elk van de vier
onderzoeksgebieden.

Barrières bij het gebruik van hoge-snelheids netwerken door standaard
werkstations

Hoewel er in het begin van de jaren negentig goede vooruitgang was geboekt in de
ontwikkeling van hoge-snelheids cluster interconnects, was de technologie nog niet
gereed om gebruikt te gaan worden door kant-en-klare enterprise cluster-systemen.
De communicatie technieken waren volledig gericht op de specifieke wijze waarop
besturings-systemen hun diensten aanboden aan de applicaties en de wijze waarop
parallelle applicaties ontworpen werden. De traditionele technieken maakten
het onmogelijk om de interconnect technologie te gaan gebruiken in standaard
werkstations. Een voorbeeld hiervan is de IBM SP2, die alleen maar aan één
applicatie toestond om de interconnect te gebruiken, aangezien het besturingssysteem
geen bescherming en isolatie bood voor deze vorm van netwerk communicatie.

Met de komst van een aantal gestandaardiseerde hoge-snelheids netwerk
technologieën werd de verwachting gewekt dat het op korte termijn mogelijk zou
worden voor reguliere werkstations en servers om gelijkwaardige communicatie
technologieën te gebruiken als de parallelle verwerkingssystemen, maar dan wel op
een veel kosten-effectievere manier. Helaas waren de besturingssystemen van deze
computers niet ontworpen voor hoge-snelheids communicatie en de vertragingen bij
de verwerking van netwerk-pakketten door het besturingssysteem waren dusdanig
groot dat de meeste voordelen van de nieuwe netwerken niet beschikbaar konden
worden gemaakt voor de applicaties.

Tezamen met Thorsten von Eicken was ik in 1994 begonnen aan een onderzoek
gericht op het doorbreken van deze barrières. Dit onderzoek resulteerde in een nieuwe
communicatiestructuur voor besturingssystemen, genaamd U-Net, dat een volledig
nieuwe abstractie bood en de kracht van de user-level communicatie combineerde
met de volledige bescherming en isolatie van traditionele besturingssystemen. In
U-Net was de netwerk adapter gevirtualizeerd in de adresruimte van de applicatie,
waardoor het mogelijk werd om prestaties te bereiken die dicht bij de maximaal
haalbare hardware-prestaties lagen. Doordat in deze structuur het data transport en
de controle mechanismen voor de netwerk processen volledig gescheiden waren was
het mogelijk om cluster applicaties te ontwikkelen met zeer goede prestaties.

210 Samenvatting Samenvatting 211210 Samenvatting Samenvatting 211

Een industrie consortium onder leiding van Intel, Microsoft en Compaq nam het
U-Net prototype en gebruikte het als basis voor de Virtual Interface Architecture,
hetgeen nu de de-facto standaard is voor enterprise cluster-interconnects. De U-
Net architectuur, de overgang van prototype naar een industrie-standaard en de
ervaringen met een grootschalig cluster gebaseerd op de VIA technologie, zijn
beschreven in deel I van het proefschrift.

Efficiënte runtime systemen voor cluster-bewuste enterprise applicaties

Door de voortuitgang die geboekt was in de verbetering van de schaalbaarheid
van cluster-hardware en besturingssystemen konden een groter aantal applicaties
nu gebruik maken van de beschikbare netwerk snelheden en van de grotere
beschikbaarheid van de systemen. De structuur van de meeste van deze applicaties
was echter gebaseerd op de afwezigheid van een gedistribueerde systeemstructuur
en er was geen mogelijkheid om nieuwe communicatie-abstracties te integreren.
Hoewel dit transparant houden van de distributie een aantal voordelen leek te
hebben, voornamelijk in de interactie tussen clients en servers, was het introduceren
van nieuwe technologieën onvermijdelijk om tegemoet te kunnen komen aan de
eisen van schaalbaarheid en beschikbaarheid op het niveau van de server applicaties.
Deze conclusie was mede gebaseerd op de jarenlange ervaring met het ontwerpen
en toepassen van groep-communicatie systemen voor complexe, gedistribueerde
productie systemen, waar het duidelijk was dat het volledig afgeschermd houden
van de distributie eigenschappen een grote hindernis was voor het construeren van
gevorderde server applicaties.

Mijn onderzoek naar efficiënte runtime systemen voor cluster-bewuste applicaties
concentreerde zich op de vraag wat de juiste software-hulpmiddelen zouden
moeten zijn die de applicatie-ontwikkelaars ten dienste zouden moeten staan,
indien het gedistribueerde karakter van de applicatie expliciet zou zijn in plaats
van afgeschermd. Het resultaat van dit onderzoek was een voor cluster applicaties
gespecialiseerde applicatie server, genaamd “Quintet”. Deze Quintet applicatie-
server geeft de ontwikkelaar van enterprise componenten gereedschap in handen
om deze componenten zowel schaalbaar als extra beschikbaar te laten zijn. Deze
extra diensten zijn echter niet afgeschermd en de ontwikkelaar dient een aantal
mechanismen aan de componenten toe te voegen ter assistentie bij het uitvoeren van
de gedistribueerde taken door het runtime systeem.

212 Samenvatting Samenvatting 213212 Samenvatting Samenvatting 213

mogelijk over verschillende geografische lokaties zijn verdeeld. Binnen iedere farm
bevinden zich kleinere groepen van gespecialiseerde clusters die ieder beheerd
worden naargelang hun cluster profiel. Het systeem was ontworpen overeenkomstig
de principes die voortgekomen waren uit de analyse van het grootschalig gebruik van
groep-communicatie systemen, alsmede uit een diepgaande analyse van bestaande
enterprise cluster-beheerssystemen.

Galaxy kon worden beschouwd als een succes toen het ontwerp en onderliggende
principes door één van de grootste besturingssysteem-bedrijven werd overgenomen
als basis voor hun next-generation cluster beheerssysteem.

Het voorbereidende werk en een overzicht van het Galaxy cluster-beheerssysteem is
terug te vinden in hoofdstukken 7 en 8 van dit proefschrift.

Analyse van grootschalige systemen.

Het verkrijgen van inzicht in de wijze waarop software systemen worden gebruikt
in de dagelijkse praktijk is essentieel voor systeem georiënteerd onderzoek dat tot
doel heeft bij te dragen aan het vinden van oplossingen voor de problemen waarmee
de huidige informatie onderneming geconfronteerd wordt. Zowel het instrumenteren
van systemen en verzamelen van gebruiksgegevens op grote schaal over langere
tijd, als het analyseren van deze gegevens is een onderzoeksgebied op zich. Het
ontwerpen van het monitor- en analyse systeem is vaak zeer complex aangezien er
vele gegevensbronnen zijn die gelijktijdig actief zijn, terwijl er geen controle is over
het systeemgebruik dat de aanmaak van de gegevens veroorzaakt. Het is dan ook
van het allergrootste belang om mechanismen te ontwerpen die dusdanig gegevens
verzamelen dat er een precieze statistische analyse valt te maken, zonder dat dit
proces invloed uitoefent op de werkwijze van het systeem dat bestudeerd wordt.

In dit proefschrift zijn een tweetal studies opgenomen die op grote schaal het gebruik
van systemen onderzoeken:

De eerste studie is een rapportage van de resultaten van een onderzoek naar het
gedrag van een hogesnelheid cluster-interconnect wanneer deze wordt overbelast.
De cluster-interconnect is opgebouwd uit 40 op VIA gebaseerde netwerk-switches.
De studie maakt gebruik van een traditioneel experimentmodel, waarin er volledige
controle is op de wijze waarop de netwerk-last gegenereerd wordt. Het unieke aan
dit experimentmodel was echter dat het dusdanig ontworpen moest worden dat
van de observaties aan de eindpunten afgeleid kon worden wat het gedrag van de

212 Samenvatting Samenvatting 213212 Samenvatting Samenvatting 213

switches in het midden van het netwerk was, aangezien het niet mogelijk was om
de switches zelf te instrumenteren. Het ontwerp van het experimenteel raamwerk
vereiste speciale aandacht aangezien er met hoge snelheid zeer grote hoeveelheden
metingen dienden te worden verricht. De details van deze studie zijn terug te vinden
in hoofdstuk 4.

In de tweede studie, waaraan deel 3 van dit proefschrift gewijd is, wordt de aandacht
gericht op het probleem dat optreedt wanneer er geen controle over de bronnen
mogelijk is. Het onderwerp van de studie was een grootschalig onderzoek naar de
gebruiks-karakteristieken van het file-systeem van reguliere werkstations. Hiertoe
was een groot aantal werkstations geïnstrumenteerd en geobserveerd gedurende
een langere periode. De analyse van de resultaten werd ernstig bemoeilijkt door de
enorme hoeveelheid observaties en de complexiteit die geïntroduceerd werd door de
heterogeniteit in de applicaties die actief waren op de verschillende werkstations. In
de conclusies van deze studie wordt de nadruk gelegd op het gebruik van speciale
statistische technieken met betrekking tot de analyse van grote verzamelingen
observaties. Deze exacte statistische benadering, die ontbrak in vroegere file-
systeem-studies, is noodzakelijk voor het ontwerp van de juiste werklast-modellen,
die gebruikt kunnen worden in toekomstige file-systeem prestatietesten en bij het
ontwerpen van nieuwe file-systeem-componenten.

214 PB

Appendix A

Publications

2004

Technology Challenges for the Global Real-Time Enterprise
Werner Vogels, in the Journal of Knowledge Management, Volume 8, Issue 1,
January 2004

2003

Web Services are not Distributed Objects: Common Misconceptions
about the Fundamentals of Web Service Technology
Werner Vogels, IEEE Internet Computing, Vol. 7, No. 6, November/December
2003.

Tracking Service Availability in Long Running Business Activities
Werner Vogels, in Proceeding of the First International Conference on Service
Oriented Computing (ICSOC 2003), Trento, Italy, December 2003

Benchmarking CLI-based Virtual Machines
Werner Vogels, in IEE Proceedings - Software, Volume 150, Issue 6, October
2003

HPC.NET - are CLI-based Virtual Machines Suitable for High-
Performance Computing?
Werner Vogels, in Proceeedings of the 15th Supercomputing Conference
(SC2003), Phoenix, AZ, November 2003

Scalability and Robustness in the Global Real-Time Enterprise
Werner Vogels, in Proceedings of the 2003 Workshop on High-Performance
Transaction Processing (HPTS 2003), Asilomar, CA, October 2003

216 Publications Publications 217216 Publications Publications 217

Navigating in the Storm: Using Astrolabe for Distributed Self-
Configuration, Monitoring and Adaptation
Ken Birman, Robbert van Renesse, and Werner Vogels, in Proceedings of the
Fifth Annual International Workshop on Active Middleware Services (AMS
2003), Seattle, WA, June 2003.

WS-Membership - Failure Management in a Web-Services World
Werner Vogels and Chris Re, in the Proceedings of the Twelfth International
World Wide Web Conference, Budapest Hungary, May 2003.

Astrolabe: A Robust and Scalable Technology for Distributed System
Monitoring, Management and Data Mining
Robbert van Renesse, Ken Birman and Werner Vogels, in the ACM Transaction
on Computer Systems, Volume 21, Issue 2, pages 164-206, May 2003

2002

The Power of Epidemics: Robust Communication for Large_sclae
Distributed Systems
Werner Vogels, Robbert van Renesse, and Ken Birman, in Proceedings of the
ACM First Workshop on Hot Topics in Networks (HotNets-I), Princeton, NJ,
October 2002.

Scalable Data Fusion Using Astrolable
Ken Birman, Robbert van Renesse and Werner Vogels, in Proceedings of
the Fifth International Conference onInformation Fusion 2002 (IF 2002),
Annapolis, MD, July 2002.

A Collaborative Infrastructure for Scalable and Robust News Delivery
Werner Vogels, Chris Re, Robbert van Renesse, and Ken Birman, in
Proceedings of the IEEE Workshop on Resource Sharing in Massively
Distributed Systems (RESH’02), Vienna, Austria, July 2002.

Technology Challenges for the Global Real-Time Enterprise
Werner Vogels, in Proceedings of the International Workshop on Future
Directions in Distributed Computing, Bertinoro, Italy, June 2002.

Scalable Management and Data Mining Using Astrolabe
Robbert van Renesse, Ken Birman, Dan Dumitriu and Werner Vogels, in

216 Publications Publications 217216 Publications Publications 217

Proceedings of the First International Workshop on Peer-to-Peer Systems
(IPTPS), Cambridge, MA, March 2002.

2001

Spinglass, Scalable and Secure Communication Tools for Mission-
Critical Computing
Ken Birman, Robbert van Renesse, Werner Vogels, in Proceeedings of the 2001
DARPA Information Survivability Conference and Exhibition - II, June 2001.

Using Epidemic Techniques for Building Ultra-Scalable Reliable
Communication Systems
Werner Vogels, Robbert van Renesse, and Ken Birman, in Proceedings of the
Large Scale Networking Workshop: Research and Practice, Vienna, VA, March
2001.

2000

An Overview of the Galaxy Management Framework for Scalable
Enterprise Cluster Computing
Werner Vogels and Dan Dumitriu, in the Proceedings of the IEEE International
Conference on Cluster Computing: Cluster-2000, Chemnitz, Germany,
December 2000.

Tree Saturation Control in the AC3 Cluster interconnection
Werner Vogels, David Follet, Jen Wei, David Lifka and David Stern, in
Proceedings of the 8th IEEE Hot Interconnets Symposium, Stanford, CA,
August 2000.

The Horus and Ensemble Projects: Accomplishments and Limitations
Ken Birman, Robert Constable, Mark Hayden, Jason Hickey, Christopher
Kreitz, Werner Vogels, Robbert van Renesse and Ohad Rodeh, in Proceedings
of the 2000 DARPA Information Survivability Conference and Exhibition,
Hilton Head, SC, January 2000.

1999

File System Usage in Windows NT 4.0
Werner Vogels, in Proceedings of the 17th ACM Symposium on Operating
Systems Principles, Kiawah Island, SC, December 1999.

218 Publications Publications 219218 Publications Publications 219

Windows 2000 Research Edition, Where the Academic White Knights
meet the Evil Empire...
Werner Vogels, Informatik/Informatique, Swiss Computer Society, February
1999.

1998

Quintet, Tools for Reliable Enterprise Computing,
Werner Vogels, Dan Dumitriu, Mike Panitz, Kevin Chipalowsky and Jason
Pettis, in Proceedings of the 2nd International Enterprise Distributed Object
Computing Conference, San Diego, November, 1998.

Evolution of the Virtual Interface Architecture,
Thorsten von Eicken and Werner Vogels, IEEE Computer, Volume 35 Number
11, November 1998.

Six Misconceptions about Reliable Distributed Computing
Werner Vogels, Robbert van Renesse and Ken Birman, in Proceedings of the 8th
ACM SIGOPS European Workshop, Sintra, Portugal, September 1998.

Scalability of the Microsoft Cluster Service
Werner Vogels, Dan Dumitriu, Anand Agrawal, T. Chia, and Katerine Guo,
in Proceedings of the Second Usenix Windows NT Symposium, Seattle, WA,
August 1998.

The Design and Architecture of the Microsoft Cluster Service -- A
Practical Approach to High-Availability and Scalability
Werner Vogels, Dan Dumitriu, Kenneth Birman, Rod Gamache, Rob Short,
John Vert, Mike Massa, Joe Barrera, and Jim Gray, in Proceedings of the 28th
symposium on Fault-Tolerant Computing, Munich, Germany, June 1998.

Building Reliable Distributed Components -- or the case for anti-
transparent reliability tools
Werner Vogels, Dan Dumitriu and Mike Panitz, Usenix COOTS 1998 Advanced
Workshop on Scalable Object Systems, May 1998.

218 Publications Publications 219218 Publications Publications 219

1997

GSGC: An Efficient Gossip-Style Garbage Collection Scheme for
Scalable Reliable Multicast
Katherine Guo, Mark Hayden, Werner Vogels, Robbert van Renesse, and Ken
Birman, Technical Report Department of Computer Science Cornell University
CS-TR-97-1656, December 1997.

Object Oriented GroupWare using the Ensemble System
Werner Vogels, in Proceedings of the 5th European Conference on Computer
Supported Collaborative Work, Workshop on Object Oriented Groupware
Platforms, Lancaster, UK, September 1997.

Hierarchical Message Stability Tracking Protocols
Katherine Guo, Werner Vogels, Robbert van Renesse, and Ken Birman,
Technical Report Department of Computer Science Cornell University, CS-TR-
971647, September 1997.

Moving the Ensemble Groupware System to Windows NT and Wolfpack
Ken Birman, Werner Vogels, MarkHayden, Katherine. Guo, Takako. Hickey,
Roy. Friedman, Silvano. Maffeis, Robbert. van Renesse, and Alexey. Vaysburd,
in Proceedings of the 1997 USENIX Windows NT Workshop, Seattle,
Washington, August 1997.

1996

World-Wide Failures
Werner Vogels, in Proceedings of the 1996 ACM SIGOPS Workshop,
Connemora, Ireland, September 1996.

Structured Virtual Synchrony: Exploring the bounds of Virtual
Synchronous Group Communication
Katherine Guo, Robbert van Renesse and Werner Vogels, in Proceedings of the
1996 ACM SIGOPS Workshop, Connemora, September 1996.

220 Publications Publications 221220 Publications Publications 221

1995

U-Net: A User-Level Network Interface for Parallel and Distributed
Computing
Thorsten von Eicken, Anindya Basu, Vineet Buch and Werner Vogels in
Proceedings of the 15th ACM Symposium on Operating Systems Principles,
Copper Mountain, December 1995,

Delivering High-Performance Communication to the Application-Level
Werner Vogels and Thorsten von Eicken, in Proceedings of the Third IEEE
Workshop on the Architecture and Implementation of High Performance
Communication Subsystems (HPCS’95), August 1995.

Horus: A Flexible Group Communications System
Robbert van Renesse, Kenneth P. Birman, Brad Glade, Katie Guo, Mark
Hayden, Takako Hickey, Dalia Malki, Alex Vaysburd and Werner Vogels,
Technical Report Department of Computer Science Cornell University, CS-TR
95-1500, March 23, 1995

1993

The Changing Face of Technology in Distributed Systems
Paulo Verissimo and Werner Vogels, in Proceedings of the 4th Workshop on
Future Trends in Distributed Computing, Lisboa, Portugal, 1993.

Reliable Group Communication in Internetworks using LAN-oriented
Protocols
Werner Vogels and Paulo Verissimo, in Proceedings of the Fifth European
Workshop on Dependable Computing, Lisboa, Portugal, 1993.

Group Orientation: a Paradigm for Modern Distributed Systems
Paulo Verissimo, Luis Rodrigues and Werner Vogels, in First Year Report of the
Broadcast ESPRIT/BRA project, Newcastle upon Tyne, United Kingdom, 1993.

A Framework for Structuring group support in LSDC’s,
Werner Vogels, Luis Rodrigues and Paulo Verissimo, in First Year Report of the
Broadcast ESPRIT/BRA project, Newcastle upon Tyne, United Kingdom, 1993.

220 Publications Publications 221220 Publications Publications 221

1992

Requirements for High-Performance group Support in Distributed
Systems
Werner Vogels, Luis Rodrigues and Paulo Verissimo, in Proceedings of the 1992
ACM SIGOPS European workshop, Mont Saint Michel, France, 1992.

Fast Group Communication for Standard Workstations
Werner Vogels, Luis Rodrigues and Paulo Verissimo, in Proceedings of the
OpenForum’92 Technical Conference, Utrecht, The Netherlands, 1992.

1991

Supporting process groups in Internetworks with lightweight reliable
multicast protocols
Werner Vogels and Paulo Verissimo, in Proceedings of the ERCIM Workshop
on Distributed System, Lisboa, Portugal, 1991.

222 Additional Acknowledgements and Support Additional Acknowledgements and Support 223

Appendix B

Additional Acknowledgements and
Support

The publications that make up the chapters of this thesis often acknowledged the
help of individuals and funding organisations.

Chapter 2 - U-Net: A User-Level Network Interface for Parallel and
Distributed Computing.

U-Net would not have materialized without the numerous discussions, the many
email exchanges, and the taste of competition we had with friends in the UC
Berkeley NoW project, in particular David Culler, Alan Mainwaring, Rich Martin,
and Lok Tin Liu.

The Split-C section was only possible thanks to the generous help of Klaus Eric
Schauser at UC Santa Barbara who shared his Split-C programs and provided quick
access to the Meiko CS-2 which is funded under NSF Infrastructure Grant CDA-
9216202. The CM-5 results were obtained on the UCB machine, funded under NSF
Infrastructure Grant CDA-8722788. Thanks also to the UCB Split-C group for the
benchmarks, in particular Arvind Krishnamurthy.

Most of the ATM workstation cluster was purchased under contract F30602-94-
C-0224 from Rome Laboratory, Air Force Material Command. Werner Vogels is
supported under ONR contract N00014-92-J-1866. We also thank Fore Systems for
making the source of the SBA-200 firmware available to us.

In the final phase several reviewers and Deborah Estrin, our SOSP shepherd,
provided helpful comments, in particular on TCP/IP.

222 Additional Acknowledgements and Support Additional Acknowledgements and Support 223

Chapter 3 - Evolution of the Virtual Interface Architecture

This research is funded by the US Defense Advanced Research Projects Agency’s
Information Technology Office contract ONR-N00014-92-J-1866, NSF contract
CDA-9024600, a Sloan Foundation fellowship, and Intel Corp. hardware
donations.

Chapter 4 - Tree Saturation Control in the AC3 Velocity Cluster
Interconnect

This work was performed by the AC3x study group with participation from Cornell
University (Theory Center and Computer Science), GigaNet Inc., Dell Corporation
and the Server Architecture Lab of Intel Corporation. The Network Analyses were
performance on the Velocity Cluster, a high-performance computing resource of the
Cornell Theory Center.

The study group is very grateful for the help of George Coulouris and Resa Alvord
during the execution of the experiments. A special thanks goes to Shawn Clayton of
GigaNet Inc., for the assistance in designing the experiments.

Werner Vogels is supported by the National Science Foundation under Grant No.
EIA 97-03470, by DARPA/ONR under contract N0014-96-1-10014 and by grants
from Microsoft Corporation.

Chapter 6 - Scalability of the Micosoft Cluster Service

Discussions with Jim Gray, Catharine van Ingen, Rod Gamache and Mike Massa
have helped to shape the research reported in this paper. The advice of shepherd Ed
Lazowska was very much appreciated. Thorsten von Eicken, S. Keshav and Brian
Smith graciously contributed hardware to the world’s largest wolfpack cluster.

Chapter 8 - The Galaxy Framework for the Scalable Managament of
Enterprise-Critical Cluster Computing

First and foremost our thanks go to Jim Gray for his continuous support over the
years of this research. Without his advice, insights and intellectual stimulation the
Galaxy architecture would never have risen to meet real world needs.

The large group of students who have implemented parts of Galaxy over the
years deserve special credit, especially Dan Dumitriu who was responsible for the

224 Additional Acknowledgements and Support Additional Acknowledgements and Support 225224 Additional Acknowledgements and Support Additional Acknowledgements and Support 225

implementation of a significant part of the distributed systems technology used in
Galaxy.

Chapter 9 - File System Usage in Windows NT 4.0

Thanks goes to Fred Schneider for the motivation to do this study, to Thorsten von
Eicken for the initial discussions of the results, and to my colleagues Ken Birman
and Robbert van Renesse for never questioning what I was doing “on-the-side”.

The paper improved significantly because of the very thoughtful comments of the
reviewers and the help of Peter Chen, the official shepherd. Special praise goes to
Sara Shaffzin, without whose editorial help this paper would never have made it
through the first round. Tim Clark, Raoul Bhoedjang and Ken Birman provided
useful help with the final version.

This investigation was made possible by grants from Microsoft Corporation and
Intel Corporation, and was supported by the National Science Foundation under
Grant No. EIA 97-03470 and by DARPA/ONR under contract N0014-96-1-10014.

224 Additional Acknowledgements and Support Additional Acknowledgements and Support 225224 Additional Acknowledgements and Support Additional Acknowledgements and Support 225

