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Chapter 1

General Introduction

Enterprise computing has changed significantly in the past decade. In the past, 
the workloads at corporate datacenters were dominated by centralized processing 
using a limited number of big database servers, mainly handling online transaction 
processing (OLTP) and batch processing tasks in support of the back-office process. 
The organization of these datacenters has evolved from mainframe-oriented into 
a large collection of flexible application servers providing a very diverse set of 
services. These services still include the traditional order processing and inventory 
control, but now also provide internal and external information portals, continuous 
data-mining operations, pervasive integration of customer relationship management 
information, email and other collaboration services, and a variety of computational 
services such as financial forecasting. 

An important observation is that these services have become essential to the 
successful operation of the enterprise, and that any service interruption, either 
through failure or through performance degradation, could bring the activities of 
the enterprise to a halt. The mission-critical nature of these services requires them to 
be scalable, highly-available, and with robust performance guarantees. Organizing 
these services into compute clusters appeared a logical step as cluster technology 
held the promise of cost-effective scalability and was considered to be a good basis 
for implementing a highly-available service organization. 

In the early 1990’s the technologies provided by traditional cluster computing, 
being either OLTP or parallel computing oriented, were insufficient for developing 
the scalable, robust services the new information-centered enterprise required. The 
problems that faced enterprise cluster computing are best described by Greg Pfister 
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in the conclusion section of his book “In search of Clusters – the ongoing battle in 
lowly parallel computing” [77]:

Attempts to use overtly parallel processing have previously been crippled 
by wimpy microprocessors, slothful communication, and the need to rebuild 
painfully complex parallel software from scratch.

The result of this situation has been the completely justifiable conviction that 
this form of computing simply was not worth the trouble unless it provided 
enormous gains in performance or function. With a performance focus came 
a fixation on massive parallelism; with a functional focus came a fixation on 
massively distributed processing.

In this thesis some of the results of my research into the problems that faced mission-
critical cluster computing are presented. The problems ranged from enabling off-the-
shelf workstations and operating systems to exploit high-performance interconnects, 
to structuring the management of geographically distributed clusters. These problems 
inhibited the wide-spread adoption of cluster computing as a solution for scalable 
and robust enterprise computing. The research in this thesis has mainly focused on 
the following four areas:

• Unlocking the full potential of high-performance networking
• Developing efficient runtime systems for cluster-aware enterprise 

applications
• Structuring the management of large-scale enterprise computing systems
• System analysis through large-scale usage monitoring

The new technologies that resulted from my research are considered to have been 
major contributions to the ability to build scalable clusters in support of modern 
mission-critical enterprise computing. These technologies have transitioned into 
industry standards such as the Virtual Interface Architecture, into commercial 
available clustered application-servers, and into the design of a new commercial 
highly-scalable cluster management system that supports enterprise-wide, 
geographically distributed, management of cluster services.

This thesis presents several of the more important results, but the research has lead 
to many more results, also outside of the four main areas, and these results are 
referenced in Appendix A.
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Each of the four main research areas is described in more detail in the following 
sections.

1.1 Unlocking the full potential of high-performance networking

Although significant progress had been made in the early 1990’s in developing high-
performance cluster interconnects, this technology was not yet suitable for integration 
into off-the-shelf enterprise cluster systems. The communication technology was 
targeted towards high-performance parallel computing where the operating systems 
used styles of application structuring that made it difficult to transfer the technology 
to standard workstations. For example the IBM SP2 used techniques that allowed 
only one application access to the interconnect, as the operating system provided no 
protection on the network.

The arrival of standard high-performance network technology brought the promise 
that regular workstations and servers could use high-performance communication in 
a manner similar to parallel computing systems, but in a much more cost-effective 
way. Unfortunately the standard operating systems were not structured to support 
high-performance and the overhead on network processing was so high that most of 
the benefits of the new networks could not be made available.

In 1994 I started research, in collaboration with Thorsten von Eicken, to break 
through this barrier. The resulting architecture, U-Net, presented a new abstraction 
that combined the power of direct user-level network access with the full protection 
of standard operating systems. In U-Net the network adapter was virtualized into 
the application’s address space, enabling end-to-end network performance close to 
the bare-wire maximum. The complete separation of data and control for network 
processing enabled the construction of very high performance cluster applications.

An industry consortium lead by Intel, Microsoft and Compaq standardized the U-
Net architecture into the Virtual Interface Architecture, which became the de-facto 
standard for enterprise cluster interconnections. The U-Net architecture, its transition 
into VIA, and experiences with large production clusters based on VIA can be found 
in Part I of this thesis.

1.2 Building efficient runtime systems for enterprise cluster 
applications

Advances in the scalability of cluster hardware and cluster management systems 
enabled a large set of applications to benefit from improved performance and 
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availability. Many of these applications were based on legacy systems which 
in themselves were not “aware” of the cluster environment on which they were 
executing. Even though this transparency appeared to have several advantages, 
especial when applied to client-server interaction, it was impossible to meet 
the demands of scalability and fault-tolerance for server applications without 
introducing at least some awareness about the distributed nature of the system it 
was executing on. These insights were similar to our experiences with building 
group structuring systems for complex distributed production systems, where the 
conclusion was reached that server-side transparency blocked the development of 
advanced distributed applications. 

My research into efficient runtime systems for cluster-aware applications focused 
on what would be the right tools for application developers to structure their 
applications if distribution was made explicit instead of transparent. This research 
resulted in the development of an application-server (dubbed Quintet) intended to 
serve the application-tier of multi-tier enterprise applications. Quintet provides 
tools for the distribution and replication of server components to meet availability, 
performance and scalability guarantees. The approach in Quintet is radically 
different from previous systems that support object replication, in that the replication 
and distribution are no longer transparent and are brought under full control of the 
developer.

A number of the components that were developed for Quintet found their way 
into commercial application-servers, and Quintet was the basis for the application 
development support in the Galaxy Cluster Management Framework. Other tools 
such as the multi-level failure detector have been reused in the farm and cluster 
management system, but also transitioned into stand-alone tools for tracking small 
web and compute-farms. 

Part II of this thesis is dedicated to the research on cluster runtime and management 
systems. In chapter 5 our experiences with the use of academic software in production 
systems are described, while in chapter 6 an overview is given of the design of the 
Quintet application-server. 

1.3 Structuring the management of large-scale enterprise computing 
systems

The improvements in processor and network performance in the early 1990’s were by 
themselves not sufficient to bring cluster computing into the mainstream. Software 
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support for cluster computing, both at the systems level and at the application level, 
faced serious structuring and scalability problems. This was most visible in the area 
of cluster management where the enterprise support systems were targeted towards 
small-scale clusters and supported only very specific hardware configurations. 

Whereas low-end parallel computing for the masses was being enabled by the 
Beowulf cluster management tools, there was no similar solution for enterprise 
cluster computing. The main reason for the lack of progress was that software 
systems for enterprise cluster management had to serve a variety of application types, 
all with very specific demands for the way cluster management was performed. The 
distributed systems components necessary to build these management systems are 
often more complex than the applications they have to serve.

The Galaxy Cluster Management Framework was the first system to provide a 
scalable solution for the management of clusters in large data-centers. Its multi-tier 
management infrastructure enabled the management of compute-farms at multiple 
locations, with within each farm islands of specialized clusters that are managed 
according to a cluster profile. The system was designed based on principles that were 
the result of an analysis of the production use of our communication software and 
an in-depth analysis of existing management systems. Galaxy was successful in that 
its design and principles were selected by a major operating systems vendor as the 
foundation for its next generation cluster system. The work leading to Galaxy and 
a detailed description of the system can be found chapters 7 and 8 in part II of this 
thesis.

1.4 System analysis through large-scale usage monitoring

Understanding the way systems are used in production settings is essential for 
systems research that seeks to find solutions for the practical problems facing the 
computing industry. Monitoring large-scale systems and the analysis of the results is 
almost a research area by itself. The design of a monitoring and analysis system is 
often very complex as there are many concurrent data sources involved, and there is 
only limited or no control over the system usage. A difficult challenge when designing 
the instrumentation and monitoring of a system is to ensure that it produces complete 
usage information such that rigorous statistical analysis is possible. 

This thesis contains two studies performed by me that use large scale experimentation 
and monitoring:
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The first is a study into the behavior under overload conditions of a large-scale 
cluster interconnect, which consisted of 40 individual switches. This study uses a 
traditional experiment design, where there is full control over behavior of the data 
sources and sinks. The challenge with the design of these experiments was that only  
observations at the sinks could be used to draw conclusions about the behavior of 
the switches in the middle of the network, given that the switches themselves could 
not be instrumented. What complicated the experimentation was the large amount of 
data that needed to be collected at high speeds to be able to perform proper analysis 
later in the process. The details of this study are in chapter 4.

In the second study, to which part III of the thesis is dedicated, I was confronted with 
the problems of continuously monitoring a production environment where there is no 
control over the data sources. The subject of this study was the usage characteristics 
of file-systems of standard workstations. To this purpose the operating systems of a 
large number of workstations were instrumented and observed over a longer period 
of time. Again in this study the analysis was complicated by the magnitude of the 
amount of data collected and the complexity introduced by the heterogeneity of 
the applications execution on the workstations.  In the conclusions of this study I 
stress the importance of specialized statistical techniques for processing large sets 
of observation data. This exact, rigorous statistical analysis, which was missing 
from earlier file-system studies, is essential for the construction of proper workload 
models, both for future benchmarking and for advanced systems tuning. 



Part I

An Architecture for  
Protected User-Level Communication

Introduction

In the early 1990’s it was becoming clear that the acceptance of cluster computing as 
a key component in the evolution of enterprise computing was stagnating. The main 
reason for the stagnation was that advances in network technology are not translated 
into an improved networking experience for cluster applications. The advances 
in network performance were deemed essential for clusters to be constructed out 
of regular workstations, an approach which would make scaling clusters through 
a rack & stack approach cost-effective. The only modular architectures which 
provided some form of improved performance were those targeted at the scientific 
computing market, such as the Thinking Machines CM-5 and the Meiko CS-2. These 
architectures were not suitable for the enterprise computing market as they exhibited 
the traditional problem seen at many parallel computing platforms of using CPUs 
that are at least one generation behind the CPUs available for the general workstation 
market. This problem combined with the often exorbitant costs of these clusters 
made it very difficult to find a place in the enterprise market for cluster computing. 
The only cluster architecture with some limited enterprise computing successes was 
the IBM SP-2, but the proprietary nature of the communication infrastructure, as 
well as the lack of support for protected access to the network interface reduced the 
wide-spread adoption of the architecture outside of the scientific computing arena.

The advances in workstation networking were initially based on a surge of 
popularity of ATM networking, which was becoming commonly available for both 
SBUS and PCI architectures. The expectation was that end-to-end latency would be 
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in the 20-100 µsec range and bandwidth would be 100 Mbit/sec or more. In reality 
the minimum latency measured was in the order of hundreds of microseconds, and 
full bandwidth could only be achieved under infinite source conditions using large 
messages. When using simple standard protocols such as UDP as transport over the 
high-performance network, the latency for smaller messages was similar to or worse 
than the latency achieved over 10 Mbit/sec Ethernet [37].

A new architecture for high-performance networking

The main reason for the lack of performance improvement was the message 
processing overhead incurred during the send and receive actions. The operating 
system structures for network processing had basically not changed since the late 
1970’s when most network communication went over slow serial lines. The new low 
latency networks exposed the fixed overhead that was associated with each receive, 
which was almost independent of the number of bytes transferred. The properties 
of the new high-performance networks could not be exploited without a complete 
overhaul of the way communication primitives were offered in traditional operating 
systems.

In 1994 I started a research project together with Thorsten von Eicken to re-architect 
the way standard operating systems handled high-performance interconnects. The 
resulting U-Net architecture addressed the issues by delivering data directly to the 
applications, bypassing the operating system completely during the send and receive 
operations. At the same time U-Net guaranteed that multiple processes could use the 
network concurrently in a fully protected fashion. The prototype system provided 
end-to-end performance that was close to the performance of the network itself. The 
U-Net architecture was first presented at the 1995 ACM Symposium on Operating 
Systems Principles (SOSP-15) and is described in detail in chapter 2.

A foundation for the Virtual Interface Architecture 

U-Net did not only address the issues of operating systems performance, but 
also offered a new approach to the way that the networked applications could be 
structured, by completely separating the data and control paths. It went further 
than architectures such as Active Messages and Fast Messages in removing the 
last software coating that these architectures had put over the interaction with the  
network. In U-Net the network interface was virtualized and each application was 
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exposed to a set of queue structures that resembled the way networking hardware 
normally operates.

The U-Net architecture was seen by the enterprise cluster architects as the major 
step forward in enabling the development of scalable clusters. In the two years 
following the first U-Net publications, a consortium led by Intel, Compaq and 
Microsoft developed the Virtual Interface Architecture, which was largely based 
on the experiences with U-Net, but also incorporated some of the direct memory 
transfer technology developed for the VMMC2 architecture of the Shrimp project at 
Princeton. A description of the evolution of these research prototypes into the Virtual 
Interface Architecture appeared in the November 1998 issue of IEEE Computer and 
can be found in chapter 3.

User-level communication in production use

In 1998 commercial implementations of direct-user-level network interfaces and 
interconnects based on the VI architecture started to find their way into production 
clusters. Even though the architecture was able to meet the expectations, its success 
was not as wide-spread as expected. The main obstacles were difficulties in the 
transition of legacy cluster applications to a new network architecture combined 
with the lack of end-to-end control strategies. In VIA, just like in U-Net, the data and 
control transfer was separated and this was not a model many application developers 
were familiar with. Already quite quickly after the first introduction of VIA 
based hardware, network support libraries started to emerge that provided a more 
traditional programming interface. This ultimately resulted in the development of 
Winsock-Direct, an emulation of the socket interface for user-level communication. 
The emulation was a disaster from the performance point of view, but it was deemed 
“good-enough” as it helped the transition of legacy applications to VIA based 
platforms.

The production use of the new clusters showed a major departure from the 
communication patterns that were normally seen in scientific computing clusters. 
In the traditional parallel computing world there is a high level of control where 
applications are being placed and what phases the communication goes through. This 
is essential for achieving optimal performance. In the production enterprise clusters 
there is hardly any control over which applications are active at which nodes, and 
the internal communication is often triggered by events external to the cluster. This 
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results in communication patterns that are very hard to predict, which puts a heavy 
burden on the interconnects to manage the load in the network fairly. 

The separation of data and control in the VIA interface removed the ability of 
the communication architecture to provide end-to-end back-pressure to manage 
competing data streams. In chapter 4 detailed experiments are described which I 
performed to investigate how effective the use of flow-control feedback to network 
adapters is, when one cannot control the processes generating and receiving the 
data streams. The experiments were performed at one of the first large production 
VIA installations, a 256 processor cluster using a multi-stage Giganet interconnect, 
consisting of 40 switches organized in a fat tree. The results of the experiments were 
presented at the 2000 IEEE Hot Interconnects conference.

The future of user-level communication

Although the adoption of user-level communication by application developers has 
been slow, major system services have been adapted to directly use the network 
interfaces. For example the large commercial database systems, as well as transaction 
services, e-mail servers, cluster management systems and middle-tier application 
servers have been redesigned to make use of VIA directly. Other systems services 
such as the Direct Access File System (DAFS), are still under development.

A related area that emerged soon after the first VIA devices were delivered was that 
of direct user-level access to network storage devices. Fiber-Channel is the dominant 
network technology used to access the storage devices and improved performance 
can be established through transferring data directly in and from user space. The 
architecture necessary to support this is simpler than the work that was needed to 
build general communication architectures such as U-Net and VIA. Most of the 
operating systems provide block IO interfaces that are already designed to transfer 
data directly to and from user-provided buffers through DMA. The resulting direct 
user-level IO architectures exploit this behavior.

The drive in the storage community to use standard internet protocols for access to 
the networked storage has resulted in initiatives such as iSCSI. This push combined 
with the availability of hardware TCP implementation will ensure that direct user-
level access to data transferred over standard internet protocols  will become 
available.
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At the computer architecture level U-Net and VIA have also had significant impact 
as they were used as templates for the interface model of the Infiniband architecture. 
Infiniband is a specification for the development of a unified high-performance IO 
architecture, for which the first devices will become generally available in 2003. Next 
to providing the common concepts such as direct user-level access, remote DMA 
and a queue based interface, Infiniband extends the work done in U-Net and similar 
systems with atomic remote compare&swap and fetch&add operations, and with 
extended memory operation to reduce the cost of repeated memory registrations.

The work done in U-Net continues to impact the way new network, storage and 
IO devices are developed. A major lesson learned from the transition of U-Net into 
VIA and the wide-spread deployment of the architecture is that these advances 
in hardware and interface technologies at the architecture level do not guarantee 
successful acceptation of the technology by application developers. There is still 
significant research to be done to develop distributed systems support that can 
exploit the user-level communication paradigms and provide the server application 
developer with solid abstractions for building high-performance applications.
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Chapter 2

U-Net: A User-Level Network Interface for 
Parallel and Distributed Computing 

The U-Net communication architecture provides processes with a virtual view of a 
network interface to enable user- level access to high-speed communication devices. 
The architecture, implemented on standard workstations using off- the-shelf ATM 
communication hardware, removes the kernel from the communication path, while 
still providing full protection. 

The model presented by U-Net allows for the construction of protocols at user level 
whose performance is only limited by the capabilities of the network. The architecture 
is extremely flexible in the sense that traditional protocols like TCP and UDP, as well 
as novel abstractions like Active Messages can be implemented efficiently. A U-Net 
prototype on an 8-node ATM cluster of standard workstations offers 65 microseconds 
round-trip latency and 15 Mbytes/sec bandwidth. It achieves TCP performance at 
maximum network bandwidth and demonstrates performance equivalent to Meiko 
CS-2 and TMC CM-5 supercomputers on a set of Split-C benchmarks.

2.1 Introduction

The increased availability of high-speed local area networks has shifted the 
bottleneck in local-area communication from the limited bandwidth of network 
fabrics to the software path traversed by messages at the sending and receiving 
ends. In particular, in a traditional Unix networking architecture, the path taken by 
messages through the kernel involves several copies and crosses multiple levels 
of abstraction between the device driver and the user application. The resulting 
processing overheads limit the peak communication bandwidth and cause high 
end-to-end message latencies. The effect is that users who upgrade from Ethernet 
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to a faster network fail to observe an application speed-up commensurate with the 
improvement in raw network performance. A solution to this situation seems to 
elude vendors to a large degree because many fail to recognize the importance of 
per-message overhead and concentrate on peak bandwidths of long data streams 
instead. While this may be justifiable for a few applications such as video playback, 
most applications use relatively small messages and rely heavily on quick round-
trip requests and replies. The increased use of techniques such as distributed shared 
memory, remote procedure calls, remote object-oriented method invocations, and 
distributed cooperative file caches will further increase the importance of low round-
trip latencies and of high bandwidth at the low-latency point.

Many new application domains could benefit not only from higher network 
performance but also from a more flexible interface to the network. By placing all 
protocol processing into the kernel, the traditional networking architecture cannot 
easily support new protocols or new message send/receive interfaces. Integrating 
application specific information into protocol processing allows for higher efficiency 
and greater flexibility in protocol cost management. For example, the transmission of 
MPEG compressed video streams can greatly benefit from customized retransmission 
protocols, which embody knowledge of the real-time demands as well as the 
interdependencies among video frames [95]. Other applications can avoid copying 
message data by sending straight out of data structures. Being able to accommodate 
such application specific knowledge into the communication protocols becomes 
more and more important in order to be able to efficiently utilize the network and to 
couple the communication and the computation effectively.

One of the most promising techniques to improve both the performance and the 
flexibility of networking layer performance on workstation-class machines is to 
move parts of the protocol processing into user space. This research argues that in 
fact the entire protocol stack should be placed at user level and that the operating 
system and hardware should allow protected user-level access directly to the 
network. The goal is to remove the kernel completely from the critical path and to 
allow the communication layers used by each process to be tailored to its demands. 
The key issues that arise are

•  multiplexing the network among processes,
•  providing protection such that processes using the network cannot interfere 

with each other,
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•  managing limited communication resources without the aid of a kernel path, 
and

• designing an efficient yet versatile programming interface to the network.

Some of these issues have been solved in parallel machines such as in the Thinking 
Machines CM-5, the Meiko CS-2, and the IBM SP-2, all of which allow user-level 
access to the network. However, all these machines have a custom network and 
network interface, and they usually restrict the degree or form of multiprogramming 
permitted on each node. This implies that the techniques developed in these designs 
cannot be applied to workstation clusters directly. This chapter describes the U-Net 
architecture for user-level communication on an off-the-shelf hardware platform 
(SPARCStations with Fore Systems ATM interfaces) running a standard operating 
system (SunOS 4.1.3). The communication architecture virtualizes the network 
device so that each process has the illusion of owning the interface to the network. 
Protection is assured through kernel control of channel set-up and tear-down. The 
U-Net architecture is able to support both legacy protocols and novel networking 
abstractions: TCP and UDP as well as Active Messages are implemented and exhibit 
performance that is only limited by the processing capabilities of the network 
interface. Using Split-C, a state-of-the-art parallel language, the performance of 
seven benchmark programs on an ATM cluster of standard workstations rivals that of 
parallel machines. In all cases U-Net was able to expose the full potential of the ATM 
network by saturating the 140Mbits/sec fiber, using either traditional networking 
protocols or advanced parallel computing communication layers.

The major contributions of this research are to propose a simple user-level 
communication architecture (Sections 2.2 and 2.3) which is independent of the 
network interface hardware (i.e., it allows many hardware implementations), 
to describe two high-performance implementations on standard workstations 
(Section 2.4), and to evaluate its performance characteristics for communication 
in parallel programs (Sections 2.5 and 2.6) as well as for traditional protocols from 
the IP suite (Section 2.7). While other researchers have proposed user-level network 
interfaces independently, this is the first presentation of a full system which does 
not require custom hardware or OS modification and which supports traditional 
networking protocols as well as state of the art parallel language implementations. 
Since it exclusively uses off-the-shelf components, the system presented here 
establishes a baseline to which more radical proposals that include custom hardware 
or new OS architectures must be compared to. 
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2.2 Motivation and related work

The U-Net architecture focuses on reducing the processing overhead required to 
send and receive messages as well as on providing flexible access to the lowest layer 
of the network. The intent is three-fold:

• provide low-latency communication in local area settings,
• exploit the full network bandwidth even with small messages, and
• facilitate the use of novel communication protocols 

2.2.1 The importance of low communication latencies

The latency of communication is mainly composed of processing overhead and 
network latency (time-of-flight). The term processing overhead is used here to refer 
to the time spent by the processor in handling messages at the sending and receiving 
ends. This may include buffer management, message copies, checksumming, flow-
control handling, interrupt overhead, as well as controlling the network interface. 
Separating this overhead from the network latency distinguishes the costs stemming 
from the network fabric technology from those due to the networking software 
layers.

Recent advances in network fabric technology have dramatically improved network 
bandwidth while the processing overheads have not been affected nearly as much. 
The effect is that for large messages, the end-to-end latency—the time from the 
source application executing “send” to the time the destination application receiving 
the message—is dominated by the transmission time and the new networks offer 
a net improvement. For small messages in local area communication, however, 
the processing overheads dominate and the improvement in transmission time is 
less significant in comparison. In wide area networks the speed of light eventually 
becomes the dominant latency component and while reducing the overhead does not 
significantly affect latency it may well improve throughput. 

U-Net places a strong emphasis on achieving low communication overheads because 
small messages are becoming increasingly important in many applications. For 
example, in distributed systems:

•  Object-oriented technology is finding widespread adoption and is naturally 
extended across the network by allowing the transfer of objects and the remote 
execution of methods (e.g., CORBA and the many C++ extensions). Objects are 
generally small relative to the message sizes required for high bandwidth (around 
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100 bytes vs. several Kbytes) and thus communication performance suffers 
unless message overhead is low.

•  The electronic workplace relies heavily on sets of complex distributed services, 
which are intended to be transparent to the user. The majority of such service 
invocations are requests to simple database servers that implement mechanisms 
like object naming, object location, authentication, protection, etc. The message 
size seen in these systems range from 20-80 bytes for the requests and the 
responses generally can be found in the range of 40-200 bytes.

•  To limit the network traversal of larger distributed objects, caching techniques 
have become a fundamental part of most modern distributed systems. Keeping 
the copies consistent introduces a large number of small coherence messages. 
The round-trip times are important as the requestor is usually blocked until the 
synchronization is achieved.

•  Software fault-tolerance algorithms and group communication tools often 
require multi-round protocols, the performance of which is latency-limited. High 
processing overheads resulting in high communication latencies prevent such 
protocols from being used today in process-control applications, financial trading 
systems, or multimedia groupware applications.

•  Without projecting into the future, existing more general systems can benefit 
substantially as well:

•  Numerous client/server architectures are based on a RPC style of 
interaction. By drastically improving the communication latency for 
requests, responses and their acknowledgments, many systems may see 
significant performance improvements.

•  Although remote file systems are often categorized as bulk transfer systems, 
they depend heavily on the performance of small messages. A weeklong 
trace of all NFS traffic to the departmental CS fileserver at UC Berkeley 
has shown that the vast majority of the messages is under 200 bytes in size 
and that these messages account for roughly half the bits sent [2].

Finally, many researchers propose to use networks of workstations to provide the 
resources for compute intensive parallel applications. In order for this to become 
feasible, the communication costs across LANs must reduce by more than an order 
of magnitude to be comparable to those on modern parallel machines.
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2.2.2 The importance of small-message bandwidth

The communication bandwidth of a system is often measured by sending a virtually 
infinite stream from one node to another. While this may be representative of a few 
applications, the demand for high bandwidths when sending many small messages 
(e.g., a few hundred bytes) is increasing due to the same trends that demand low 
latencies. U-Net specifically targets this segment of the network traffic and attempts 
to provide full network bandwidth with as small messages as possible, mainly by 
reducing the per-message overheads.

Reducing the minimal message size at which full bandwidth can be achieved may 
also benefit reliable data stream protocols like TCP that have buffer requirements 
that are directly proportional to the round-trip end-to-end latency. For example the 
TCP window size is the product of the network bandwidth and the round-trip time. 
Achieving low-latency in local area networks will keep the buffer consumption 
within reason and thus make it feasible to achieve maximal bandwidth at low cost.

2.2.3 Communication protocol and interface flexibility

In traditional UNIX networking architectures the protocol stacks are implemented 
as part of the kernel. This makes it difficult to experiment with new protocols 
and efficiently support dedicated protocols that deal with application specific 
requirements. Although one could easily design these protocols to make use of a 
datagram primitive offered by the kernel (like UDP or raw IP), doing so efficiently 
without adding the new protocol to the kernel stack is not possible. The lack of 
support for the integration of kernel and application buffer management introduces 
high processing overheads, which especially affect reliable protocols that need to 
keep data around for retransmission. In particular, without shared buffer management 
reference count mechanisms cannot be used to lower the copy and application/kernel 
transfer overheads. For example, a kernel-based implementation of a reliable transport 
protocol like TCP can use reference counts to prevent the network device driver from 
releasing network buffers that must remain available for possible retransmission. 
Such an optimization is not available if an application specific reliable protocol is 
implemented in user space and has to use UDP as transport mechanism.

By removing the communication subsystem’s boundary with the application-specific 
protocols, new protocol design techniques, such as Application Level Framing 
[18,41] and Integrated Layer Processing [1,15,18], can be applied and more efficient 
protocols produced. Compiler assisted protocol development can achieve maximum 
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optimization if all protocols are compiled together instead of only a small subset of 
application specific protocols.

In more specialized settings a tight coupling between the communication protocol 
and the application can yield even higher savings. For example, in a high-level 
language supporting a form of blocking RPC no copy need to be made in case a 
retransmission is required, as the high-level semantics of the RPC guarantee that 
the source data remains unmodified until the RPC completes successfully. Thus the 
address of a large RPC argument may well be passed down directly to the network 
interface’s DMA engine.

Another example is that at the moment a process requests data from a remote node 
it may pre-allocate memory for the reply. When the response arrives, the data can 
be transferred directly into its final position without the allocation of intermediate 
buffers or any intermediate copies.

Figure 2.1. The traditional networking architecture (a) places the kernel in the path 
of the communication. The U-Net architecture (b) only uses a simple multiplexing/
demultiplexing agent - that can be implemented in hardware - in the data 
communication path and uses the kernel only for set-up.
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Taking advantage of the above techniques is becoming a key element in reducing the 
overhead of communication and can only be done if applications have direct access 
to the network interface.

2.2.4 Towards a new networking architecture

A new abstraction for high-performance communication is required to deliver 
the promise of low-latency, high-bandwidth communication to the applications 
on standard workstations using off-the-shelf networks. The central idea in U-Net 
is to simply remove the kernel from the critical path of sending and receiving 
messages. This eliminates the system call overhead, and more importantly, offers 
the opportunity to streamline the buffer management, which can now be performed 
at user-level. As several research projects have pointed out, eliminating the kernel 
from the send and receive paths requires that some form of a message multiplexing 
and demultiplexing device (in hardware or in software) is introduced for the purpose 
of enforcing protection boundaries.

The approach proposed in this research is to incorporate this mux/demux directly 
into the network interface (NI), as depicted in Figure 2.1, and to move all buffer 
management and protocol processing to user-level. This, in essence, virtualizes the 
NI and provides each process the illusion of owning the interface to the network. 
Such an approach raises the issues of selecting a good virtual NI abstraction to 
present to processes, of providing support for legacy protocols side-by-side with 
next generation parallel languages, and of enforcing protection without kernel 
intervention on every message.

2.2.5 Related work

Some of the issues surrounding user-level network interface access have been studied 
in the past. For the Mach3 operating system a combination of a powerful message 
demultiplexer in the microkernel, and a user-level implementation of the TCP/IP 
protocol suite solved the network performance problems that arose when the Unix 
single OS-Server was responsible for all network communication. The performance 
achieved is roughly the same as that of a monolithic BSD system [62].

More recently, the application device channel abstraction, developed at the 
University of Arizona, provides application programs with direct access to the 
experimental Osiris ATM board [30] used in the Aurora Gigabit testbed. Other 
techniques that are developed for the Osiris board to reduce the processing overhead 
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are the pathfinder multiplexer [4], which is implemented in hardware and the fbufs 
cross-domain buffer management [29].

At HP Bristol a mechanism has been developed for the Jetstream LAN [34] where 
applications can reserve buffer pools on the Afterburner [26] board. When data 
arrives on a virtual circuit associated with an application, data is transferred directly 
into the correct pool. However, the application cannot access these buffers directly: 
it is always forced to go through the kernel with a copy operation to retrieve the data 
or provide data for sending. Only the kernel-based protocols could be made aware of 
the buffer pools and exploit them fully.

In the parallel computing community some machines (e.g., Thinking Machines 
CM-5, Meiko CS-2, IBM SP-2, Cray T3D) provide user-level access to the 
network, but the solutions rely on custom hardware and are somewhat constrained 
to the controlled environment of a multiprocessor. On the other hand, given that 
these parallel machines resemble clusters of workstations ever more closely, it is 
reasonable to expect that some of the concepts developed in these designs can indeed 
be transferred to workstations.

Successive simplifications and generalizations of shared memory is leading to a 
slightly different type of solution in which the network can be accessed indirectly 
through memory accesses. Shrimp [12] uses custom NIs to allow processes to 
establish channels connecting virtual memory pages on two nodes such that data 
written into a page on one side gets propagated automatically to the other side. 
Thekkath [98] proposes a memory-based network access model that separates 
the flow of control from the data flow. The remote memory operations have been 
implemented by emulating unused opcodes in the MIPS instruction set. While 
the use of a shared memory abstraction allows a reduction of the communication 
overheads, it is not clear how to efficiently support legacy protocols, long data 
streams, or remote procedure call.

2.2.6 U-Net design goals

Experience with network interfaces in parallel machines made it clear that providing 
user-level access to the network in U-Net is the best avenue towards offering 
communication latencies and bandwidths that are mainly limited by the network 
fabric and that, at the same time, offer full flexibility in protocol design and in the 
integration of protocol, buffering, and appropriate higher communication layers. The 
many efforts in developing fast implementations of TCP and other internetworking 
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protocols clearly affirm the relevance of these protocols in high-performance 
networking and thus any new network interface proposal must be able to support 
these protocols effectively (which is typically not the case in parallel machines, for 
example).

The three aspects that set U-Net apart from the proposals discussed above are:

•  the focus on low latency and high bandwidth using small messages,
•  the emphasis on protocol design and integration flexibility, and

Figure 2.2. U-Net building blocks.
a) Endpoints serve as an application’s handle into the network, communication 
segments are regions of memory that hold message data, and message queues (send/
recv/free queues) hold descriptors for messages that are to be sent or that have been 
received.
b) Regular endpoints are serviced by the U-Net network interface directly. Emulated 
endpoints are serviced by the kernel and consume no additional network interface 
resources but cannot offer the same level of performance.
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•  the desire to meet the first two goals on widely available standard workstations 
using off-the-shelf communication hardware.

2.3 The user-level network interface architecture

The U-Net user-level network interface architecture virtualizes the interface in such 
a way that a combination of operating system and hardware mechanisms can provide 
every process1 the illusion of owning the interface to the network. Depending on 
the sophistication of the actual hardware, the U-Net components manipulated by 
a process may correspond to real hardware in the NI, to memory locations that are 
interpreted by the OS, or to a combination of the two. The role of U-Net is limited to 
multiplexing the actual NI among all processes accessing the network and enforcing 
protection boundaries as well as resource consumption limits. In particular, a process 
has control over both the contents of each message and the management of send and 
receive resources, such as buffers.

2.3.1 Sending and receiving messages

The U-Net architecture is composed of three main building blocks, shown in 
Figure 2.2: endpoints serve as an application’s handle into the network and contain 
communication segments which are regions of memory that hold message data, and 
message queues which hold descriptors for messages that are to be sent or that have 
been received. Each process that wishes to access the network first creates one or 
more endpoints, then associates a communication segment and a set of send, receive, 
and free message queues with each endpoint.

To send a message, a user process composes the data in the communication segment 
and pushes a descriptor for the message onto the send queue. At that point, the 
network interface is expected to pick the message up and insert it into the network. 
If the network is backed-up, the network interface will simply leave the descriptor 
in the queue and eventually exert backpressure to the user process when the queue 
becomes full. The NI provides a mechanism to indicate whether a message in the 
queue has been injected into the network, typically by setting a flag in the descriptor; 
this indicates that the associated send buffer can be reused.

Incoming messages are demultiplexed by U-Net based on their destination: the data 
is transferred into the appropriate communication segment and a message descriptor 

1. The terms “process” and “application” are used interchangeably to refer to arbitrary 
unprivileged UNIX processes.
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is pushed onto the corresponding receive queue. The receive model supported by U-
Net is either polling or event driven: the process can periodically check the status of 
the receive queue, it can block waiting for the next message to arrive (using a UNIX 
select call), or it can register an upcall2 with U-Net. The upcall is used by U-Net 
to signal that the state of the receive queue satisfies a specific condition. The two 
conditions currently supported are: the receive queue is non-empty and the receive 
queue is almost full. The first one allows event driven reception while the second 
allows processes to be notified before the receive queue overflows. U-Net does not 
specify the nature of the upcall which could be a UNIX signal handler, a thread, or a 
user-level interrupt handler.

In order to amortize the cost of an upcall over the reception of several messages it is 
important that a U-Net implementation allows all messages pending in the receive 
queue to be consumed in a single upcall. Furthermore, a process must be able to 
disable upcalls cheaply in order to form critical sections of code that are atomic 
relative to message reception.

2.3.2 Multiplexing and demultiplexing messages

U-Net uses a tag in each incoming message to determine its destination endpoint and 
thus the appropriate communication segment for the data and message queue for the 
descriptor. The exact form of this message tag depends on the network substrate; for 
example, in an ATM network the ATM virtual channel identifiers (VCIs) may be used. 
In any case, a process registers these tags with U-Net by creating communication 
channels: on outgoing messages the channel identifier is used to place the correct 
tag into the message (as well as possibly the destination address or route) and on 
incoming messages the tag is mapped into a channel identifier to signal the origin of 
the message to the application.

U-Net’s notion of a message tag is similar to the idea used in parallel machines of 
including a parallel-process id in the header of messages. The message tag used in 
U-Net is more general, however, in that it allows communication between arbitrary 
processes, whereas a parallel-process id tag only serves communication within a 
parallel program running in a closed environment.

An operating system service needs to assist the application in determining the correct 
tag to use based on a specification of the destination process and the route between 

2. The term “upcall” is used in a very general sense to refer to a mechanism which allows 
U-Net to signal an asynchronous event to the application.
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the two nodes. The operating system service will assist in route discovery, switch-
path setup and other (signalling) tasks that are specific for the network technology 
used. The service will also perform the necessary authentication and authorization 
checks to ensure that the application is allowed access to the specific network 
resources and that there are no conflicts with other applications. After the path to 
the peer has been determined and the request has passed the security constraints, 
the resulting tag will be registered with U-Net such that the latter can perform its 
message multiplexing/demultiplexing function. A channel identifier is returned to 
the requesting application to identify the communication channel to the destination.

Endpoints and communication channels together allow U-Net to enforce protection 
boundaries among multiple processes accessing the network and, depending on how 
routes are allocated, may allow it to extend these boundaries across the network. 
This is achieved using two mechanisms:

•  endpoints, communication segments, and message queues are only accessible 
by the owning process,

•  outgoing messages are tagged with the originating endpoint address and 
incoming messages are demultiplexed by U-Net and only delivered to the 
correct destination endpoint.

Thus an application cannot interfere with the communication channels of another 
application on the same host. In addition, if the set-up of routes is carefully controlled 
by the collection of operating systems in a cluster of hosts, then this protection can 
be extended across the network such that no application can directly interfere with 
communication streams between other parties.

2.3.3 Zero-copy vs. true zero-copy

U-Net attempts to support a “true zero copy” architecture in which data can be sent 
directly out of the application data structures without intermediate buffering and 
where the NI can transfer arriving data directly into user-level data structures as well. 
In consideration of current limitations on I/O bus addressing and on NI functionality, 
the U-Net architecture specifies two levels of sophistication: a base-level which 
requires an intermediate copy into a networking buffer and corresponds to what is 
generally referred-to as zero copy, and a direct-access U-Net which supports true 
zero copy without any intermediate buffering. 
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The base-level U-Net architecture matches the operation of existing network 
adapters by providing a reception model based on a queue of free buffers that are 
filled by U-Net as messages arrive. It also regards communication segments as a 
limited resource and places an upper bound on their size such that it is not feasible to 
regard communication segments as memory regions in which general data structures 
can be placed. This means that for sending, each message must be constructed in a 
buffer in the communication segment and on reception data is deposited in a similar 
buffer. This corresponds to what is generally called “zero-copy”, but which in truth 
represents one copy, namely between the application’s data structures and a buffer in 
the communication segment.3

Direct-access U-Net supports true zero copy protocols by allowing communication 
segments to span the entire process address space and by letting the sender specify 
an offset within the destination communication segment at which the message data 
is to be deposited directly by the NI.

The U-Net implementations described here support the base- level architecture 
because the hardware available does not support the memory mapping required for 
the direct-access architecture. In addition, the bandwidth of the ATM network used 
does not warrant the enhancement because the copy overhead is not a dominant 
cost.

2.3.4 Base-level U-Net architecture

The base-level U-Net architecture supports a queue-based interface to the network 
which stages messages in a limited-size communication segment on their way 
between application data structures and the network. The communication segments 
are allocated to buffer message data and are typically pinned to physical memory. 
In the base-level U-Net architecture send and receive queues hold descriptors 
with information about the destination, respectively origin, endpoint addresses of 
messages, their length, as well as offsets within the communication segment to the 
data. Free queues hold descriptors for free buffers that are made available to the 
network interface for storing arriving messages.

3. True zero copy is achieved with base-level U-Net when there is no need for the application 
to copy the information received to a data structure for later reference. In that case data can be 
accessed in the buffers and the application can take action based on this information without 
the need for a copy operation. A simple example of this is the reception of acknowledgment 
messages that are used to update some counters but do not need to be copied into longer term 
storage.
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The management of send buffers is entirely up to the process: the U-Net architecture 
does not place any constraints on the size or number of buffers nor on the allocation 
policy used. The only restrictions are that buffers lie within the communication 
segment and that they be properly aligned for the requirements of the network 
interface (e.g., to allow DMA transfers). The process also provides receive buffers 
explicitly to the NI via the free queue but it cannot control the order in which these 
buffers are filled with incoming data.

As an optimization for small messages—which are used heavily as control messages 
in protocol implementation—the send and receive queues may hold entire small 
messages in descriptors (i.e., instead of pointers to the data). This avoids buffer 
management overheads and can improve the round-trip latency substantially. The 
size of these small messages is implementation dependent and typically reflects the 
properties of the underlying network.

2.3.5 Kernel emulation of U-Net

Communication segments and message queues are generally scarce resources and 
it is often impractical to provide every process with U-Net endpoints. Furthermore 
many applications (such as telnet) do not really benefit from that level of 
performance. Yet, for software engineering reasons it may well be desirable to use a 
single interface to the network across all applications. The solution to this dilemma 
is to provide applications with kernel-emulated U- Net endpoints. To the application 
these emulated endpoints look just like regular ones, except that the performance 
characteristics are quite different because the kernel multiplexes all of them onto a 
single real endpoint.

2.3.6 Direct-Access U-Net architecture

Direct-access U-Net is a strict superset of the base-level architecture. It allows 
communication segments to span the entire address space of a process and it allows 
senders to specify an offset in the destination communication segment at which the 
message data is to be deposited. This capability allows message data to be transferred 
directly into application data structures without any intermediate copy into a buffer. 
While this form of communication requires quite some synchronization between 
communicating processes, parallel language implementations, such as Split-C, can 
take advantage of this facility.
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The main problem with the direct-access U-Net architecture is that it is difficult 
to implement on current workstation hardware: the NI must essentially contain an 
MMU that is kept consistent with the main processor’s and the NI must be able to 
handle incoming messages which are destined to an unmapped virtual memory page. 
Thus, in essence, it requires (i) the NI to include some form of memory mapping 
hardware, (ii) all of (local) physical memory to be accessible from the NI, and (iii) 
page faults on message arrival to be handled appropriately.

At a more basic hardware level, the limited number of address lines on most I/O 
buses makes it impossible for an NI to access all of physical memory such that even 
with an on-board MMU it is very difficult to support arbitrary-sized communication 
segments.

2.4 Two U-Net implementations

The U-Net architecture has been implemented on SPARCstations running 
SunOS 4.1.3 and using two generations of Fore Systems ATM interfaces. The first 
implementation uses the Fore SBA- 100 interface and is very similar to an Active 
Messages implementation on that same hardware described elsewhere [36]. The 
second implementation uses the newer Fore SBA-200 interface and reprograms 
the on-board i960 processor to implement U-Net directly. Both implementations 
transport messages in AAL5 packets and take advantage of the ATM virtual channel 
identifiers in that all communication between two endpoints is associated with a 
transmit/receive VCI pair4.

2.4.1 U-Net using the SBA-100

The Fore Systems SBA-100 interface operates using programmed I/O to store cells 
into a 36-cell deep output FIFO and to retrieve incoming cells from a 292-cell deep 

Operation Time (µs)
1-way send and receiver across the 
switch (at trap level)

21

Send overhead (AAL5) 7
Receive overhead (AAL5) 5
Total (one way) 33

Table 2.1. Cost breakup for a single-roundtrip (AAL5).

4. ATM is a connection-oriented network that uses virtual channel identifiers (VCIs) to name 
one-way connections.
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input FIFO. The only function performed in hardware beyond serializing cells 
onto the fiber is ATM header CRC calculation. In particular, no DMA, no payload 
CRC calculation5, and no segmentation and reassembly of multi-cell packets are 
supported by the interface. The simplicity of the hardware requires the U-Net 
architecture to be implemented in the kernel by providing emulated U-Net endpoints 
to the applications as described in the section on kernel emulation.

The implementation consists of a loadable device driver and a user-level library 
implementing the AAL5 segmentation and reassembly (SAR) layer. Fast traps into 
the kernel are used to send and receive individual ATM cells: each is carefully 
crafted in assembly language and is quite small (28 and 43 instructions for the send 
and receive traps, respectively).

The implementation was evaluated on two 60Mhz SPARCstation-20s running 
SunOS 4.1.3 and equipped with SBA-100 interfaces. The ATM network consists 
of 140Mbit/s TAXI fibers leading to a Fore Systems ASX-200 switch. The end-to-
end round trip time of a single-cell message is 66µs. A consequence of the lack of 
hardware to compute the AAL5 CRC is that 33% of the send overhead and 40% of 
the receive overhead in the AAL5 processing is due to CRC computation. The cost 
breakup is shown in Table 2.1. Given the send and receive overheads, the bandwidth 
is limited to 6.8MBytes/s for packets of 1KBytes.

2.4.2 U-Net using the SBA-200

The second generation of ATM network interfaces produced by Fore Systems, the 
SBA-200, is substantially more sophisticated than the SBA-100 and includes an 
on-board processor to accelerate segmentation and reassembly of packets as well 
as to transfer data to/from host memory using DMA. This processor is controlled 
by firmware which is downloaded into the on-board RAM by the host. The U-Net 
implementation described here uses custom firmware to implement the base-level 
architecture directly on the SBA- 200.

The SBA-200 consists of a 25Mhz Intel i960 processor, 256Kbytes of memory, a 
DMA-capable I/O bus (Sbus) interface, a simple FIFO interface to the ATM fiber 
(similar to the SBA-100), and an AAL5 CRC generator. The host processor can map 
the SBA-200 memory into its address space in order to communicate with the i960 
during operation.

5. The card calculates the AAL3/4 checksum over the payload but not the AAL5 CRC 
required here.
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The experimental set-up used consists of five 60Mhz SPARCStation-20 and 
three 50Mhz SPARCStation-10 workstations connected to a Fore Systems ASX-200 
ATM switch with 140Mbit/s TAXI fiber links.

Fore firmware operation and performance

The complete redesign of the SBA-200 firmware for the U-Net implementation was 
motivated by an analysis of Fore’s original firmware which showed poor performance. 
The apparent rationale underlying the design of Fore’s firmware is to off-load the 
specifics of the ATM adaptation layer processing from the host processor as much 
as possible. The kernel-firmware interface is patterned after the data structures used 
for managing BSD mbufs and System V streams bufs. It allows the i960 to traverse 
these data structures using DMA in order to determine the location of message data, 
and then to move it into or out of the network rather autonomously.

The performance potential of Fore’s firmware was evaluated using a test program 
which maps the kernel-firmware interface data structures into user space and 
manipulates them directly to send raw AAL5 PDUs over the network. The measured 
round-trip time was approximately 160µs while the maximum bandwidth achieved 
using 4Kbyte packets was 13Mbytes/sec. This performance is rather discouraging: 
the round-trip time is almost 3 times larger than using the much simpler and cheaper 
SBA-100 interface, and the bandwidth for reasonable sized packets falls short of the 
15.2Mbytes/sec peak fiber bandwidth.

A more detailed analysis showed that the poor performance can mainly be attributed 
to the complexity of the kernel-firmware interface. The message data structures are 
more complex than necessary and having the i960 follow linked data structures on 
the host using DMA incurs high latencies. Finally, the host processor is much faster 
than the i960 and so off-loading can easily backfire.

U-Net firmware

The base-level U-Net implementation for the SBA-200 modifies the firmware to 
add a new U-Net compatible interface6. The main design considerations for the new 
firmware were to virtualize the host-i960 interface such that multiple user processes 

6. For software engineering reasons, the new firmware’s functionality is a strict superset of 
Fore’s such that the traditional networking layers can still function while new applications 
can use the faster U-Net.



2.4 Two U-Net implementations 31

can communicate with the i960 concurrently, and to minimize the number of host 
and i960 accesses across the I/O bus.

The new host-i960 interface reflects the base-level U-Net architecture directly. 
The i960 maintains a data structure holding the protection information for all open 
endpoints. Communication segments are pinned to physical memory and mapped 
into the i960’s DMA space, receive queues are similarly allocated such that the host 
can poll them without crossing the I/O bus, while send and free queues are actually 
placed in SBA-200 memory and mapped into user-space such that the i960 can poll 
these queues without DMA transfers.

The control interface to U-Net on the i960 consists of a single i960-resident 
command queue that is only accessible from the kernel. Processes use the system 
call interface to the device driver that implements the kernel resident part of U-Net. 
This driver assists in providing protection by validating requests for the creation of 
communication segments and related endpoints, and by providing a secure interface 
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between the operating system service that manages the multiplexing tags and the U-
Net channel registration with the i960. The tags used for the ATM network consist 
of a VCI pair that implements full duplex communication (ATM is a connection 
oriented network and requires explicit connection set-up even though U-Net itself 
is not connection oriented). The communication segments and message queues for 
distinct endpoints are disjoint and are only present in the address space of the process 
that creates the endpoint.

In order to send a single protocol data unit (PDU), the host uses a double word store 
to the i960-resident transmit queue to provide a pointer to a transmit buffer, the 
length of the packet and the channel identifier to the i960. Single cell packet sends 
are optimized in the firmware because many small messages are less than a cell in 
size. For larger sized messages, the host-i960 DMA uses three 32-byte burst transfers 
to fetch two cells at a time and computes the AAL5 CRC using special SBA-200 
hardware.
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To receive cells from the network, the i960 periodically polls the network input 
FIFO. Receiving single cell messages is special- cased to improve the round-trip 
latency for small messages. The single-cell messages are directly transferred into 
the next receive-queue entry which is large enough to hold the entire message—this 
avoids buffer allocation and extra DMA for the buffer pointers. Longer messages 
are transferred to fixed-size receive buffers whose offsets in the communication 
segment are pulled off the i960-resident free queue. When the last cell of the packet 
is received, the message descriptor containing the pointers to the buffers is DMA-ed 
into the next receive queue entry.

Performance

Figure 2.3 shows the round trip times for messages up to 1K bytes, i.e., the time for a 
message to go from one host to another via the switch and back. The round-trip time 
is 65µs for a one-cell message due to the optimization, which is rather low, but not 
quite at par with parallel machines, like the CM-5, where custom network interfaces 
placed on the memory bus (Mbus) allow round- trips in 12µs. Using a UNIX signal 
to indicate message arrival instead of polling adds approximately another 30µs on 
each end. Longer messages start at 120µs for 48 bytes and cost roughly an extra 
6µs per additional cell (i.e., 48 bytes). Figure 2.4 shows the bandwidth over the raw 
base level U-Net interface in Mbytes/sec for message sizes varying from 4 bytes to 
5Kbytes. It is clear from the graph that with packet sizes as low as 800 bytes, the 
fiber can be saturated.

Memory requirements

The current implementation pins pages used in communication segments down to 
physical memory and maps them into the SBA- 200’s DMA space. In addition, each 
endpoint has its own set of send, receive and free buffer queues, two of which reside 
on the i960 and are mapped to user-space. The number of distinct applications that 
can be run concurrently is therefore limited by the amount of memory that can be 
pinned down on the host, the size of the DMA address space and, the i960 memory 
size. Memory resource management is an important issue if access to the network 
interface is to be scalable. A reasonable approach would be to provide a mechanism 
by which the i960, in conjunction with the kernel, would provide some elementary 
memory management functions, which would allow dynamic allocation of the DMA 
address space to the communication segments of active user processes. The exact 
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mechanism to achieve such an objective without compromising the efficiency and 
simplicity of the interface remains a challenging problem.

2.5 U-Net Active Messages implementation and performance

The U-Net Active Messages (UAM) layer is a prototype that conforms to the 
Generic Active Messages (GAM) 1.1 specification [24]. Active Messages is a 
mechanism that allows efficient overlapping of communication with computation in 
multiprocessors. Communication using Active Messages is in the form of requests 
and matching replies. An Active Message contains the address of a handler that gets 
called on receipt of the message followed by upto four words of arguments. The 
function of the handler is to pull the message out of the network and integrate it into 
the ongoing computation. A request message handler may or may not send a reply 
message. However, in order to prevent live-lock, a reply message handler cannot 
send another reply.

Generic Active Messages consists of a set of primitives that higher-level layers can 
use to initialize the GAM interface, send request and reply messages and perform 
block gets and stores. GAM provides reliable message delivery, which implies that 
a message that is sent will be delivered to the recipient barring network partitions, 
node crashes, or other catastrophic failures.

2.5.1 Active Messages implementation

The UAM implementation consists of a user level library that exports the GAM 
1.1 interface and uses the U-Net interface. The library is rather simple and mainly 
performs the flow-control and retransmissions necessary to implement reliable 
delivery and the Active Messages-specific handler dispatch.

Flow Control Issues

In order to ensure reliable message delivery, UAM uses a window-based flow 
control protocol with a fixed window size (w). Every endpoint preallocates a total 
of 4w transmit and receive buffers for every endpoint it communicates with. This 
storage allows w requests and w replies to be kept in case retransmission is needed 
and it allows 2w request and reply messages to arrive without buffer overflow.

Request messages which do not generate a reply are explicitly acknowledged 
and a standard “go back N” retransmission mechanism is used to deal with lost 
requests or replies. The flow control implemented here is an end-to-end flow control 
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mechanism which does not attempt to minimize message losses due to congestion 
in the network.

Sending and Receiving

To send a request message, UAM first processes any outstanding messages in the 
receive queue, drops a copy of the message to be sent into a pre-allocated transmit 
buffer and pushes a descriptor onto the send queue. If the send window is full, the 
sender polls for incoming messages until there is space in the send window or until 
a time-out occurs and all unacknowledged messages are retransmitted. The sending 
of reply messages or explicit acknowledgments is similar except that no flow-control 
window check is necessary.

The UAM layer receives messages by explicit polling. On message arrival, UAM 
loops through the receive queue, pulls the messages out of the receive buffers, 
dispatches the handlers, sends explicit acknowledgments where necessary, and frees 
the buffers and the receive queue entries.

2.5.2 Active Messages micro-benchmarks

Four different micro-benchmarks were run to determine the round trip times and 
transfer bandwidths for single cell messages as well as block transfers.

1. The single-cell round trip time was estimated by repeatedly sending a single cell 
request message with 0 to 32 bytes of data to a remote host specifying a handler 
that replies with an identical message. The measured round trip times are shown 
in Figure 2.3 and start at 71µs which suggests that the UAM overhead over raw 
U-Net is about 6µs. This includes the costs to send a request message, receive it, 
reply and receive the reply.

2. The block transfer round-trip time was measured similarly by sending messages of 
varying sizes back and forth between two hosts. Figure  2.3 shows that the time 
for an N-byte transfer is roughly 135µs + N*0.2µs. The per-byte cost is higher 
than for Raw U-Net because each one-way UAM transfer involves two copies 
(from the source data structure into a send buffer and from the receive buffer into 
the destination data structure).

3. The block store bandwidth was measured by repeatedly storing a block of a 
specified size to a remote node in a loop and measuring the total time taken. 
Figure 2.4 shows that the bandwidth reaches 80% of the AAL-5 limit with blocks 
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of about 2Kbytes. The dip in performance at 4164 bytes is caused by the fact that 
UAM uses buffers holding 4160 bytes of data and thus additional processing time 
is required. The peak bandwidth at 4Kbytes is 14.8Mbytes/s.

The block get bandwidth was measured by sending a series of requests to a remote 
node to fetch a block of specified size and waiting until all blocks arrive. The block 
get performance is nearly identical to that of block stores.

2.5.3 Summary

The performance of Active Messages shows that the U-Net interface is well suited 
for building higher-level communication paradigms used by parallel languages and 
run-times. The main performance penalty of UAM over raw U-Net is due to the 
cost of implementing reliability and removing the restrictions of the communication 
segment size: UAM must send acknowledgment messages and it copies data into and 
out of buffers in the communication segment. For large transfers there is virtually no 
bandwidth loss due to the extra copies, but for small messages the extra overhead of 
the copies and the acknowledgments is noticeable.

Overall, the performance of UAM is so close to raw U-Net that using the raw 
interface is only worthwhile if control over every byte in the AAL-5 packets is 
required (e.g., for compatibility) or if significant benefits can be achieved by using 
customized retransmission protocols.

2.6 Split-C application benchmarks

Split-C [22] is a simple parallel extension to C for programming distributed memory 
machines using a global address space abstraction. It is implemented on top of U-Net 
Active Messages and is used here to demonstrate the impact of U-Net on applications 
written in a parallel language. A Split-C program comprises one thread of control per 
processor from a single code image and the threads interact through reads and writes 

Machine CPU speed message 
overhead

round-trip 
latency

network 
bandwidth

CM-5 33 MHz Sparc-2 3 µs 12 µs 10 Mb/s
Meiko CS-2 40 MHz SuperSparc 11 µs 25 µs 39 Mb/s
U-Net ATM 50/60 Mhz SuperSparc 6 µs 71 µs 14 Mb/s

Table 2.2. Comparison of CM-5, Meiko CS-2, and U-Net ATM cluster computation 
and communication performance characteristics
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Figure 2.5. Comparison of seven Split-C benchmarks on the CM-5, the U-Net ATM 
cluster, and the Meiko CS-2. The execution times are normalized to the CM-5 and the 
computation/communication breakdown is shown for three applications.
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on shared data. The type system distinguishes between local and global pointers 
such that the compiler can issue the appropriate calls to Active Messages whenever 
a global pointer is dereferenced. Thus, dereferencing a global pointer to a scalar 
variable turns into a request and reply Active Messages sequence exchange with the 
processor holding the data value. Split-C also provides bulk transfers which map 
into Active Message bulk gets and stores to amortize the overhead over a large data 
transfer.

Split-C has been implemented on the CM-5, Paragon, SP-1, Meiko CS-2, IBM SP-
2, and Cray T3D supercomputers as well as over U-Net Active Messages. A small 
set of application benchmarks is used here to compare the U-Net version of Split-C 
to the CM-5 [22,35] and Meiko CS-2 [90] versions. This comparison is particularly 
interesting as the CM-5 and Meiko machines are easily characterized with respect 
to the U-Net ATM cluster as shown in Table 2.2: the CM-5’s processors are slower 
than the Meiko’s and the ATM cluster’s, but its network has lower overheads and 
latencies. The CS-2 and the ATM cluster have very similar characteristics with a 
slight CPU edge for the cluster and a faster network for the CS-2.

The Split-C benchmark set used here is comprised of seven programs: a blocked 
matrix multiply [22], a sample sort optimized for small messages [23], the same sort 
optimized to use bulk transfers [90], two radix sorts similarly optimized for small 
and bulk transfers, a connected components algorithm [57], and a conjugate gradient 
solver. The matrix multiply and the sample sorts have been instrumented to account 
for time spent in local computation phases and in communication phases separately 
such that the time spent in each can be related to the processor and network 
performance of the machines. The execution times for runs on eight processors are 
shown in Figure 2.5; the times are normalized to the total execution time on the 
CM-5 for ease of comparison. The matrix multiply uses matrices of 4 by 4 blocks 
with 128 by 128 double floats each. The main loop multiplies two blocks while it 
prefetches the two blocks needed in the next iteration. The results show clearly the 
CPU and network bandwidth disadvantages of the CM-5. The sample sort sorts an 
array of 4 million 32-bit integers with arbitrary distribution. The algorithm first 
samples the keys, then permutes all keys, and finally sorts the local keys on each 
processor. The version optimized for small messages packs two values per message 
during the permutation phase while the one optimized for bulk transfers presorts 
the local values such that each processor sends exactly one message to every other 
processor. The performance again shows the CPU disadvantage of the CM-5 and 
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in the small message version that machine’s per-message overhead advantage. The 
ATM cluster and the Meiko come out roughly equal with a slight CPU edge for the 
ATM cluster and a slight network bandwidth edge for the Meiko. The bulk message 
version improves the Meiko and ATM cluster performance dramatically with respect 
to the CM-5 which has a lower bulk-transfer bandwidth. The performance of the 
radix sort and the connected components benchmarks further demonstrate that the 
U-Net ATM cluster of workstations is roughly equivalent to the Meiko CS-2 and 
performs worse than the CM-5 in applications using small messages (such as the 
small message radix sort and connected components) but better in ones optimized 
for bulk transfers.

2.7 TCP/IP and UDP/IP protocols

The success of new abstractions often depends on the level to which they are able 
to support legacy systems. In modern distributed systems the IP protocol suite plays 
a central role, its availability on many platforms provides a portable base for large 
classes of applications. Benchmarks are available to test the various TCP/IP and 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

Fore ATM TCP

Fore ATM UDP

Ethernet UDP

Ethernet TCP

r
o
u
n
d
t
r
i
p
 
i
n
 
m
i
c
r
o
s
e
c
o
n
d
s

message size in bytes

Figure 2.6. TCP and UDP round-trip latencies over ATM and Ethernet as a function 
of message size



40 U-Net: A User-Level Network Interface for Parallel and Distributed Computing 

UDP/IP implementations, with a focus on bandwidth and latency as a function of 
application message size.

Unfortunately the performance of kernelized UDP and TCP protocols in SunOS 
combined with the vendor supplied ATM driver software has been disappointing: the 
maximum bandwidth with UDP is only achieved by using very large transfer sizes 
(larger than 8Kbytes), while TCP will not offer more than 55% of the maximum 
achievable bandwidth. The observed round-trip latency, however, is even worse: for 
small messages the latency of both UDP and TCP messages is larger using ATM than 
going over Ethernet: it simply does not reflect the increased network performance. 
Figure 2.6 shows the latency of the Fore-ATM based protocols compared to those 
over Ethernet.

TCP and UDP modules have been implemented for U-Net using the base-level U-
Net functionality. The low overhead in U-Net protocol processing and the resulting 
low-latency form the basis for TCP and UDP performance that is close to the raw 
U-Net performance limits presented earlier.

2.7.1 A proof-of-concept implementation

The TCP and UDP over U-Net implementation effort has two goals: first to show that 
the architecture is able to support the implementation of traditional protocols and 
second to create a test environment in which traditional benchmarks can be used to 
put U-Net and kernelized protocol processing into perspective.

By basing the U-Net TCP & UDP implementation on existing software full protocol 
functionality [14] and interoperability is maintained. A number of modules that were 
not in the critical performance path were not ported to U-Net, namely the ARP and 
ICMP modules.

At this point the secure U-Net multiplexor does not have support for the sharing 
of a single VCI among multiple channels, making it impossible to implement the 
standard IP-over-ATM transport mechanism, which requires a single VCI to carry all 
IP traffic for all applications [61]. For IP-over-U-Net a single channel is used to carry 
all IP traffic between two applications, which matches the standard processing as 
closely as currently possible. This test setup does not use an exclusive U-Net channel 
per TCP connection, although that would be simple to implement.

Some issues with IP-over-ATM incompatibility are not yet resolved and are related 
to what is the best way to implement proper ICMP handling when targeting IPv6 
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over U-Net. For this an additional level of demultiplexing is foreseen and will 
be based on the IPv6 [flow-id, source address] tag when packets arrive over the 
dedicated IP-over-ATM VCI. Packets for which the tag does not resolve to a local 
U-Net destination will be transferred to the kernel communication endpoint for 
generalized processing and possibly triggering ICMP handling. This will yield an 
implementation that is fully interoperable with other IP-over- ATM implementations 
and will cover both local and wide-area communication.

2.7.2 The protocol execution environment

The TCP/IP suite of protocols is frequently considered to be ill- suited for use over 
high-speed networks such as ATM. However, experience has shown that the core of 
the problems with TCP/IP performance usually lie in the particular implementations 
and their integration into the operating system and not with the protocols themselves. 
This is indeed the case with the Fore driver software which tries to deal with the 
generic low-performance buffer strategies of the BSD based kernel.

Using U-Net, the protocol developer does not experience a restrictive environment 
(like the kernel) where the use of generalized buffer and timer mechanisms is 
mandatory and properties of network and application can not be incorporated in the 
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protocol operation. U-Net gives the developer the freedom to design protocols and 
protocol support software such as timer and buffer mechanisms that are optimized 
for the particular application and the network technology used. This yields a toolbox 
approach to protocol and application construction where designers can select from a 
variety of protocol implementations.

As a result, U-Net TCP and UDP deliver the low-latency and high bandwidth 
communication expected of ATM networks without resorting to excessive buffering 
schemes or the use of large network transfer units, while maintaining interoperability 
with non-U-Net implementations.

2.7.3 Message handling and staging

One of the limiting factors in the performance of kernel-based protocols is the 
bounded kernel resources available, which need to be shared between many 
potential network-active processes. By implementing protocols at user-level, 
efficient solutions are available for problems which find their origin in the use of the 
operating system kernel as the single protocol processing unit. Not only does U-Net 
remove all copy operations from the protocol path but also it allows for the buffering 
and staging strategies to depend on the resources of the application instead of the 
scarce kernel network buffers.

An example is the restricted size of the socket receive buffer (max. 52Kbytes in 
SunOS), which has been a common problem with the BSD kernel communication 
path: already at Ethernet speeds buffer overrun is the cause of message loss in 
the case of high bandwidth UDP data streams. By removing this restriction, the 
resources of the actual recipient, instead of those of the intermediate processing unit, 
now become the main control factor and this can be tuned to meet application needs 
and be efficiently incorporated into the end-to-end flow-control mechanisms.

The deficiencies in the BSD kernel buffer (mbuf) mechanism have been identified 
long ago [19] and the use of high-performance networks seem to amplify the impact of 
this mechanism even more, especially in combination with the Fore driver buffering 
scheme. Figure 2.7 shows the UDP throughput with the saw-tooth behavior that is 
caused by the buffer allocation scheme where first large 1Kbyte buffers are filled 
with data and the remainder, if less than 512 bytes, is copied into small mbufs of 112 
bytes each. This allocation method has a strong degrading effect on the performance 
of the protocols because the smaller mbufs do not have a reference count mechanism 
unlike the large cluster buffers.
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Although an alternative kernel buffering mechanism would significantly improve the 
message handling in the kernel and certainly remove the saw-tooth behavior seen in 
Figure 2.7, it is questionable if it will contribute as significantly to latency reduction 
as, for example, removing kernel-application copies entirely [54] .

Base-level U-Net provides a scatter-gather message mechanism to support efficient 
construction of network buffers. The data blocks are allocated within the receive and 
transmit communication segments and a simple reference count mechanism added 
by the TCP and UDP support software allows them to be shared by several messages 
without the need for copy operations.

2.7.4 Application controlled flow-control and feedback

One of the major advantages of integrating the communication subsystem into 
the application is that the application can be made aware of the state of the 
communication system and thus can take application specific actions to adapt itself 
to changing circumstances. Kernel based communication systems often have no 
other facility than to block or deny a service to an application, without being able to 
communicate any additional information.

At the sending side, for example, feedback can be provided to the application about 
the state of the transmission queues and it is simple to establish a backpressure 
mechanism when these queues reach a high-water mark. Among other things, this 
overcomes problems with the current SunOS implementation, which will drop 
random packets from the device transmit queue if there is overload without notifying 
the sending application.

Other protocol specific information such as retransmission counters, round trip 
timers, and buffer allocation statistics are all readily available to the application 
and can be used to adapt communication strategies to the status of the network. 
The receive window under U-Net/TCP, for example, is a direct reflection of the 
buffer space at the application and not at the intermediate processing unit, allowing 
for a close match between application level flow control and the receive-window 
updates.

2.7.5 IP

The main functionality of the IP protocol is to handle the communication path and to 
adapt messages to the specifics of the underlying network. On the receiving side IP-
over-U-Net is liberal in the messages that it accepts, and it implements most of the 
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IP functionality, except for the forwarding of messages and the interfacing to ICMP. 
A transport protocol is selected and the U-Net demultiplex information is passed on 
to the transport module to possibly assist in destination selection.

On the sending side the functionality of the IP protocol is reduced to mapping messages 
into U-Net communication channels. Because of this reduced functionality, this side 
of the protocol is collapsed into the transport protocols for efficient processing.

IP over U-Net exports an MTU of 9Kbytes and does not support fragmentation on 
the sending side as this is known to be a potential source for wasting bandwidth 
and triggering packet retransmissions [55]. TCP provides its own fragmentation 
mechanism and because of the tight coupling of application and protocol module 
it is relatively simple for the application to assist UDP in achieving the same 
functionality.

2.7.6 UDP

The core functionality of UDP is twofold: an additional layer of demultiplexing over 
IP based on port identifiers and some protection against corruption by adding a 16 bit 
checksum on the data and header parts of the message. In the U-Net implementation 
the demultiplexing is simplified by using the source endpoint information passed-
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on by U-Net. A simple caching scheme of the control data structures (pcb) per 
incoming channel allows for significant processing speedups, as described by [74]. 
The checksum adds a processing overhead of 1µs per 100 bytes on a SPARCStation 
20 and can be combined with the copy operation that retrieves the data from the 
communication segment. It can also be switched off by applications that use data 
protection at a higher level or are satisfied with the 32-bit CRC at the U-Net AAL5 
level.

The performance of U-Net UDP is compared to the kernel based UDP in Figures 2.7  
and 2.9. The first shows the achieved bandwidth while the latter plots the end-to-end 
round-trip latency as a function of message size. For the kernel UDP the bandwidth 
is measured as perceived at the sender and as actually received: the losses can all be 
attributed to kernel buffering problems at both sending and receiving hosts. With the 
same experimental set-up, U-Net UDP does not experience any losses and only the 
receive bandwidth is shown.

2.7.7 TCP

TCP adds two properties that make it an attractive protocol to use in a number 
of settings: reliability and flow control. Reliability is achieved through a simple 

0

200

400

600

800

1000

1200

1400

1600

0

20
0

40
0

60
0

80
0

10
00

Fore UDP

Fore TCP

U-Net UDP

U-Net TCP

r
o
u
n
d
t
r
i
p
 
i
n
 
m
i
c
r
o
s
e
c
o
n
d
s

message size in bytes

Figure 2.9. UDP and TCP round-trip latencies as a function of message size



46 U-Net: A User-Level Network Interface for Parallel and Distributed Computing 

acknowledgment scheme and flow control through the use of advertised receive 
windows.

The performance of TCP does not depend as much on the rate with which the data 
can be pushed out on the network as on the product of bandwidth and round-trip 
time, which indicates the amount of buffer space needed to maintain a steady reliable 
high speed flow. The window size indicates how many bytes the module can send 
before it has to wait for acknowledgments and window updates from the receiver. If 
the updates can be returned to the sender in a very timely manner only a relatively 
small window is needed to achieve the maximum bandwidth. Figure 2.8 shows that 
in most cases U-Net TCP achieves a 14-15 Mbytes/sec bandwidth using an 8Kbyte 
window, while even with a 64K window the kernel TCP/ATM combination will not 
achieve more than 9-10 Mbytes/sec. The round-trip latency performance of both 
kernel and U-Net TCP implementations is shown in Figure 2.9 and highlights the 
fast U-Net TCP round-trip, which permits the use of a small window.

2.7.8 TCP tuning

TCP over high-speed networks has been studied extensively, especially over wide-
area networks [50] and several changes and extensions have been proposed to make 
TCP function correctly in settings where a relatively high delay can be expected. 
These changes need to be incorporated into the U-Net TCP implementation if it is to 
function across wide-area links where the high latencies no longer permit the use of 
small windows.

It has been argued lately that the same changes are also needed for the local area case 
in order to address the deficiencies that occur because of the high latency of the ATM 
kernel software. U-Net TCP shows that acceptable performance can be achieved in 
LAN and MAN settings without any modifications to the general algorithms, without 
the use of large sequence numbers, and without extensive buffer reservations.

Tuning some of the TCP transmission control variables is not without risk when 
running over ATM [86] and should be done with extreme caution. The low latency 
of U-Net allows for very conservative settings, therefore minimizing the risk while 
still achieving maximum performance.

An important tuning factor is the size of the segments that are transmitted: using 
larger segments it is more likely that the maximum bandwidth can be achieved in 
cases where low latency is not available. Romanov & Floyd’s work [86] however 
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has shown that TCP can perform poorly over ATM if the segment size is large, due to 
the fact that the underlying cell reassembly mechanism causes the entire segment to 
be discarded if a single ATM cell is dropped. A number of solutions are available, but 
none provide a mandate to use large segment sizes. The standard configuration for 
U-Net TCP uses 2048 byte segments, which is sufficient to achieve the bandwidth 
shown in Figure 2.8.

Another popular approach to compensate for high latencies is to grow the window 
size. This allows a large amount of data to be outstanding before acknowledgments 
are expected back in the hope to keep the communication pipe filled. Unfortunately, 
increasing the window has its drawbacks. First of all, the large amount of data 
must be buffered to be available for retransmission. Furthermore, there is a risk of 
triggering the standard TCP congestion control mechanism whenever there are two 
or more segments dropped within a single window. Tuning the window size to a 
large value will increase the chance of this situation occurring, resulting in a drain 
of the communication pipe and a subsequent slow-start. It seems unavoidable to run 
these risks, even in a LAN setting, when the protocol execution environment is not 
able to guarantee low-latency communication.

A final tuning issue that needed to be addressed within U-Net TCP is the bad ratio 
between the granularity of the protocol timers and the round-trip time estimates. The 
retransmission timer in TCP is set as a function of the estimated round trip time, 
which is in the range from 60 to 700 microseconds, but the BSD kernel protocol 
timer (pr_slow_timeout) has a granularity of 500 milliseconds. When a TCP packet 
is discarded because of cell loss or dropped due to congestion, the retransmit timer is 
set to a relatively large value compared to the actual round-trip time. To ensure timely 
reaction to possible packet loss U-Net TCP uses a 1-millisecond timer granularity, 
which is constrained by the reliability of the user- level timing mechanisms.

Protocol Round-trip latency Bandwidth 4K packets
Raw AAL5 65 µs 120 Mbits/s
Active Messages 71 µs 118 Mbits/s
UDP 138 µs 120 Mbits/s
TCP 157 µs 115 Mbits/s
SPlit-C store 72 µs 118 Mbits/s

Table 2.3. U-Net latency and bandwidth summary.
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The BSD implementation uses another timer (pr_fast_timeout) for the transmission 
of a delayed acknowledgment in the case that no send data is available for 
piggybacking and that a potential transmission deadlock needs to be resolved. This 
timer is used to delay the acknowledgment of every second packet for up to 200 ms. 
In U-Net TCP it was possible to disable the delay mechanism and thereby achieve 
more reliable performance. Disabling this bandwidth conserving strategy is justified 
by the low cost of an active acknowledgment, which consists of only a 40-byte TCP/
IP header and thus can be handled efficiently by single-cell U-Net reception. As a 
result, the available send window is updated in the timeliest manner possible laying 
the foundation for maximal bandwidth exploitation. In wide-area settings, however, 
the bandwidth conservation may play a more important role and thus the delayed 
acknowledgment scheme may have to be enabled for those situations.

2.8 Summary

The two main objectives of U-Net—to provide efficient low- latency communication 
and to offer a high degree of flexibility—have been accomplished. The processing 
overhead on messages has been minimized so that the latency experienced 
by the application is dominated by the actual message transmission time.  
Table 2.3   summarizes the various U-Net latency and bandwidth measurements. U-
Net presents a simple network interface architecture which simultaneously supports 
traditional inter-networking protocols as well as novel communication abstractions 
like Active Messages.

Using U-Net the round-trip latency for messages smaller than 40 bytes is about 
65 µsec. This compares favorably to other research results: the application device 
channels (U. of Arizona) achieve 150 µsec latency for single byte messages and 
16 byte messages in the HP Jetstream environment have latencies starting at 
300 µsec. Both research efforts however use dedicated hardware capable of over 
600 Mbits/sec compared to the 140 Mbits/sec standard hardware used for U-Net.

Although the main goal of the U-Net architecture was to remove the processing 
overhead to achieve low-latency, a secondary goal, namely the delivery of maximum 
network bandwidth, even with small messages, has also been achieved. With 
message sizes as small as 800 bytes the network is saturated, while at smaller sizes 
the dominant bottleneck is the i960 processor on the network interface.

U-Net also demonstrates that removing the kernel from the communication path can 
offer new flexibility in addition to high performance. The TCP and UDP protocols 
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implemented using U-Net achieve latencies and throughput close to the raw 
maximum and Active Messages round-trip times are only a few microseconds over 
the absolute minimum.

The final comparison of the 8-node ATM cluster with the Meiko CS-2 and TMC 
CM-5 supercomputers using a small set of Split-C benchmarks demonstrates that 
with the right communication substrate networks of workstations can indeed rival 
these specially- designed machines. This encouraging result should, however, not 
obscure the fact that significant additional system resources, such as parallel process 
schedulers and parallel file systems, still need to be developed before the cluster of 
workstations can be viewed as a unified resource.
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Chapter 3

Evolution of the Virtual Interface 
Architecture

The introduction of the VIA standard for cluster or system-area networks has opened 
the market for commercial user-level network interfaces. The authors examine how 
design decisions in prototype interfaces have helped shape this industry standard

3.1 Introduction

To provide a faster path between applications and the network, most researchers 
have advocated removing the operating system kernel and its centralized networking 
stack from the critical path and creating a user-level network interface. With these 
interfaces, designers can tailor the communication layers each process uses to 
the demands of that process. Consequently, applications can send and receive 
network packets without operating system intervention, which greatly decreases 
communication latency and increases network throughput.

Unfortunately, the diversity of approaches and lack of consensus has stalled progress 
in refining research results into products—a prerequisite to the widespread adoption 
of these interfaces. In 1997, Intel, Microsoft, and Compaq introduced the Virtual 
Interface Architecture [33], a proposed standard for cluster or system-area networks. 
Products based on the VIA have already surfaced, notably GigaNet’s GNN1000 
network interface (http://www.giganet.com). As more products appear, research 
into application-level issues can proceed and the technology of user-level network 
interfaces should mature. Several prototypes—among them U-Net [37]  which 
is described in chapter 2 — have heavily influenced the VIA. In this chapter, we 
describe the architectural issues and design trade-offs at the core of these prototype 
designs, including
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• How to provide applications with direct access to the network interface 
hardware, yet retain sufficient protection to ensure that applications can’t 
interfere with each other.

• How to design an efficient, yet versatile programming interface. Applications 
must be able to access the network interface and still control buffering, 
scheduling, and addressing. The programming interface, on the other hand, 
must accommodate a wide variety of hardware implementations.

• How to manage resources, in particular memory. Applications must consider 
the costs of DMA transfers that map a virtual address to a physical one. At 
the same time, implementation-specific details must be hidden from the 
application, and the operating system must ultimately control all resource 
allocation.

• How to manage fair access to the network without a kernel path which, in 
traditional protocol stacks, acts as a central point of control and scheduling.

Figure 3.1. Round-trip times for a local remote procedure call (LRPC) under 
Windows NT (COM local) versus a remote procedure call over the Virtual Interface 
Architecture using GigaNet’s GNN1000 interface (Distributed COM with VIA). By 
bypassing the kernel the remote call is actually faster than the local one. The round-
trip latency of raw messages over the VIA (VIA with raw messages) shows that there 
is room for improvement in the DCOM protocol.
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3.2 Performance factors

Network performance is traditionally described by the bandwidth achieved when 
an infinite stream is transmitted. However, an increasing number of applications are 
more sensitive to the network’s round-trip time, or communication latency, and the 
bandwidth when sending many small messages.

3.2.1 Low communication latency

Communication latency is due mainly to processing overhead—the time the 
processor spends handling messages at the sending and receiving ends. This may 
include managing the buffers, copying the message, computing checksums, handling 
flow control and interrupts, and controlling network interfaces. As Figure 3.1 shows, 
the round-trip times for a remote procedure call with a user-level network interface 
can actually be lower than for a local RPC under WindowsNT. The remote call 
uses Microsoft’s distributed component object model (DCOM) with the VIA on 
the GNN1000 interface. The local call uses Microsoft’s component object model 
(COM). The figure also shows the round-trip latency of raw messages over the VIA, 
which we used as a baseline in estimating the DCOM protocol overhead.

Low communication latency is key to using clusters in enterprise computing, where 
systems must be highly available and scalable. Cluster management and cluster-
aware server applications rely on multiround protocols to reach agreement on the 
system’s state when there are potential node and process failures. These protocols 
involve multiple participants—all of which must respond in each round. This makes 
the protocols extremely sensitive to any latency. Cluster applications that require 
fault tolerance (for example through a primary/backup scheme or through active 
replication) use extensive intracluster communication to synchronize replicated 
information internally. These cluster applications can be scaled up only if the 
intracluster communication is many times faster than the time in which the systems 
are expected to respond to their clients. Recent experiments with Microsoft’s 
Cluster Server have shown that without low-latency intracluster communication, the 
scalability is limited to eight nodes [101].

On the parallel computing front, many researchers use networks of workstations to 
provide the resources for computationally intensive parallel applications. However, 
these networks are difficult to program, and the communication costs across LANs 
must decrease by more than an order of magnitude to address this problem.
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3.2.2 High bandwidth for small messages

The demand for high bandwidth when sending many small messages (typically 
less than 1 Kbyte each) is increasing for the same reasons industry needs low 
communication latency. Web servers, for example, often receive and send many 
small messages to many clients. By reducing the per-message overhead, user-level 
network interfaces attempt to provide full network bandwidth for the smallest 
messages possible. Reducing the message size at which full bandwidth can be 
achieved may also benefit data-stream protocols like TCP, whose buffer requirements 
are directly proportional to the communication latency. The TCP window size, for 
example, is the product of the network bandwidth and the round-trip time. One way 
to have maximum bandwidth at minimum cost is to achieve low latency in local area 
networks, which will keep buffer consumption within reason.

3.2.3 Flexible communication protocols

The traditionally strict boundary between applications and protocols has made it 
harder to develop more efficient networked applications. Two issues are central: 
integrating the application and protocol buffer management, and optimizing the 
protocol control path. In traditional systems, the lack of support for integrated buffer 
management accounts for a significant part of the processing overhead. This affects 
application-specific reliability protocols —RPCs, in particular —which must keep 
data for retransmission. Without shared buffer management, for example, designers 
cannot use reference count mechanisms to lower the overhead from copying and 
from transferring buffers between the application and the kernel.

There are several ways to build flexible, optimal communication protocols. Designers 
can use experimental or highly optimized versions of traditional protocols when 
integrating the code path of generic and application-specific protocols. Advanced 
protocol design techniques include application-level framing, in which the protocol 
buffering is fully integrated with application-specific processing, and integrated-
layer-processing, in which many protocol layers are collapsed into highly efficient, 
monolithic code paths.

Designers can also use a compiler to compile all protocols together instead of just a 
small subset of application-specific protocols. Finally, new techniques, such as fast-
path generation in the Ensemble communication system [80], use formal verification 
technology to automatically generate optimized protocol stacks. These techniques 
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rely on control over the complete protocol stack, including the lowest layers, and 
require the stack to run in a single address space.

3.3 Milestones in interface design

Message-based user-level network interfaces let applications exchange data by 
sending and receiving explicit messages, similar to traditional multi-computer 
message-passing interfaces, such as MPI, Intel’s NX, and Thinking Machines’ 
CMMD. All the user-level network interfaces we describe let multiple users on a 
host access the network simultaneously. To provide protection, they separate the 
communication setup from data transfer. During setup, the operating system is 
involved and performs protection checks to ensure that applications cannot interfere 
with each other. During data transfer, the interface bypasses the operating system 
and performs simple checks to enforce protection.
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Figure 3.2. System memory with two applications accessing the network using a user-
level network interface. A conventional device driver in the operating system controls 
the interface hardware. The device driver also sets up direct access to the interface for 
applications(setup). The applications can then allocate buffers in their address space 
and have the interface transfer message data into and out of these buffers directly 
using direct memory access(DMA).
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Figure 3.2 shows system memory with two applications accessing the network 
through a user-level network interface. A device driver in the operating system 
controls the interface hardware in a traditional manner and manages the application’s 
access to it.

Applications allocate message buffers in their address space and call on the device 
driver to set up their access to the network interface. Once set up, they can initiate 
transmission and reception and the interface can transfer data to and from the 
application buffers directly using direct memory access.

User-level network interface designs vary in the interface between the application 
and the network— how the application specifies the location of messages to be sent, 
where free buffers for reception get allocated, and how the interface notifies the 
application that a message has arrived. Some network interfaces, such as Active 
Messages or Fast Messages, provide send and receive operations as function calls 
into a user-level library loaded into each process. Others, such as U-Net and VIA, 
expose per-process queues that the application manipulates directly and that the 
interface hardware services.

3.3.1 Parallel computing roots

Message-based user-level network interfaces have their roots in traditional multi-
computer message-passing models. In these models, the sender specifies the 
data’s source memory address and the destination processor node, and the receiver 
explicitly transfers an incoming message to a destination memory region. Because of 
the semantics of these send and receive operations, the user-level network interface 
library must either buffer the messages (messages get transferred via the library’s 
intermediate buffer) or perform an expensive round-trip handshake between the 
sender and receiver on every message. In both cases, the overhead is high. Active 
Messages [35] were created to address this overhead. Designs based on this notion 
use a simple communication primitive to efficiently implement a variety of higher 
level communication operations. The main idea is to place the address of a dedicated 
handler into each message and have the network interface invoke the handler as soon 
as the interface receives that message. Naming the handler in the message promotes 
very fast dispatch; running custom code lets the data in each message be integrated 
into the computation efficiently.

Thus, Active Message implementations did not have to provide message buffering 
and could rely on handlers to continually pull messages out of the network. Active 
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Message implementations also did not need to provide flow control or retransmit 
messages because the networks in the parallel machines already implemented these 
mechanisms.

Although Active Messages performed well on the first generation of commercial 
massively parallel machines, the immediate dispatch on arrival became more and 
more difficult to implement efficiently on processors with deepening pipelines. 
Some implementations experimented with running handlers in interrupts, but the 
increasing interrupt costs caused most of them to rely on implicit polling at the end 
of sends and on explicitly inserted polls. Thus, the overhead problem resurfaced, 
since polling introduces latency before message arrival is detected and incurs 
overhead even when no messages arrive.

Illinois Fast Messages [73] addressed the immediacy problem by replacing the 
handler dispatch with buffering and an explicit poll operation. With buffering, Fast 
Messages can delay running the handlers without backing up the network, and 
applications can reduce the frequency of polling, which in turn reduces overhead. 
The send operation specifies the destination node, handler, and data location. The 
Fast Message transmits the message and buffers it at the receiving end. When the 
recipient calls are extracted, the Fast Message implementation runs the handlers of 
all pending messages.

By moving the buffering back into the message layer, the layer can optimize buffering 
according to the target machine and incorporate the flow control needed to avoid 
deadlocks and provide reliable communication over unreliable networks. Letting 
the message layer buffer small messages proved to be very effective—it was also 
incorporated into the U.C. Berkeley Active Messages II (AM-II) implementations—
as long as messages could be transferred un-buffered to their final destination.

Myrinet U-Net VMMC-2 AM-II FM VIA
latency (µsec) 250 13 11 21 11 60
bandwidth (Mb/sec) 15 95 97 31 78 90

Table 3.1. Round-trip performance of standard sockets and user-level network 
interfaces on Myricom’s Myrinet network.
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3.3.2 U-Net

U-Net was the first design to significantly depart from both Active Messages and 
Fast Messages. Table 3.1 summarizes the performance of U-Net and four subsequent 
designs as implemented on Myricom’s Myrinet network [13]. U-Net provides an 
interface to the network that is closer to the functionality typically found in LAN 
interface hardware. It does not allocate any buffers, perform any implicit message 
buffering, or dispatch any messages. Instead of providing a set of API calls, as in 
previous interfaces, it consists of a set of in-memory queues that convey messages 
to and from the network. In essence, Active Messages and Fast Messages define a 
very thin layer of software that presents a uniform interface to the network hardware. 
U-Net, on the other hand, specifies the hardware’s operation so that the hardware 
presents a standard interface directly to user-level software.

Application

U-Net Endpoint

Send
queue

Receive
queue

Free
queue

DMA
send

DMA
receive

User level network interface

Figure 3.3. U-Net architecture. Each application accesses the network through U-Net 
endpoints. An endpoint contains send, receive, and free queues that point to buffers 
the application has allocated. The interface hardware accesses the queues to determine 
which buffer to transfer messages into, for reception (DMA receive), and out of, for 
transmission (DMA send).
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The U-Net approach offered the hope of a better fit into a cluster environment. Such 
an environment typically uses standard network technology such as Fast Ethernet 
or Asynchronous Transfer Mode, and the network must handle not only parallel 
programs, but also more traditional stream-based communication. Machines within 
the cluster communicate with outside hosts using the same network.

3.3.3 Architecture

In U-Net, end points serve as an application’s handle into the network and contain 
three circular message queues, as Figure 3.3 shows. The queues hold descriptors for 
message buffers that are to be sent (send queue), are free to be received (free queue), 
and have been received (receive queue). To send a message, a process queues a 
descriptor into the send queue. The descriptor contains pointers to the message 
buffers, their lengths, and a destination address. The network interface picks up the 
descriptor, validates the destination address, translates the virtual buffer addresses to 
physical addresses, and transmits the data using direct memory access (DMA).

When the network interface receives a message, it determines the correct destination 
end point from the header, removes the needed descriptors from the associated free 
queue, translates their virtual addresses, transfers the data into the memory using 
DMA, and queues a descriptor into the end point’s receive queue. Applications 
can detect the arrival of messages by polling the receive queue, by blocking until a 
message arrives (as in a Unix select system call), or by receiving an asynchronous 
notification (such as a signal) when the message arrives.

3.3.4 Protection

In U-Net, processes that access the network on a host are protected from one another. 
U-Net maps the queues of each end point only into the address space of the process 
that owns the end point, and all addresses are virtual. U-Net also prevents processes 
from sending messages with arbitrary destination addresses and from receiving 
messages destined to others. For this reason, processes must set up communication 
channels before sending or receiving messages. Each channel is associated with 
an end point and specifies an address template for both outgoing and incoming 
messages. When a process creates a channel, the operating system validates the 
templates to enforce system-specific policies on outgoing messages and to ensure 
that all incoming messages can be assigned unambiguously to a receiving end 
point.
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The exact form of the address template depends on the network substrate. In versions 
for ATM, the template simply specifies a virtual channel identifier; in versions for 
Ethernet, a template specifies a more elaborate packet filter.

U-Net does not provide any reliability guarantees beyond that of the underlying 
network. Thus, in general, messages can be lost or can arrive more than once.

3.3.5 AM-II and VMMC

Two models provide communication primitives inspired by shared memory: the 
AM-II, a version of Active Messages developed at the University of California at 
Berkeley [17], and the Virtual Memory Mapped Communication model, developed 
at Princeton University as part of the Shrimp cluster project [12]. 

The primitives eliminate the copy that both fast messages and U-Net typically 
require at the receiving end. Both Fast Message implementations and U-Net 
receive messages into a buffer and make the buffer available to the application. The 
application must then copy the data to a final destination if it must persist after the 
buffer is returned to the free queue. 

AM-II provides put and get primitives that let the initiator specify the addresses of 
the data at the remote end: put transfers a local memory block to a remote address; 
get fetches a remote block. VMMC provides a primitive essentially identical to put. 
In all these primitives, no receiver intervention is necessary to move the data to the 
final location as long as the sender and receiver have previously coordinated the 
remote memory addresses. AM-II associates an Active Message handler with each 
put and get VMMC provides a separate notification operation.

VMMC requires that communicating processes pin down all memory used for 
communication so that it cannot be paged. VMMC-2 [31] lifts this restriction by 
exposing memory management as a user-managed translation look-aside buffer. 
Before using a memory region for sending or receiving data the application must 
register the memory with VMMC-2, which enters translations into the UTLB. 
VMMC-2 also provides a default buffer into which senders can transmit data without 
first asking the receiver for a buffer address.

3.3.6 Virtual Interface Architecture

The VIA combines the basic operation of U-Net, adds the remote memory transfers 
of VMMC, and uses VMMC-2’s UTLB. Processes open virtual interfaces (VI) that 
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represent handles onto the network, much like U-Net’s end points. As Figure 3.4 
shows, each VI has two associated queues—send and receive—that are implemented 
as linked lists of message descriptors. Each descriptor points to one or multiple buffer 
descriptors. To send a message an application adds a new message descriptor to the 
end of the send queue. After transmitting the message, the VIA sets a completion bit 
in the descriptor, and the application eventually takes the descriptor out of the queue 
when it reaches the queue’s head. For reception, the application adds descriptors for 
free buffers to the end of the receive queue, which VIA fills as messages arrive. 

Each VI represents a connection to a single other remote VI. This differs from the U-
Net end point, which can aggregate many channels. In the VIA, a process can create 
one or more completion queues and associate each with multiple VIs. The network 
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Figure 3.4. Queuing in the Virtual Interface Architecture. Each application can open 
multiple virtual interfaces (VIs), each with its own send and receive queues. Each VI 
is associated with a completion queue to which the VIA adds a descriptor for every 
completed transmission or reception. By sharing one completion queue across many 
VIs, an application must check only a single queue to pick up all events related to its 
network connections.
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interface fills entries in the completion queue to point to entries in the send or receive 
queue that have been fully processed. 

The VIA also provides direct transfers between local and remote memory. These 
remote DMA writes and reads are similar to AM-II’s puts and gets and VMMC’s 
transfer primitives.

To provide some protection, the VIA lets a process specify which regions of its 
memory are available for RDMA operations. Memory management in the VIA is 
very similar to the VMMC-2. A UTLB resides in the network interface. All memory 
used for communication must be registered with the VIA before it is used, including 
all queues, descriptors, and buffers. Registering a region returns a handle, and 
all addresses must be specified using the appropriate region handle and a virtual 
address.

3.4 Design trade-offs

As the previous description shows, the user-level network interface designs that have 
shaped the VIA differ from each other in many respects. These differences reflect 
attempts to optimize against network hardware and programming environments. 
Trade-offs are most apparent in the choice of queue structure, memory management 
strategy, and message multiplexing approach.

3.4.1 Queue structure

The queues in U-Net and the VIA expose a structure very similar to most hardware 
network devices. Exposing the queues instead of providing a procedural interface (as 
in Fast Messages and Active Messages) means that higher software layers can manage 
the required descriptors and buffers directly. This, in turn, means that at no point is 
an application’s executing thread required to yield control to complete an operation. 
Exposing the queues also very naturally splits an operation’s initiation from its 
completion. Pushing a descriptor into the send queue initiates the transmission; the 
network interface signals completion using the descriptor. The actual transmission or 
reception can thus occur asynchronously to the ongoing computation.

The queues are designed to accept scatter-gather descriptors, which allow 
applications to construct messages from a collection of noncontiguous buffers. For 
example, in a sliding window protocol (in which the transmission window moves 
over a large data buffer), the protocol implementation places its information in 
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a separate buffer. The network interface then concatenates the data and protocol 
information.

3.4.2 Memory management

Integrating buffer management between the application and the network interface 
is important in eliminating data copies and reducing allocations and de-allocations. 
This integration gives rise to additional complexity, however, because the application 
uses virtual addresses for its message buffers, whereas the network interface DMA 
engine requires physical memory addresses for its transfers. Thus, a trusted entity 
must translate a virtual address to a physical one each time a buffer is handed to the 
network interface. In addition, the operating system must track the memory pages 
available to the interface for DMA transfers so that the operating system can keep 
mappings constant.

The VIA’s memory management is inspired by VMMC-2’s UTLB, which makes the 
application responsible for managing virtual-to-physical address translations. The 
application must request a mapping for a memory region from the operating system 
before using any buffers in that region. The advantage is that the operating system 
can install all mappings in the network interface, which can then translate all virtual 
addresses using a simple lookup. The primary drawback is that the application must 
take care to manage its memory regions judiciously. In simple cases, a fixed set of 
buffers is allocated, so it is easy to keep the memory region handles in the buffer 
descriptors. However, if the application transmits data out of internal data structures 
directly, it may have to request a new translation for every transmission, which is 
time-consuming. 

In U-Net, in contrast, applications can place buffers anywhere in their virtual address 
space and the network interface does the virtual-to-physical address translation 
[105]. For this reason, the interface incorporates a TLB that maps <process ID, 
virtual address> pairs to physical page frames and read/write access rights.

The disadvantage of U-Net’s approach is that the application may present an address 
that has no mapping in the interface’s TLB. If the address is for a buffer to be 
sent, the interface must request a translation from the host kernel, which requires 
a somewhat complex and costly handshake (approximately 20 µs of overhead in 
Windows NT, for example).
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To avoid TLB misses when a message arrives, the interface must pre-translate 
entries in each free buffer queue. If a message arrives and no pre-translated buffer is 
available, the interface drops the message. Requesting translation on-the-fly would 
be very difficult because reception occurs within an interrupt handler, which has only 
limited access to kernel data structures.

An important benefit of U-Net’s memory-allocation scheme is that the host kernel 
can limit the amount of memory pinned down for the network by limiting the number 
of valid entries in the interface’s TLB. This is somewhat analogous to pre-allocating 
and pinning a fixed-size buffer pool in kernel-based network stacks. The difference 
is that, in U-Net, the set of pages in the buffer pool can vary over time.

Shifting control over memory management from the operating system to the 
application, as the VIA does, has a potentially more serious drawback. If an 
application requests a mapping, the operating system must grant it or risk an 
application failure. Once it grants a mapping, the operating system cannot revoke it to 
shift resources, for example, to a higher priority process. If servers and workstations 
host multiple applications with simultaneous open network connections, and each 
application uses, say 200 to 300 Kbytes of buffer space, a significant fraction of the 
physical memory must be dedicated to network activity. 

In U-Net, in contrast, only entries in the interface’s TLB must be pinned in memory. 
The interface can also remove mappings of applications not actively using their 
network buffers, thereby making the memory eligible for paging and available to 
applications in general.

3.4.3 Multiplexing and de-multiplexing

In user-level network interfaces, the network interface must de-multiplex arriving 
messages onto the correct receive queue. Similarly, when sending a message, 
the interface must enforce protection (by validating addressing information, for 
example). The complexity of both operations depends heavily on the type of network 
used.

The VIA’s approach to multiplexing is strictly connection oriented. Two virtual 
interfaces must set up a connection before any data can be transmitted. The 
specification does not prescribe how the connection must be represented at the 
network level, so designers could run the VIA over an Ethernet or even over the 
Internet Protocol by defining some handshake between the end points and by 
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using a special field to differentiate connections. Because of the VIA’s connection 
orientation, applications that use VIA networks cannot interoperate with applications 
that use non-VIA networks. For example, a server cluster using the VIA internally 
must use conventional network interfaces to communicate with clients outside the 
cluster.

U-Net, in contrast, makes the multiplexing and de-multiplexing processes much 
more flexible. In the Fast Ethernet version, the network interface implements a 
full packet filter, which is not connection oriented. When an application opens a 
communication channel, it specifies patterns for parsing the headers of incoming 
and outgoing packets. The kernel agent validates the patterns to ensure that there 
will be no conflict with other applications and enters them into the multiplexing 
data structures. The generic nature of U-Net’s packet processing means that 
communication with a generic protocol stack is possible, as is the sending and 
receiving of multicast messages.

The filtering must be implemented as a dynamic packet parser to support a variety of 
network protocols and accommodate the nature of identifying fields, which are not at 
fixed locations in messages. The packet filter must be more sophisticated than those 
used previously [4] because there is no backup processing path through the operating 
system kernel for handling unknown packets. Such a fail-safe path is not an option 
because the architecture would then force the operating system to jointly manage the 
receive queues with the interface. The Fast Ethernet version of U-Net sidesteps the 
issue by using a standard network interface and implementing its functionality in the 
interrupt handler, where the complexity of the packet filter is tolerable.

3.4.4 Remote memory access

Handling RDMA reads and writes adds considerable complexity to VIA 
implementations. When receiving a write, the interface must not only determine 
the correct destination VI but also extract the destination memory address from the 
message and translate it. The main issue here is how to handle transmission errors 
correctly: The interface must verify the packet checksum before any data can be 
stored into memory to ensure that no error affected the destination address. This 
verification is not trivial because most networks place the checksum at the end of the 
packet, and the interface must buffer the entire packet before it can start the DMA 
transfer to main memory. Alternatively, a separate checksum could be included in 
the header itself.
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RDMA reads also present a problem. The network interface may receive read 
requests at a higher rate than it can service, and it will have to queue the requests 
for later processing. If the queue fills up, requests must eventually be dropped. To 
ensure a safe implementation of RDMA reads, the VIA restricts read requests to 
implementations that provide reliable delivery.

3.5 Conclusions

VIA designers succeeded in picking most of the cherries from extensive research in 
user-level interfaces and in providing a coherent specification. Users familiar with 
this research will have little difficulty in adapting to the VIA and will enjoy the 
benefit of multiple off-the-shelf commercial hardware implementations. Because the 
VIA’s primary target is server area networks, however, its designers did not provide 
one important cherry from U-Net: The VIA does not provide interoperability with 
hosts that use conventional network interfaces.

To fully exploit the promise of the VIA and of fast networks in general, significant 
additional research is needed in how to design low-latency protocols, marshal 
objects with low overhead, create efficient protocol timers, schedule communication 
judiciously, and manage network memory. Memory management presents 
particularly difficult trade-offs. The UTLBs in VMMC-2 and the VIA are easy to 
implement but take away resources from the general paging pool. The TLB proposed 
in U-Net implements a close interaction with the operating system and provides fair 
memory management but is more complex and incurs extra costs in the critical path 
whenever a miss occurs. Thus, although the VIA user-level network interfaces are 
now available to everyone, many design issues must yet be solved before application 
writers can enjoy painless benefits. Hopefully, research will break through some of 
these issues as users begin to document their experiences in using VIA.



Chapter 4

Tree-Saturation Control in the AC3 
Velocity Cluster Interconnect

In a multi-user production cluster there is no control over the intra-cluster 
communication patterns, which can cause unanticipated hot spots to occur in the 
cluster interconnect. In a multistage interconnect a common side effect of such a 
hot-spot is the roll-over of the saturation to other areas in the interconnect that 
were otherwise not in the direct path of the primary congested element. This chapter 
investigates the effects of tree saturation in the interconnect of the AC3 Velocity 
cluster, which is a multistage interconnect constructed out of 40 GigaNet switches. 
The main congestion control mechanism employed at the GigaNet switches is a 
direct feedback to the traffic source, allowing for fast control over the source of the 
congestion, avoiding the spread from the congestion area. The experiments reported 
are designed to examine the effects of the congestion control in detail.

4.1 Introduction.

An important issue in traffic management of multi-stage interconnects is the handling 
of tree saturation (caused by hot spot traffic [75]), and the impact that tree saturation 
can have on unrelated flows. In a production multi-user parallel machine such as 
the AC3 Velocity cluster, this is particularly important as traffic patterns are not 
predictable, and hot-spots cannot be avoided through application level structuring.

There are two aspects of the handling of the saturation effects that are of primary 
importance; first there is the fairness among the flows that travel through a region of 
the switch fabric that contains a ‘hot-spot’; flows that cause the congestion should be 
reduced equally and fairly to relieve the congested link. 
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Secondly there are the effects on flows that are not traveling over congested links, 
but that do cross switches that are part of the tree that is saturated. Foremost of those 
effects is second order head-of-line blocking, which can occur even if the individual 
switches are constructed to handle head-of-line blocking gracefully.

This chapter describes the GigaNet multi-stage interconnect of the AC3 Velocity 
cluster, which is constructed of 40 switching elements organized into a Fat-Tree. 
A number of techniques are employed in the GigaNet interconnect that control the 
saturation effects, and that allow the interconnect to gracefully adapt to occurrence 
of hot-spots. The feedback and flow-control based techniques provide fairness in the 
scheduling of the competing streams and predictable behavior of unrelated streams 
that could potentially be impacted by second order effects.

This chapter is organized as follows: in sections 4.2 and 4.3 the cluster and the 
interconnect are described in detail. Section 4.4 examines the problems that are 
related to saturation in multistage interconnects, and section 4.5 describes the setup 
of the experiments to investigate the saturation effects. In section 4.6 the results 
of the experiments are presented with conclusions and related work following in 
section 4.7 and 4.8.

4.2 The AC3 Velocity Cluster

AC3 Velocity is composed of 64 Dell PowerEdge servers, each of which has four 
Intel Pentium III Xeon SMP processors running at 500 Mhz with 2 MB of Level 2 
cache per processor. Each Power Edge contains 4 gigabytes RAM and 54 gigabytes 
of disk space. Microsoft Windows NT 4.0 Server, Enterprise Edition, is the operating 
system. Each rack holds eight servers. The switch fabric is comprised of 40 Giganet 
cLAN 8x8 switch elements.

The experimental super computer and cluster facility is based at the Cornell Theory 
Center: a high performance computing and interdisciplinary research center located 
at Cornell University. AC3 is the center’s research and IT service consortium for 
business, higher education, and government agencies interested in the effective 
planning, implementation, and performance of commodity-based systems, software, 
and tools.
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4.3 The GigaNet Interconnect

The interconnect of the AC3 Velocity cluster is a multistage interconnection network 
constructed out of GigaNet cluster area network (cLan) switching elements and host 
interfaces.

The host interface provides a hardware implementation of the Virtual Interface 
(VI) Architecture specification [32], delivering the interconnect’s raw latency and 
bandwidth directly into application processes, while maintaining full security [38]. 

Figure 4.1. Layout of the switches in the AC3 cluster interconnect.
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A cLan switch is designed using a single chip architecture based on GigaNet’s 
proprietary chip for ATM switching. The first generation GigaNet chip is present in 
the switches that make up the AC3 Velocity interconnect.

Cluster switching fabric switches at 8x1Gb/sec using a non-blocking, shared memory 
architecture with 16 Gb/sec cross-sectional bandwidth. The switch uses the memory 
to implement virtual buffer queue architecture, where cells are queued on a per VCI 
per port basis. The host interface also implements a virtual buffer queue architecture, 
where cells are queued on a per VCI basis. cLAN switches are shipped in eight port 
1U and 32 port 2U configurations. These building blocks can be interconnected in a 
modular fashion to create various topologies of varying sizes. In the AC3 Velocity 
Cluster 40 eight port switches are deployed in a fat tree topology as shown in Figure 
4.1. Each stage holds 8 switches, which results in that the maximum number of hops 
between any two nodes in the system is 5. 

The use of ATM for transport and routing of messages is transparent to the end host. 
VI endpoints correspond directly to a VCI, using AAL5 encapsulation for message 
construction, similar to [37]. Switching is performed on a per VCI basis; and no 
grouping techniques are used at the switch, as flow control policies are implemented 
on a per VCI basis.

Congestion is evaluated on a per VCI basis, taking into account VCI, link, and 
general buffer utilization, as well as general system configuration. If flow control 
is triggered, the switch will start sending Source Quench indications to VCI source, 
which will respond immediately by shutting down the source until an unquench 
indication arrives. The flow control mechanism is implemented in hardware and 
quenches can be generated at very high frequency. In practice there are always a 
large numbers of Quench/Unquench indications flowing through the network. 

The very high frequency of the flow control indications allows the sources to 
be bandwidth controlled in a relatively flat manner. It enables the switches that 
experience potential congestion to schedule the competing streams in a fair 
manner according to the overall traffic pattern. A second effect of this flow control 
architecture is that the data sources can be constructed in a simple manner, executing 
as greedy as possible, relying on the switch flow control indications to perform the 
traffic shaping.
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The clan interconnect is loss-less. A special modification to the clan product allowed 
flow control to be disabled and replaced with link-level flow control for the purpose 
of the experiments in this chapter.

4.4 The Problem

Interconnect behavior under a variety of realistic workloads has been studied for a 
long time and this resulted in improved switch and interconnect designs. One of the 
problems that has been the hardest to solve is that of congestion management in the 
face of unpredictable traffic patterns.

Feedback techniques [91] such as multi-lane backpressure [52] have been 
experimented with and the results are promising. The flow-control techniques in a 
GigaNet based interconnect are novel in that (1) the feedback is directly to the VCI 
source and not to the predecessor switch in the path, (2) it does not employ any credit 
based scheme, and (3) that the flow-control is used to perform traffic shaping in the 
overall interconnect..

The AC3 velocity cluster provides an excellent opportunity to examine the 
effectiveness of these techniques given the number of switches in the fabric. There 
are three particular problem areas that are of interest, when examining congestion 
control:

1.  Tree-saturation. When a switch becomes congested will there be saturation 
roll-over and spread the congestion to other switches in the region?

2.  High-order head-of-line blocking. Even if individual switches are constructed 
such that they exhibit no head-of-line blocking when ports become congested, 
placing them in a multi-stage interconnect may trigger higher-order HOL 
occurrences because of link and buffer dependencies between switches [51].

3.  Fairness among congested streams. If a number of streams flow through 
single congestion point, will the traffic shaping be such that all streams are 
treated fairly.

To examine these three problem areas a number of experiments have been designed 
that are described in detail in section 4.6. All experiments were performed with the 
flow control enabled as well as disabled. 
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Figure 4.4. Average throughput per message size

Figure 4.3. Average latency per message size

Figure 4.2. latency histogram of 16 and 1024 byte messages per number of hops
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4.5 Baseline Performance

In this section we briefly touch on the baseline performance of the interconnect. 
Standard latency and throughput tests were conducted between sets of nodes in the 
cluster. Bottom line latency is 10 usec, maximum throughput close to 114 Mbytes/
sec and the maximum message rate is over 250,000 messages/sec.
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Figure 4.5. Histogram of the throughput in KBytes/sec of the individual streams in 4 
different front-to-back tests.

Figure 4.6. Total fabric throughput in KBytes/sec per message size in the different 
front-to-back tests
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In figure 4.2 a histogram of latency is shown of 16 and 1024 bytes messages in 
relation to the number of hops between source and destination. Each additional 
hop adds 1 usec to the latency. Figure 4.3 shows the average latency with respect 
to message size. Figure 4.4 shows the bandwidth in relation to message size. For 
bandwidth measurements of single streams, the number of switches in the stream 
did not matter. 

The maximum message throughput is 266,000 messages/sec, which is limited by the 
host PCI bus, and which is achieved with messages with 4 bytes payload.

4.6 Tree Saturation Experiments

To investigate the effects of tree saturation we conducted four dedicated tests:

4.6.1 Front-to-back

A test where 32 connections are made between random nodes that all cross 
the maximum number of stages of the interconnect, triggering hot-spots in the 
communication. For practical execution of this experiment, all sources are chosen 
from the nodes 01-32 (the front) while destinations come from nodes 33-64 (the 
back). Four different connection layouts were tested with a variety of message sizes. 
Each test was run for 30 seconds and the results were analyzed for variations in inter-
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arrival rates, in bandwidth over time, in comparative bandwidth among the streams 
and overall throughput of the interconnect in relation to message size

Given the randomness in the connection setup, some hotspots occur within traffic, 
while there are also some connections that share no links at all. Figure 4.5 shows a 
histogram of the individual stream throughput measured in the four tests.

Figure 4.6 shows the overall throughput through the interconnect in relation to the 
message size.

4.6.2 Slow Host Congestion Fabric

This test is used to examine if congestion will spread through the interconnect 
when a host network interface controller (NIC) becomes congested. In the test up to 
seven streams will come into node01, each entering a different port on switch01 and 
exiting on the port connect to node01. The congested NIC will cause switches 01, 
17 and 34 to congest, where switch 34 is a 3rd layer switch. Six large streams will 
also flow through switch 34, each share an input port with the streams directed to 
node01. In this test the congestion into node01 is varied and its impact on the overall 
throughput of switch 34 is measured.

Without any traffic directed at node01 each of the stream achieves maximum 
throughput (112 Mbytes/sec). The streams used to congest the NIC consist of 
single cell messages (4 bytes payload) and the streams are added stepwise. The first 
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Figure 4.8. Throughput on each output port in the switch port contention test.
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stream reaches the maximum message throughput of 266,000 messages per second, 
resulting in up to 1.05 Mbytes/sec. This throttles down the background stream that 
shares the input port with the congestion stream to 107 Mbytes/sec while the other 
streams remain unaffected. 

Adding more streams towards the NIC causes the competing streams to drop towards 
equal share of the maximum message throughput at the NIC, e.g. with 3 streams each 
reaches a throughput of 88,000 per second (.35 Mbytes/sec). Each of the background 
streams that now share an input port with a congested stream, throttle back slightly, 
but not less then 110 Mbytes/sec.

In the test also one congested stream did not share an input port with a background 
stream, and this stream did not receive any preferential treatment of the streams that 
did share input ports.

Figure 4.9. Layout of the multi-stage-congestion test. The small dashed strreams are 
the background traffic, the solid line is the  congestion traffic and large dashed line is 
the side-effect probe
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4.6.3 Switch Port Contention

This test exposes whether contention for a single port on a 3rd level switch will 
affect other traffic flowing through the same switch. In this test there are seven 
streams entering switch 40 on ports 2-8, while exiting at port 1. Seven other streams 
are entering the switch at ports 2-8, but exiting the switch through the same set of 
ports. The contention of port 1 is varied and the effect on the overall throughput is 
measured.

Starting without the streams that will congest port 1, the seven background streams 
all achieve continuously the maximum throughput off 112 Mbytes/sec each. When 
the congestion streams are introduced their rates are varied from 5%-100% of 
maximum throughput. At 20% each of the competing streams has reached is 
maximum throughput of 15 Mbytes/sec, resulting in an output throughput of 91 
Mbytes/sec. The background streams have been throttled back to 98 Mbytes/sec (see 
figure 4.8).

Increasing the message rates, on the congested streams has no effect, their individual 
throughput remains at 15 Mbytes/sec. Each of the seven input links continues to run 
at maximum throughput with a background stream and a congestion stream coming 
in on each link. The overall throughput in the switch remains at 780 Mbytes/sec 
independent of how the input streams are varied. The balance among the streams 
is close to ideal: the seven background stream throttle back to identical throughput, 
while the congestion streams each use up 1/7th of the output on port 1.

Node 18 - I Node 18 - II Node 18 total Node 10
Test 1 115 9 115 0
Test 2 115 0 115 114
Test 3 - 5% 52 31 84 0
Test 3 - 20% 49 42 91 0
Test 3 - 100% 61 53 114 0
Test 4 - 5% 61 53 114 30
Test 4 - 20% 62 54 116 64
Test 5 - 100% 60 54 114 114

Table 4.1. The throughput in MBytes/sec measured at the destination nodes in the 
multi-stage contention test. Node 18 is divided into teh set coming from switch 5 &12 
(I), and from switch 36 (II).
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4.6.4 Multi-stage Congestion

In this test the effects of congestion in a switch on other switches in the fabric is 
measured, and the fairness among flows through the congested points is examined. 
For this test there is a set of six sources that each send to both nodes10 and 18, 
causing contention to occur in switch 36 at port 2 and 3. 

A second set of sources send to node 18, congesting switch 21 and 5. The traffic into 
nodes 10 and 18 is varied and the effect on the overall throughput is measured as 
well at the balance between the individual streams (see figure 4.9).

The first test is to only send data from the second set of sources, which enter through 
switch 21 and 5. Jointly they reach a maximum throughput of the 115Mbytes/sec, 
which is limited by the single link going into node 18. Each stream receives an equal 
share of the bandwidth (17 Mbytes/sec).

Secondly the 6 streams flowing through switch 36 to node 10 are added, and the 
results show that all streams run at maximum throughput.

In the third part of this test the streams to node 10 are stopped and the additional 
streams for node 18 coming through switch 36 are introduced, in stepwise manner. 
The total throughput arriving at node 18 drops to 91 Mbytes/sec when the new 
streams come in at low rates, while higher rates push the throughput up to 114 
Mbytes/sec. The throughput is equally divided over the 13 incoming streams.
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The fourth part of this test investigates the impact of this newly congested stream 
on the traffic that flow through switch 36 to node 10. The congested streams and 
the streams targeted towards node 10 originate at the same source nodes. The traffic 
pattern for the streams to node 10 does not change when they have to share the same 
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Figure 4.11. The overall fabric throughput in KBytes/sec for the first front-to-back 
with stream based flow-control enabled (solid line) and disabled (dashed line).

Figure 4.12.Throughput seen at each of the output ports of the switch in the switch 
port contention test with stream based flow-control disabled.
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links with the congested stream, each runs at 19 Mbytes/sec, delivering 114 Mbytes/
sec at node 10.

4.7 Experiments without Flow Control

To examine the effectiveness of the per stream flow control mechanism in GigaNet 
the tests have been repeated with the source-quench flow control switched off. This 
does not remove flow control completely as GigaNet also employs a link-level flow 
control. The results in almost all the tests are identical; as soon as the host interface 
or a switch port becomes congested this congestion spreads to the other switches in 
fabric, reducing the overall utilized bandwidth by 50% or more, compared to the 
bandwidth seen in the case where flow-control was enabled. There was no imbalance 
noted in the reduction of the throughput over the different streams, suggesting that 
the scheduling remained fair even under severe congestion. This section presents 
the results for two tests, front-to-back and switch-port contention, which are 
representative for the observations of all tests.

Front-to-back. In figure 4.10 the results of the tests with the first front-to-back 
configuration are presented for the individual tests, with and without per stream 
flow control. One observation from the first test was that stream originating at node 
22, did not share any links with other streams and as such was able to traverse the 
whole interconnect without any loss in bandwidth (112 Mbytes/sec). Because this 
stream does not share any links with other streams it is never subject to congestion 
and link-level flow control is almost as effective as the per stream flow control. All 
other flows however are experiencing a reduction in throughput as flow-control is 
exercised on a per link instead of a per flow basis. The non-discriminatory aspect 
of link-level flow control effect streams at places where they may not be the cause 
of congestion. The reduction in throughput for this particular test with a 2048 bytes 
message size is on the average 27%. In figure 4.11 the overall throughput of the 
interconnection fabric is presented in relation to message size. As soon as congestion 
occurs at switches, which is already noticeable at 512 bytes, the overall throughput 
is reduced. With all streams running at maximum message size the overall fabric 
throughput is reduced to 58%.

Switch port contention. In this test 7 streams enter and exit the switch through port 
2-8. Without any competing traffic each of the port outputs the maximum bandwidth. 
When to each of the input ports an additional stream is added, targeted for port 1, the 
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effect of link level flow control is visible as soon as these streams start. At 15% send 
rate the flow control kicks in because of potential congestion at switch port 1.

Because the flow-control operates at link-level instead of individual stream level, it 
causes all streams coming in over port 2-8 to be equally reduced. The congestion at 
port 1 now determines the overall throughput of the switch: each stream destined for 
port 1 runs at 1/7th of the throughput of port 1 (105 Mb/sec), but the other streams 
are now reduced to run at equal throughput, given the interleaving of cells of both 
streams at each link, combined with the link-level flow control. This reduces the 
throughput per outgoing link to 15% of the result with stream based flow control 
enabled.

4.8 Summary

This chapter detailed the multi-stage interconnect of the AC3 Velocity cluster. A set 
of experiments was performed to investigate the effectiveness of the flow control 
techniques employed by the GigaNet switches and host adapters. The results show 
that the traffic shaping in face of congestion performs very well: hotspot regions do 
not expand beyond the original switch, no higher order head-of-line blocking could 
be detected and the resulting balancing between streams competing for bandwidth 
is fair.

These are very important properties in a production switch were there is no advance 
control over the communication pattern.

The experiments at the AC3 Velocity Cluster continue, with a focus on the impact 
of non-uniform traffic patterns, impact of the flow control on message latency, the 
impact of thousands of competing streams and the impact of burstiness in the traffic 
sources.
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PART – II

Scalable Management Tools for Enterprise 
Cluster Computing

Introduction

Performance and availability at cost linear to the system size. This premise was the 
driving force behind the acceptance of cluster computing as a building block for 
enterprise computing. There was no real technical evidence to support the claim, but 
the only alternative to scale-out to improve performance was to scale-up using SMP 
technology. Although SMPs were very effective in improving performance, using 
SMPs to improve availability, while technically feasible, could only be achieved at 
high cost.

The increased reliance of enterprises on powerful computing operations  supporting 
mission critical tasks created a growing commercial demand for improving the 
performance and availability of the computing infrastructure. The sharp increase 
in processor and network performance, combined with a dramatic drop in hardware 
prices, made data-centers of medium and large enterprises ready to grow to thousands 
of computers. But even though the hardware appeared to be ready to support scalable 
rack&stack clusters, there were still significant software hurdles to take  to enable 
truly scalable cluster computing. 

From a software perspective the scalability of the cluster management software 
is crucial in enabling clusters to scale out. The functionality necessary to support 
the management of enterprise clusters is often more complex than the applications 
that will be run on the clusters, which puts tremendous pressure on the scalability 
of the components that need to provide the core of the distributed operations. 
These components also need to be modularized in such a way that they become 
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building blocks that can be used to create services that are as scalable as the core 
components.

Historically cluster management systems were developed by cluster hardware 
vendors, and the scalability of the management system was limited to the particular 
platforms for which they were developed. VaxClusters, Sysplex, NonStop [58,70,53], 
all used software components that were scalable to tens of nodes at best, which was 
sufficient to support the cluster products offered. The only scalable solution available 
was the cluster management system for the IBM SP2 series, which was capable of 
managing up to 250 nodes using a voting-based distributed systems technology [3].

Classifying cluster applications

Use of the traditional management technology for controlling the large-scale enterprise 
cluster computing systems revealed the following problem: Each of the commercial 
cluster management systems was developed with a particular application domain in 
mind. The use of clusters in enterprise data-centers brought in a wide variety of new 
applications and, none of the original management technologies provided an overall 
solution or a general framework with which a coordinated approach could be taken 
for managing such a diverse set of services.

One way to classify the new applications is to examine the structuring techniques 
used to achieve scalability. Two main approaches can be distinguished through 
which scalability on clusters is achieved: through cloning and through partitioning.

Cloning is used for applications that can be replicated onto many nodes and where 
each node has access to the identical software and data set. This allows client 
requests to be routed to any of the clones, with load-balancing as the main criteria 
for assigning client-server relations. Web server-farms are  an example of cloned 
servers, and the premise is that under load additional nodes can be added to handle 
the increased demand. Similarly, many  enterprise parallel computing operations 
can be improved by adding nodes to a pool of “workers”. In general the cloned 
approach not only provides improved performance but also improved availability of 
the application.

Partitioning is used for those applications that have a significant state to maintain 
and where cloning the state would be impractical because of the overhead involved 
with keeping the replicated state consistent. Instead the application data is partitioned 
over the nodes in the cluster based on application specific criteria. For a database 
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the partitions may be based on layout of the tables and the relations between tables 
combined with the expected request patterns. Middle-tier application-server systems 
divide tasks based on customers grouping, or a collaboration server will group 
participants together based on real-time assessment. In general the partitioned 
application does not provide improved availability without the use of additional 
technology.

A second way to classify cluster applications is to examine their use of shared 
storage. Both cloned and partitioned servers can be served from local storage 
or from a shared storage infrastructure, usually in the form of network attached 
storage devices. Cloning the data to local storage requires a strategy for ensuring the 
consistency of the replicas with the master copy.  Using shared storage,  combined 
with cloning the application can be seen as a hybrid approach that is used in cases 
where the updates to the state are too frequent to warrant a fully cloned approach, but 
where a large number of cloned application nodes is needed to support scalability. 
An example is a large E-mail farm, where any of the application servers can handle 
client requests accessing the data from central storage. The E-mail server cluster 
is a particular example as the partitioned approach can also be used, either with or 
without shared storage. In the partitioned case the mailboxes are distributed over the 
nodes in the clusters, based on local access to the data.

Keep in mind that without shared storage a node crash in the partitioned case results 
in the loss of availability of part of the data, unless the system makes use of other 
application level replication techniques such as hot-standbys. 

Evaluation of an enterprise-class cluster management system.

To better understand the problem space of building management systems for 
these kinds of application clusters, an analysis was performed of one of the more 
modern cluster management systems. The Microsoft Cluster Service (MSCS) was 
first released in 1997 and specifically targeted the application fail-over market. 
In a fail-over clusters the applications from a failed node can be restarted at the 
remaining nodes in the cluster. Soon after its first release I lead a team of academics 
and Microsoft research and product engineers to perform an in-depth analysis of 
the system which resulted in a publication at the IEEE Fault-Tolerant Computing 
Symposium (FTCS) in 1998 [100].

Although MSCS was successful in the market it was targeted at, the main question 
remained whether it could scale beyond the initial 2-4 nodes on which it was shipping. 
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There were no experiences with running MSCS at larger installations so I adapted 
the software to run on a 32 nodes cluster at Cornell. The investigation focussed on 
the scalability of the core distributed components: the cluster membership service 
and the global update protocol. The results from these experiments were published 
at the second Usenix Windows NT Symposium in 1998, and are presented in Chapter 
7.

Lessons learned

One of the conclusions of the scalability experiments with MSCS was that the 
transparent use of distributed systems technology, without taking into account the 
specific properties of the technology, yielded a system that did not scale. Under 
optimistic conditions the system could function with 10 nodes or more, but any 
realistic load on the nodes would completely degradate the ability of the system to 
perform updates or make membership changes. This degradation was not caused 
by the particular distributed algorithms used to maintain membership and perform 
updates but by the choice of standard RPC to implement the algorithms. Originally 
the algorithms were developed to be executed over a high-performance broadcast 
bus and in the MSCS case they were executed using repeated RPC calls, which very 
quickly became a scalability bottleneck in the system.

These conclusions resonated with our earlier experiences of building advanced 
distributed systems software. Our systems were used in a variety of complex 
production environments, such as the stock-exchanges, air-traffic control and large 
military systems. A decade of building software systems that transitioned into the 
real-world thought us a number of valuable lessons. Many of our assumptions 
about the real-world and how software was being used had been proven to be too 
idealistic. The software was used in every possible situation, except for the ones 
that it was originally intended for. These lessons have been very valuable and have 
become a driving factor in our thinking about how to structure scalable distributed 
systems. These lessons have been collected in a paper titled “Six Misconceptions 
about Reliable Distributed Computing” which first was published at the 1998 ACM 
SIGOPS European Workshop and later at the 1999 International Symposium on High 
Performance Distributed Computing. The lessons are summarized in chapter 5.
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Applying the lessons

These conclusions drove much of my research agenda for 1997 and 1998 and I 
architectured a new system, dubbed Quintet, in which distribution in all its aspects 
was made explicit. Quintet provided high-level tools to help the application server 
programmer with operations such as replication, but the developer decided, what, 
where and when to replicate. Some of the management and support tools, such as a 
shared data structure toolkit, relied on generic replication, but the developers that 
use them are aware of the implications of importing this functionality. An overview 
of Quintet can be found in chapter 6.

A framework for scalable cluster management

Using the experiences with traditional cluster management systems and the lessons 
learned from developing scalable distributed components, I developed the Galaxy 
Cluster Management Framework. Galaxy is a scalable solution for the management 
of clusters in large data-centers. Its multi-tier management infrastructure provides 
the ability to manage compute farms at multiple locations, with within a farm 
islands of specialized clusters that are managed according to a cluster profile. A 
profile describes the distributed systems services needed to support the operation of 
the particular application cluster. The resulting architecture was first published in a 
paper at the 2000 IEEE International Conference on Cluster Computing. Galaxy is 
described in detail in chapter 8.

Continuing the quest for scalable cluster management

The world of enterprise cluster computing remains very much in flux. The experiences 
with the demise of many e-commerce operations combined with sky-high energy 
prizes have switched the focus of cluster management from optimal performance to 
optimal energy usage. New computing devices based on blade architectures promise 
lower power consumption if managed correctly.

Using the small blade architectures it is likely that the number of computing 
devices in data centers will continue to increase, which will increase the pressure 
on the scalability of the management system. One area that has only receive limited 
attention over the past years is that of fully automated data-center management. 
The drive will be to achieve autonomic systems that can be self-healing and self-
reconfigurable, probably based on complex rule-based systems.
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At the other end of the spectrum we find the new architectures for high-performance 
servers that are build out of distributed components based on Infiniband or 
ServerWorks hardware. These components are combined with intelligent storage 
architectures that have significant processing power close to the disks itself. These 
deeply distributed architectures introduce many new challenges for the scalability of 
the cluster management systems for the years to come.



Chapter 5

Six Misconceptions about Reliable 
Distributed Computing

This chapter describes how experiences with building industrial strength distributed 
applications have dramatically changed the assumptions about what tools are 
needed to build these systems. 

5.1 Introduction

For the past decade the reliable distributed systems group at Cornell has been 
building tools to support fault-tolerant and secure distributed systems [7]. These 
tools (Isis, Horus and Ensemble) have been successful in an academic sense because 
they functioned as research vehicles that allowed the community to explore the wide 
terrain of reliability in distributed systems. They were also successful commercially 
as they allowed industrial developers to build reliable distributed systems in a 
variety of industrial settings.  Through our interactions with industry we learned 
a tremendous amount about the ways distributed systems were built and about the 
settings in which the Cornell tools were employed. 

What we found is that professional developers have applied these tools in almost 
every possible way… except for the ways that we intended. By building major 
distributed applications such as the New York & Swiss Stock Exchanges, the 
French Air Traffic Control and CERN’s data collection facility, the professional 
development community revealed that tools of the sort we offered are needed and 
yet that our specific toolset was not well matched with the requirements of serious 
practical builders [9]. This was not because the technology was somehow “incorrect” 
or “buggy” but simply because of the particular ways in which distributed systems of 



90 Six Misconceptions about Reliable Distributed Computing 5.2 The Misconceptions 9190 Six Misconceptions about Reliable Distributed Computing 5.2 The Misconceptions 91

a significant size are built. These surprising experiences led us to reevaluate our tools 
and how we can improve support for building reliable distributed systems. 

In this chapter we want to discuss the misconceptions we had about how distributed 
systems are built. We believe that many others from the research community shared 
our assumptions, and that they still are the basis for new research projects. It is thus 
important that others learn from our mistakes

5.2 The misconceptions

The design of interfaces, tools and general application support in our systems was 
based on beliefs concerning the manner in which developers would build distributed 
applications under ideal circumstances. This methodology presumed that only 
the lack of proper technology prevented the developer from using, for example, 
transparent object replication. It is only now that the tools capable of supporting this 
kind of advanced technology have been built and used by the larger public, that we 
have come to recognize that some of the technology is just too powerful to be useful. 
We offered a Formula One racing car to the average driver.

In this chapter we describe some of the more important idealistic assumptions made 
in the earlier stages of our effort. In retrospect, we see that our assumptions were 
sometimes driven by academic enthusiasm for great technology, sometimes overly 
simplistic or sometimes just plain wrong. 

5.2.1 Transparency is the ultimate goal

A fundamental assumption of our early work was that the developer seeks fault-
tolerance and hopes to achieve this by replacing a critical but failure-prone component 
of an existing system by a high reliability version, obtained using some form of 
active replication [8]. Thus although we considered client/server transparency as a 
potential source for problems, we also believed that replication transparency from 
the point of the server writer was a laudable goal. Developers should not have to 
worry about replication strategies, failure conditions, state transfer mechanisms, etc., 
and be able to concentrate on the job at hand: implementing server functionality.

It turns out that server developers want to worry about replica configuration, 
intervene in failure detection or enabling explicit synchronization between replicas.  
There was only a small class of server applications where the designer did not care 
about the impact of replication, and most of these involved server replicas that 
needed no access to shared resources and were not part of a larger execution chain. 
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The majority of systems in which transparent replication is used became more 
complex, suffered reduced performance and exhibited potential incorrect behavior 
traceable to the lack of control over how replication is performed. There is a strong 
analogy with starting additional threads in a previously single threaded program, 
where the designer is not aware of the added concurrency.

5.2.2 Automatic object replication is desirable

The prevailing thinking over the past decade has been that object systems represent 
the pinnacle for transparent introduction and presentation of new system properties 
(components did not exist until recently!). Objects provided an unambiguous 
encapsulation of state and a limited set of operations. By using language or ORB 
features we could automate the replication of objects without the need for any 
changes to the objects, while using state machine replication. Products such as 
Orbix+Isis [60] and projects such as Electra [63] have been successful in a technical 
sense in that they succeeded in implementing these techniques, but their practical 
success in the hands of users was very limited.

In addition to suffering the transparency limitations just described, automatic object 
replication exposed problems in the area of efficiency. Apart from the fact that the 
state machine replication was a very heavyweight mechanism when used with more 
than two replicas, a generic replication mechanism needs to be conservative in its 
strategies and may be very limited in terms of available optimizations. When allowing 
the developer control over what and especially when to replicate, optimizations can 
be made using the semantics of the application.

5.2.3 All replicas are equal and deterministic

One of the more surprising violations of our early assumptions was that many 
services did not behave in a deterministic manner. The systems we were confronted 
with were often complex multithreaded or multi-process systems, running on several 
processors concurrently, containing massive subsystems designed and built by 
different teams. Trying to isolate a generic template for transforming such systems 
into reliable ones using a toolkit approach turned out to be impossible, because 
generic solutions invariably depend upon strong assumptions about deterministic 
behavior.  
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5.2.4 Technology comes first

It makes good sense for an academic research group to focus on a technology for its 
own sake.  After all, academic research is rewarded for innovation and thoroughness.  
As tool developers, however, we need to focus on the application requirements first 
and then use technology only if it matches. When an academic group transitions 
technology into commercial use it suffers from a deep legacy of this early set 
of objectives. Obviously, there are success stories for academic-to-commercial 
transition, but they rarely involve general-purpose tools. In particular, academics 
tend to focus on the hardest 10% of a problem, but tool developers for industrial 
settings need to focus first on doing an outstanding job on the easiest 90% of the 
problem, and dealing with the residual 10% of cases only after the majority of cases 
are convincingly resolved. 

5.2.5 The communication path is most important

Many of the reliability techniques add extra complexity to the system design and 
impose performance limitations. We spent years building super-efficient protocols 
and protocol execution environments, trying to eliminate every bit of overhead, and 
sometimes achieving truly dazzling performance. Developers, however, are less 
concerned about state-of-the-art performance: their applications are heavyweight 
and the processing triggered by the arrival of messages is significant. The parts 
of the system they stress more and where performance really mattered is that of 
management. Consistent membership reporting, bounded-delay failure handling, 
guarantees on reconfiguration and bounds on the costs of using overlapping groups 
are the issues they truly care about. Moreover, to slash performance we often 
accepted large footprints, in the form of code bloat from inline expansion of critical 
functions and increased memory for communication buffering.  The user often 
favors a smaller solution at the cost of lower performance.

5.2.6 Client management and load balancing can be made generic

We taught the user to replicate critical servers, then load balance for high performance, 
and we argued that it could be done in a generic, very transparent manner.  Indeed, 
this fits the prevailing belief, since many RPC systems work this way (consider 
cluster-style HTTP servers).  But the situation for replicated servers proved much 
more complex as soon as clients had a longer lasting relation with a server instance, 
with state maintained at the server. In those cases client management could no longer 
be made generic, without resulting to protocol specific tricks or using mechanisms 
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that reduce performance significantly. Another aspect was that server developers 
wanted to have strong control over the distribution of clients among the servers. 
They almost always were interested in using application-specific knowledge to 
group client connections together to maximize server-processing efficiency.

5.3 Conclusion

What conclusions can we draw from our experiences? The central theme in most of 
the erroneous assumptions was that of transparency. Trying to achieve transparent 
insertion of technology, to augment services with reliable operation, seemed a 
laudable goal. Looking back we have to conclude that transparency has caused 
more pain and tragedy than it has provided benefits to the programming community. 
We believe the conclusion is warranted that we need to avoid including strong 
transparency goals in our future work. Similar conclusions can be drawn from 
experiences by other groups that are currently evaluating their research results [46].

This conclusion has driven a new research agenda  and we have developed a new 
system, dubbed Quintet, in which distribution in all its aspects is made explicit. 
Quintet has high-level tools available to help the programmer with operations such 
as replication, but the developer decides, what, where and when to replicate. Some 
of the management and support tools, such as a shared data structure toolkit, rely on 
generic replication, but the developers that use them are aware of the implications 
of importing this functionality. A detailled description of Quintet can be found in the 
next chapter.

The decision to give full control to the developer is in strong contrast with the current 
trends in reliable distributed systems research, where transparency is still considered 
the Holy Grail. These new systems [68,93,104] experience the same limitations that 
the serious use of our systems exposed. Only by restricting the useable model will 
these systems be able to support developers in a consistent manner. Quintet does 
not restrict the traditional programming model in any way and while providing the 
developer with more effective tools to do his/her job.
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 Chapter 6

Quintet, Tools for Reliable Enterprise 
Computing

This chapter describes Quintet, a system for developing and managing reliable 
enterprise applications. Quintet provides tools for the distribution and replication of 
server components to achieve guaranteed availability and performance. It is targeted 
to serve the application tier in multi-tier enterprise systems, with components 
constructed using Microsoft COM. Quintet takes a radical different approach from 
previous systems that support object replication, in that replication and distribution 
are no longer transparent and are brought under full control of the developer.

6.1 Introduction

In enterprise settings computing systems are becoming more and more organized as 
distributed systems. These systems are critical to the corporate operation and a strong 
need arises for making these systems highly reliable. The first step in addressing 
these needs has been taken by industry: based on their experiences with dedicated 
cluster environments, as new cluster management software systems have been 
developed that target off-the-shelf enterprise server systems. In general commercial 
cluster products provide functionality for the migration of applications from failed 
nodes to surviving nodes in the system. Although this offers some relief for systems 
such as web servers, databases or electronic mail servers, it does not facilitate the 
development of systems that are capable of exploiting the cluster environment to its 
full potential.

Quintet addresses some of the problems that arise when building reliable distributed 
enterprise applications. The system provides development and runtime support for 
components that make up the application tier of multi-tier business systems. In the 
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target systems this tier is constructed out of servers build as collections of COM 
components. Components developed using the tools provided by Quintet are able to 
guarantee reliable operation in a number of ways, and the system is extensible in that 
new guarantees and interfaces can be added.

The project is concerned with research into two areas: 

• What development tools are needed to build reliable distributed components 
for enterprise computing? With a strong focus on efficiency, simplicity and 
ease of use. 

• What infrastructure is needed for reliability management on the high 
performance cluster systems providing the component runtime environment?

The next two sections in this chapter provide some background on the way Quintet 
addresses issues surrounding reliability and distribution transparency. This is 
necessary to understand the design choices that have been made. The section 
following the introduction provides an overview of Quintet’s functionality and the 
solutions that can be built with the Quintet tools. After a description of the target 
environment and relation between Quintet and the Microsoft Transaction Server, the 
chapter provides details on the major system components that make up Quintet.

6.2 Reliability

Component reliability in Quintet addresses two aspects of distributed computing: 
high-availability and scalable performance. The first is concerned with that given a 
limit to the number of node failures, the system guarantees that the remaining set of 
nodes continues to provide the required functionality. The second aspect ensures that 
the system, using adaptive methods, distributes the load over available resources to 
guarantee optimal performance.

Reliability in Quintet is described using a Quality-of-Service specification. When 
a new component is added to the system, the administrator describes the reliability 
requirements of the component, which are input for the runtime system and for the 
component class factories. The specification can be changed on-line and the system 
can be requested to reconfigure accordingly.

A simple approach for providing high-availability and scalable performance would 
be to replicate components over several server nodes and to provide client fail-over 
and load balancing to achieve the reliability goals. Although this is an approach that 
certainly can be used in Quintet, several more tools to design the distribution of server 
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components, beside active replication [8], are offered. The designer has a full range 
of synchronization, replication, persistency, data sharing & consistency, checkpoint 
& logging, coordination and communication tools available to construct components 
that are distributed in a fashion that exactly match its reliability requirements.

6.3 Transparency

A decade of building large distributed systems in industrial settings (see chapter 5) 
has shown a serious mismatch between the available tools for constructing reliable 
systems and the requirements of professional system builders. Many of the problems 
can be reduced to the fact that tool-builders were trying to achieve the transparent 
insertion of their technology, while system-builders need full control to achieve 
acceptable performance or efficient management. 

The pinnacle of transparent operation can be found in the attempts to provide fully 
automatic object replication. By using language or ORB features the replication of 
objects could be automated without the need for any changes to the objects, while 
using state machine replication. Products such as Orbix+Isis[60] and projects such 
as Electra [63] have been successful in implementing these techniques, but their 
success in the hands of users was very limited.

In all observed systems (see chapter 5) it turned out that server developers want to 
worry about replica configuration, intervene in failure detection or enable explicit 
synchronization between replicas.  There was only a small class of server applications 
where the designer did not care about the impact of replication, and most of these 
involved server replicas that needed no access to shared resources and were not part 
of a larger execution chain. The majority of systems in which transparent replication 
is used, become more complex, and suffer reduced performance and potential 
incorrect behavior. This is traceable to the lack of control, within the application, 
concerning how replication is performed. There is a strong analogy with starting 
additional threads in a previously single threaded program, while the designer is not 
aware of any concurrency.

In addition to the transparency limitations just described, automatic object replication 
exposed problems in the area of efficiency. Apart from the fact that the state-machine 
replication is a very heavyweight mechanism when used with more than two replicas, 
a generic replication mechanism needs to be conservative in its strategies and may 
be very limited in terms of available optimizations. When allowing the developer 
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control over what and especially when to replicate, optimizations can be made using 
the semantics of the application. 

These observations have resulted in that in Quintet distribution in all its aspects is 
made explicit. Although there are many tools available to help with operations such 
as replication, the developer decides, what, where and when to replicate. Some of 
the management and support tools, such as the shared data structure toolkit, rely on 
generic replication, but the developers that use them are aware of the implications of 
importing this functionality.

The decision to give full control to the developer is in strong contrast with the trends 
in reliable distributed object research, where transparency is still considered the 
Holy Grail (chapter 5). These systems [68,93,104] experience the same limitations 
that the serious use of our systems exposed. Only by restricting the useable model 
will these systems be able to support developers in a consistent manner. Quintet 
does not restrict the traditional programming model in any way and provides the 
developer with more tools to do his/her job.

6.4 Quintet goals

Quintet targets the development of client/server computing in multi-tier enterprise 
systems, where there are reliability requirements for the servers.  In the prototype 
system, the servers are implemented using Microsoft COM component technology.

The central research goal of Quintet is to find the collection of tools that is most 
useful for the developers of reliable components. Given that this is not an area 
where past experience can drive the selection of these tools, the project was started 
with building a limited set of essential tools and interfaces. Iterative, based on user 
feedback, the tool collection was changed to meet the real needs. One of the major 
reasons for targeting COM based server environments was that these have a perceived 
need for reliability and the project is very likely to get valuable feedback from the 
user community to ensure the much needed improvement cycles. An overview of the 
initial tool set appears in a later section of this chapter.

The server components developed with Quintet are COM aware as all services 
offered are only available through COM interfaces. The expectation was that the 
majority of client/server interaction in this environment is DCOM based, but there 
is nothing in the system that inhibits client/server communication based on RPC, 
HTTP-tunneling, sockets or to integrate an IIOP-bridge. What ever client/server 
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access mechanism is used, the actual application tier components are implemented 
as COM classes and instantiated through COM class factories. 

In a traditional DCOM client/server system the event that triggers the instantiation of 
a component in that of a CreateInstance call at the client system. For reliable COM 
server components the rules for instantiation can be more complex and are often 
based on the reliability QoS specification for the particular component. For example 
server components can out-live client connections to ensure real-time volatile state 
replication, where the component is only made persistent and decommissioned after 
no new client connection was made within a given time period.

In the current set of tools offered in Quintet it is assumed that instances of the same 
component have a certain need for cooperation. The basic communication tool is 
pre-configured to provide a component with primitives to communicate with all 
other instances of the same component and to receive membership style notifications. 
Quintet based replicated components are not forced to maintain identical state, the 
developer chooses when and what to replicate, to which components. How optimistic 
(or pessimistic) the state replication strategy is, depends on application trade-offs, 
and can be adjusted on the fly. Cooperation in Quintet is not limited to components 
of the same class. Different components, can transfer state, synchronize, vote for 
leadership, use shared data structures and use the communication tools in explicit 
manners.

Given that all distribution is explicit, a major concern in Quintet is that the exposed 
complexity could make the development task more hazardous, yielding systems that 
are more error prone and thus implicitly defeating the reliability goals. The tools and 
interfaces are designed with care to match the existing COM programming practices 
as much as possible, making the transition for developers as simple as possible. In 
good Windows tradition, a number of Programming Wizards are provided to assist 
in the more complex tasks.

The second goal of Quintet was to build an efficient runtime environment to support 
the development of complex tools. In Quintet new algorithms for scalable lightweight 
object membership, fast distributed synchronization, efficient component migration, 
have been applied. The Core Technology (QCT), which implements the underlying 
communication system, is designed with high-performance cluster communication 
interfaces in mind.
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6.5 Relation with MTS

Although the Microsoft Transaction Server (MTS) is concerned with offering 
solutions to server components with a different set of requirements, Quintet has in 
its implementation some solutions that are similar to MTS. The way the component 
management service is the container server for the components it manages and the 
way it maintains contexts for each component instance are similar to the way MTS 
manages its components. The similarity is based on that this is the correct way of 
managing COM objects. 

Two other mechanisms in Quintet have identical counterparts in MTS: Security is 
implemented using a role based management system and long running components 
can be temporarily retired without notifying the connected clients. The role-based 
security was chosen based on a research decision and its similarity to the MTS 
solution can be seen as accidental. The retire operation was added to Quintet, based 
on the argumentation by the MTS architects that memory consumption by long 
running components is the limiting factor in scaling component servers such as 
MTS and Quintet. We do not have any experiences that support this claim, but the 
arguments seem reasonable and by implementing the facility Quintet can be used to 
research this issue.

6.6 Target environment

Quintet is designed to function on a collection of server nodes, organized into a 
cluster, with some form of cluster management software offering basic services 
such as node addressing, node enumeration, object naming and basic security. The 
prototype implementation of Quintet uses the Microsoft Cluster Service (MSCS) 
[100], LDAP accessible naming service (Active Directory) and the standard 
Windows NT/DCOM security mechanisms (LanManager).

The Quintet implementation assumes cluster sizes of 4 to 16 nodes. Although nothing 
in its design prohibits the use of larger sized clusters, the distributed algorithms 
used in the Core Technology are optimized towards clusters of this size. The 
implementation is modular in the sense that the Core Technology components can 
be replaced if the need for that arises. A fundamental assumption in the construction 
of the system is that the intra-cluster communication can be performed an order of 
magnitude faster than the client/server interaction.
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Although a first concern of Quintet is correctness of the services it offers, providing 
scalable performance is an important second goal. In a related measurement 
project MSCS and DCOM are thoroughly analyzed to understand the performance 
boundaries of these technologies (see chapter 7), and to be able to offset Quintet 
introduced overhead and costs correctly.

6.7 System overview

Components developed with Quintet are available on the server nodes through 
application servers (Quintet Component Manager) that are configured to export the 
components through the traditional component registration channels. Instantiation 
requests arrive at the servers, which are responsible for the loading and unloading of 
class factories, and tracking component instances.

A variety of different styles can be used in developing reliable components, all 
depending on the reliability requirements of the application. Components can be 
longer running, actively replicated components, where each new client connection 
only triggers the instantiation of some client state. Or each new instantiation request 
can result in the creation of two instances at different nodes that collaborate in a 
primary/backup fashion. 

In principle the class factories implement client management and replica instantiation, 
while the components implement the replication strategy. In implementing each of 
these tasks the developer is assisted by Quintet functionality. Quintet provides 
default implementations for general cases.

The system implementation consists of sixmajor building blocks

1. Core Technology. The communication system on which the component 
manager and the component runtime are based. It provides membership and 
multicast communication functionality.

2. Server Component Management. Provides the registering and loading of the 
server components. Manages component placement, fault monitoring and 
handling, security and basic system management.

3. Server Component Development. The basic tools for the developer to construct 
the server components

4. Server Component Runtime. Tool implementation and management, is part of 
the component manager.
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5. System Management Tools. A collection of tools for administrators to monitor 
and manage the system and its individual components.

6. Client Runtime. Mechanisms to support connections to potentially replicated 
components by regular DCOM clients. Support for failover to alternative 
component instances upon failure.

Each of the different building blocks is described in detail in following sections.

6.7.1 Core Technology

Quintet Core Technology (QCT) is the basic building block for the server 
management and component runtime. It is a lightweight implementation of a Group 
Communication Service [7], specifically targeted towards high-performance clusters.  
It uses MSCS style addressing and makes use of some of the nodes management 
features of the MSCS management software [100]. It uses this information to locate 
other Quintet component managers, and to determine which network interfaces to 
exploit for intra-cluster network communication.

QCT is designed to run over both reliable and unreliable interconnects and is 
optimized towards user-level communication interfaces such as VIA [33] and U-Net 
[37]. The low-level message handling interfaces make extensive use of asynchronous 
message transfer and facilities such as Windows NT completion ports to optimize 
interaction with the network.

QCT offers Virtual Synchrony guarantees [7] on its communication primitives, 
ensuring the ordering of messages in relation to membership changes and atomicity 
on all message delivery.  The communication interface provides a multicast 
primitive to send all members in a group and a send primitive to address a single 
member. Messages sent with the multicast primitive can be sent with either the basic 
guarantees (atomicity) or can be extended with a total order guarantee ensuring that 
all members see all messages in this group in the same order.

QCT provides an internal interface, mainly used by the component managers (see 
next section). The components and class factories see a higher level interface for 
communication. To make the system scalable and not overuse the heavy weight 
virtual synchronous membership for each instantiation of a component, a lightweight 
component membership mechanism is layered over the basic system. 

Each component is automatically a member of its ClassGroup, which provides 
membership notification and communication to all instances of a single component 
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class.  All the class factories of the same component class, present at the different 
component managers see membership change notifications whenever a component 
is instantiated or destructed. The class factories also see membership changes 
whenever a new instance of the particular class factory joins the system. The 
components only see changes in the component membership, not of the factories, 
and the components only receive membership updates if they explicitly register for 
it. The virtual synchronous membership agreement algorithm is only run in case of 
the failure of an object manager, or when a class factory at a component manager is 
unloaded.

Components can make use of the group communication facilities outside of the 
ClassGroups interface by using self-defined groups and names. The component can 
choose to either use the lightweight component membership or the more heavyweight 
low-level QCT interface.

6.7.2 Component Management

The Quintet Component Manager (QCM) is the central unit in the management 
of the reliable components. The functionality of the manager includes: loading of 
component libraries, starting of class factories, performing security checks, client 
administration & configuration, failure handling, dynamic load management and 
system administration. The manager contains the Core Technology and the runtime 
for the tool collection.

QCM is registered at each server node to implement all the component classes it 
manages, resulting in that the Service Control Manager at the node routes regular 
DCOM instantiation requests for the components to QCM. The method by which a 
client receives information about which node to contact for its instantiation request 
depends on the particular client technique used, which are described in the section 
on the client runtime. The class factories for the requested component are expected 
to collaborate on providing a hint to the QCM at which node the instantiation is 
preferred. This information is relayed to the client moniker object or the proxy 
process. If the class factories suggest “don’t care” the QCM makes a decision based 
on the QoS spec for the component. 

For each component instance the QCM maintains a shadow object (context object in 
MTS terms), where the object references, returned to the client, refer to. The shadow 
object contains administration, statistical and debug information. Longer running 
components, with a low method invocation frequency, can be requested to persist 
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their state and then destruct themselves. At the next method request, directed to the 
shadow object, the component is reloaded from the saved state. This mechanism 
can not be used for all types of components, as for example components engaged in 
active replication can not be decommissioned. 

It is possible to migrate active components to other nodes in the system, and there are 
two mechanisms from which the component state at the new node can be recreated: 

1. The component can implement an IMigrateState interface, or 
2. The manager can forcibly use the checkpoint and reload mechanism. Requests 

from clients that are not yet updated with the new location of the migrated 
component are forwarded based on indirection information in the shadow 
object. The shadow object is garbage collected after the original component is 
destructed.

Each node in the cluster runs one or more component managers. How many managers 
run at a node depends on the particular component configuration. If a component is 
considered to be unreliable, for example during a development phase, its potential 
failure is isolated from the rest of the component system by running the component 
in a separate address space attached to a private manager. If a component crashes 
it will not cause the failure of the other components. For scheduling and network 
efficiency it is desirable to have a single component manager per node, controlling 
all components at that node. The first QCM process runs as a Windows NT service, 
any additional processes are started by the first QCM process. The primary QCM 
process is under control of an MSCS resource monitor to ensure automatic restart in 
case of failure.

6.7.3. Component Development Tools

Quintet offers a collection of tools for the developer to use for the construction of 
the class factories and the components. The following is a short list of the most 
important tools.

• Basic membership & communication. As already described in the section 
on Core Technology, each component and its class factory are automatically 
a member of its ClassGroup. The components can register for receiving 
membership change notifications, and additional interfaces are available to 
query the membership through the runtime and from components such as 
the shared data structures. Next to the use of the ClassGroup the component 
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is free to create, join and leave other groups and communicate using those 
groups. The component, however, cannot leave its ClassGroup other than 
through destruction. 

• State maintenance. A component can implement a shared state interface and 
register this interface with the object manager. State update can be performed 
manually by a component notifying the component manager that it now wants 
its state transferred to all other components that have registered the same 
component state interface. If needed, any synchronization before the state 
update is to be handled by the component itself. The component manager 
retrieves the state from requesting component and updates all components in 
total order. 
The developer can also choose for an automated version of state update. 
Components notify the QCM whenever the state has changed, and whenever 
they are in a position to receive the state update. As soon as all components 
have signaled their availability the component manager updates the state. Any 
conflict resolution needs to be implemented by the component state receive 
routines. An example where this kind of automation is useful is when using a 
primary component with a collection of hot standbys.

• Shared data structures. To support simplified state sharing strategies Quintet 
offers a collection of data structures (hash table, associative sets, queues, 
etc.) that can be shared among component instances. The object managers 
implement the runtime for this and ensure that component instances which 
share interface references to a shared datastructure, always have access to a 
local copy. Updates to the data structures are guaranteed to keep all replicas in 
a consistent state.

• Voting. A component can propose an action, on which the participating 
components vote to accept or reject. More complex algorithms for quorum 
techniques, barrier synchronization, distributed transactions and leader 
election are implemented using this basic voting interface. This is similar to 
the services in [3].

• State persistence. Quintet offers a persistent object store to the components 
from which the components can be initialized. The mechanism is used for 
crash recovery, system startup and the decommissioning and restart of long 
running components. Components are not automatically persistent, they use a 
checkpoint and logging interface to explicitly persist their state. 
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6.7.4 Component Runtime

Many of the tools Quintet offers to the developer have a significant runtime 
component to them. The majority of the tool collection is implemented using 
the facilities offered by QCT. With the exception of some management modules, 
the communication between tool instances runs over the same heavyweight 
communication endpoint as the ClassGroup of the component that uses the tool. 
The lightweight addressing space is divided such that class factories, component 
instances and tools can be addresses separately and messages can be multicast to 
the appropriate subsets. This sharing is an optimization, when the runtime detects 
that a tool instance is use by different components, it creates its own heavyweight 
endpoint.

An example of a tool with a major runtime component is the one that implements 
shared data structures. The runtime implements the data structures itself, the 
distributed access, the consistent updates, and the replica & location management to 
ensure that components always have local read access.

To ease the development of new tools, a small support toolkit was built that 
implements basic data types, message handling and the serialization of basic data 
types through QCT.

A tool that does not make use of the QCS facilities is the Persistent Object Store, 
which uses the checkpoint and logging facility offered by MSCS [100]. This ensures 
that the data is always available to the nodes that are active in the cluster as MSCS 
terminates minority partitions that have no access to the shared Quorum resource. 
The Quorum resource is a shared disk, which also stores the checkpoints and logs.

6.7.5 System Management

Experiences show that complex server systems such as Quintet are only as useful as 
the system management tools and interfaces that accompany it. Without these tools 
the system becomes painful to use, difficult to monitor and diverts the attention of 
the developer from the most important task: developing robust components.

The key system management tool is a traditional Win32 explorer style application, 
which can be used for all the administrative tasks. The management tool is developed 
as a traditional COM client/server application, with the server functionality 
implemented in the Component Managers.  There are command line counterparts of 
the tool, but they are geared towards the use in shell scripts. Several tool instances 
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can be running at the same time. The tools are augmented with failure detection 
mechanisms outside of the scope of COM to ensure timely failover to another 
component manager, in the case of a manager or node crash. The RPC timeout 
mechanism in COM is very tolerant but a 30 seconds delay is unacceptable for 
Quintet purposes.

The management tool provides developers with the ability to add components to 
cluster through drag and drop, and to add a Reliability QoS specification as well 
as the security information for the new component. The tool can be used to control 
manager and component configuration, and runtime control tasks, such as component 
migration, can be performed manually. 

The Component Managers contain several methods to monitor the operation of the 
system and to monitor components on an individual basis. Information ranging from 
statistics to individual method invocation and results can be monitored and displayed 
in the management tool. 

The tool can be extended on a per-component basis with component specific control 
and management functionality (see the section on extensibility). 

6.7.6 Client Runtime

Client access to the component instances is still a major research issue. Currently 
two approaches are implemented: In the first approach the client is failover aware 
and uses a reconnect mechanism to hookup with an alternative component instance. 
The second approach leaves the client unaware of the new situation and uses a local 
proxy process through which all calls to the component replicas are routed. 

Although prototypes of both approaches are implemented and running, the difficulty 
is in determining whether all cases are handled correctly. Realistic COM client/
server applications often have very rich interaction patterns and some of the pre-built 
MS components implemented using the ATL or MFC toolkits introduce additional 
levels of complexity. 

The failover aware approach has its limitations as COM insists on making 
distribution of the component fully transparent and treats each component as if it is 
local, providing no failure information about the distributed case. Quintet’s support 
here consists of a set of moniker objects that internally interact with the component 
managers to connect to a selected node and are also responsible for the selection of 
new nodes after failure occurs. The developer in the design of the client needs to 
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catch these failures and use the moniker to reconnect. This approach has only been 
made to work in C/C++ COM environments and have not found their counterpart 
(yet) in VB and Java.

The most promising of the two approaches is the one that uses a local proxy to 
implement the client/server interaction. The proxy receives component information 
from the component manager and registers itself at the local node as implementing 
these components. The Service Control Manager at the local node then routes all 
CreateInstance requests to the local proxy. The proxy interacts with the Component 
Manager to create the correct forwarding path and upon server failure or component 
migration adjusts the path accordingly. The proxy is efficient in that it inspects the 
stack of the incoming RPC call to do some cut-through routing without the need to 
implement the interface locally and fully execute each RPC invocation. As always 
Connection Points (COM’s version of callbacks) make the whole mechanism 
more complex, and are handled with support from the Component Managers. The 
Managers keep track of this kind of full duplex connection, and ensure that upon 
client handoff to another component instance, the component that now handles the 
client has the right client routing information.

6.8 Extensibility

The base system is extensible by developers in a number of ways:

1. Component specific management modules can be added to the management 
tools.

2. Component specific debug support can be added to component managers.
3. Runtime support for new tools can be added to the component managers.
4. General component management can be added to the component managers.

The extensions to the management tools and the component managers are 
implemented as COM components and loaded on demand though the regular 
configuration information in the NT registry. Each extension type needs to implement 
a predefined interface through which the component can be initialized and given 
access to environment it executes in.

To enable the development of these extensions, the component manager and the 
administration tool export a set of interfaces that can be used by each extension to 
implement its functionality. 
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6.9 Future Work

There are a number of major research issues that have arisen but have not been 
worked out yet. The most important issue is that of inter-component dependencies, 
the obvious solution seems to hint to the use of component groups and manage the 
groups as single units, but as yet it is uncertain what the best way is to express the 
dependencies and how to manage them at runtime. Which approach to client runtime 
is the right one, remains an open issue until there is more experience with actual 
deployment of the system and more industrial-strength application development has 
been done.
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Chapter 7

Scalability of the Microsoft Cluster Service

7.1 Introduction

An important argument for the introduction of software managed clusters is that of 
scale: By constructing the cluster out of commodity compute elements, one can, by 
simply adding new elements, improve the reliability of the overall system in terms 
of performance and in availability. The limits to how far such a cluster can be scaled 
seems to be dependent on the scalability of its management software, which in its 
core has a collection of distributed algorithms to guarantee the correct operation of 
the cluster. The complexity of these algorithms makes them a vulnerable component 
of the system in terms of their impact on the overall scalability of the system. 

This chapter examines two of the distributed components of the Microsoft Cluster 
Service (MSCS) [100] that are most likely to have an impact on its scalability: the 
membership and the global update managers. The first sections of the chapter will 
provide some general background on these distributed services and related scalability 
issues. After this introduction the algorithms used to implement these service are 
described in detail and an analysis of their impact on scalability is presented. The 
scalability analysis is based on an off-line analysis of the algorithms as well as the 
results of on-line experiments on a cluster with a, in MSCS terms, large number of 
nodes. 

7.2 Distributed Management

In distributed management software, two components are considered basic 
building blocks: a consistent view about which nodes are on-line, and the ability to 
communicate with these nodes in an all-or-nothing fashion [8]. 



112 Scalability of the Microsoft Cluster Service 7.3 Practical Scalability 113112 Scalability of the Microsoft Cluster Service 7.3 Practical Scalability 113

The first building block is captured in a membership service: all nodes participate in 
a consensus algorithm to agree on the current set of nodes that are up and running. 
The system makes use of a failure detection mechanism that monitors heartbeat 
signals or actively polls other nodes in the system. The failure detector will signal 
the membership service whenever it suspects the failure of a node in the system. The 
membership service will react to this by triggering the execution of a distributed 
algorithm at all the nodes in the system, in which they agree upon which nodes have 
failed and which are still available. The joining of a new member in the system, does 
not require the nodes to run the agreement protocol, but can often be handled through 
a simple update mechanism.

The second fundamental component provides a special communication facility, with 
guarantees that exceed the properties provided by regular communication systems. 
Often in the process of managing a distributed system it is necessary to provide 
the same information to a set of nodes in the system. We can simplify the software 
design of many of the components on the receiving side of this information if we 
can guarantee that if one node receives this information, that all nodes will receive 
it.  This atomicity guarantee allows nodes to act immediately upon reception of 
a message, without the need for additional synchronization. Often this atomicity 
guarantee is not sufficient for a system, as it does not only need be assured that all 
nodes will receive the update, but that all nodes will see the updates in the same 
order. This total order property makes the communication module a very powerful 
mechanism in the control of the distributed operation of the distributed system.

7.3 Practical Scalability

This chapter examines the membership and communication services of the Microsoft 
Cluster Service (MSCS) with an emphasis on their impact on the scalability of the 
system. MSCS, as shipped, officially supports 2 nodes, but in reality the software 
can be run on a 16-node NT server cluster. For the purpose of the scalability tests we 
extended the system software to run on 32 nodes. 

Making systems scale in practice centers around the use of mechanisms to reduce the 
dependency of the algorithms on the number of nodes. In the past, two approaches 
have been successful in finding solutions to problems of scale: The first is to 
reduce the synchronous behavior of the system by designing messaging systems 
and protocols that allow high levels of concurrent operation, for example by de-
coupling the sending of messages from the collecting of acknowledgements. The 
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second approach is to reduce the overall complexity of the system. By building the 
system out of smaller (semi-)autonomous units and connecting these units through 
hierarchical methods, growing the overall system has no impact on the mechanism 
and protocols used to make the smaller units function correctly. 

A third, more radical approach, which is under development at Cornell, makes use 
of gossip based dissemination algorithms. These techniques significantly reduce the 
number of messages and the amount of processing needed to reach a similar level of 
information sharing among the cluster nodes, while maintaining a superior level of 
robustness to various failures.

Given that cluster systems such as MSCS are used for enterprise computing, any 
instability of the system can have severe economic results.  There is a continuous 
tradeoff between responsive failure handling and the cost of an erroneous suspicion.  
The system needs to detect and respond to failures in a very timely matter, but  
designers may choose a more conservative approach given the significant cost of an 
unnecessary reconfiguration of the system, caused by an incorrect failure suspicion. 
In general cluster server systems run compute and memory intensive enterprise 
applications and these systems experience a significant load at times, reducing the 
overall responsiveness. Scaling failure detection needs intelligent mechanisms for 
fault investigation [81,99] and requires the failure detectors to be able to learn and 
adapt to changes [80].

7.4 Scalability goals of MSCS

The Microsoft Cluster Service is designed to support two nodes, with a potential 
to scale to more nodes, but in a very limited way. MSCS successfully addresses 
the needs of these smaller clusters. The cluster management tools are a significant 
improvement over the current practice and they are a major contribution to the 
usability of clusters overall.

The research reported here is concerned with scaling MSCS to larger numbers of 
nodes (16 - 64, or higher), which is outside of the scope of the initial MSCS design.   
There are three areas of interest:

1. Can the distributed algorithms used in MSCS be a solid foundation for  
scalable clusters?

2. Are there any architectural bottlenecks that should be addressed if MSCS 
needs to be scalable? 
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3. If MSCS is extended with development support for cluster aware applications 
are the current distributed services a good basis for these tools?

This work should not be seen as criticism of the current MSCS design. Within the 
goals set for MSCS it functions correctly and will scale to numbers larger then 
originally targeted by the cluster design team.

7.5 Cluster Management

The algorithms used in MSCS for membership and total ordered messaging are 
a direct derivative of those developed in the early eighties for Tandem as used in 
the NonStop systems [16,53]. Nodes in a Tandem system communicated via pairs 
of proprietary inter-processor busses, which, in 1985, provided a 100 Mbit/second 
transfer rate. Parts of the messaging side of the algorithms was implemented in 
interrupt handlers to provide minimal system overhead. It is also important to notice 
that the bus provided a broadcast facility.

Although MSCS has a kernel module that implements some of the messaging and 
failure detection, the membership and global update algorithms are implemented 
in an NT service, the Cluster Service, which runs at user level. The Cluster Service 
holds in total 11 managers, each responsible for a different part of the cluster service 
functionality. Next to the membership and communication managers, there are 
managers for resource and failover management, for logging and checkpointing, and 
for configuration and network management.

In the following sections three of the components are examined in detail: first 
the kernel module which holds the cluster communication and failure detection 
functionality. Secondly the join process and the failure reconfiguration of the 
membership module are analyzed. The last analysis is that of the global update 
communication module.

7.6 Cluster Network

MSCS provides a kernel based cluster network interface, ClusNet, which presents a 
uniform interface to networks available for intra-cluster communication.  ClusNet 
supports basic datagram communication to each of the nodes, using an addressing 
scheme based on simple node identifiers which are assigned to nodes when they are 
first configured for use in the cluster. To support reliable communication ClusNet 
provides a transport interface used by MS-RPC, which is directly derived from DCE 
RPC.
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ClusNet is capable of managing a redundant networking infrastructure, automatically 
adapting packet routing in case of network failure.

7.6.1 Node Failure Detection

MSCS implements its Failure Detection (FD) mechanism using heartbeats. 
Periodically every node sends a sequenced message to every other node in the 
cluster, over the networks that are marked for internal communication. Whenever a 
node detects a number of consecutive missing heartbeats from another node it sends 
an event to the cluster service which uses this event to activate the membership 
reconfiguration module. 

In the current MSCS configuration heartbeats are sent every 1.2 seconds and the 
detection period for a node suspicion is 7.2 seconds (6 missed heartbeats). The 
timing values are not adaptive. 

The cluster network module does not exploit any broadcast or multicast functionality, 
and thus each heartbeat results in (number_of_nodes-1) point-to-point datagrams.  
In our test setup of 32 nodes, the cluster background traffic related to heartbeats 
is 800 messages per second. With 32 nodes active and an otherwise idle network 
the mechanism works flawless and the packet loss observed was minimal. Tests 
which replaced the Fast-Ethernet switches with hubs showed that the packet trains 
sometimes caused significant Ethernet-level collisions on the shared medium. 
Adding processing load to the systems resulted in variations in the inter-transmission 
periods. False suspicions were never seen.

When adding processing load and additional load on the network frequently single 
heartbeat misses were observed, but the timing values for generating a failure 
suspicion events are set very conservative, and as such these missed heartbeats 
never generate any false suspicions. The failure detection times could be set more 
aggresively based on the network capabilities but field tests with varying heartbeat 
configurations have shown that legacy hardware limitations warrant this conservative 
approach.

7.7 Node Membership

The MSCS membership manager is designed into two separate functional modules: 
the first handles the joining of nodes and a second, regroup, implements the 
consensus algorithm that runs in case of a node failure. 
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7.7.1 Join

The join algorithm starts with a discovery phase in which the joining node attempts 
to find other nodes in the cluster. If this fails the node tries to form a cluster by itself, 
the details of the cluster-form operation can be found in chapter 5. After the node 
has discovered which cluster nodes are currently running it selects one of the nodes 
and petitions for membership of the cluster. The selected node, dubbed the sponsor, 
announces the new node to all active cluster members, transfers all the up-to-date 
cluster configuration to the new node, and waits for the node to become active. The 
different phases of the join and their distributed complexity are described in detail in 
the following paragraphs

Phase 1: Discovery. When a cluster service starts it attempts to connect to each of 
the other known nodes in the cluster, using RPC over a regular UDP transport. This 
sponsor discovery mechanism has a high degree of concurrency: a thread is started 
for each connection probe. The joiner waits for all threads to terminate, which occurs  
when a connection is established or the RPC binding operation fails after a time-out. 
As the joiner waits for all threads to terminate, the delay the joining node experiences 
is based on the time-out period of a RPC connection to a single node that is not up. 
The timeout value for RPC out-of-the-box is approximately 30 seconds, but it can be 
manipulated to reduce the discovery phase to 10 seconds.
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In all observed cases, the joining node always selected the holder of the cluster IP 
address to sponsor its join. The cluster IP address is a single address that migrates to 
a node that functions as the access point for administrative purposes: if the cluster is 
running there is always a node that holds this IP address.  By modifying the startup 
phase to start by attempting to connect to this address first before probing all the 
other nodes, it is possible to reduce this phase of the join process to under a second. 
This approach also avoids starting a number of threads that is equal to the number of 
nodes in the cluster.

Phase 2: Lock. From the nodes that are up, the joiner selects one node to sponsor its 
membership in the cluster. The first action by the sponsor is to acquire a distributed 
global lock to ensure that only a single join is in progress. Acquiring of the lock is 
performed using a global update (GUP) method.

The use of GUP makes this phase dependend on the number of active nodes. Details 
on the performance and scalability of GUP can be found in section 6.7.

Phase 3: Enable Network: Using a sequence of 5 RPC calls to the sponsor, the 
joiner retrieves all information on current nodes, networks and network interfaces.  
Following this the joiner performs an RPC to each active node in the cluster for each 
network interface a node is listening on, and the contacted node in return performs 
an RPC to the joiner to enable symmetric network channels.  After this sequence 
the node security contexts are established which again requires the joining node to 
contact all other active nodes in the cluster, in sequence.

This phase depends on the number of active nodes in the cluster. An unloaded 31 
nodes cluster, on average, performs this sequence of RPC’s in 2-4 seconds. On 
a moderately loaded cluster, frequently this phase takes longer than 60 seconds, 
causing the join operation to time-out at the sponsor, resulting in an abort of the 
join.

Phase 4: Petition for Membership: The joiner requests the sponsor to insert the 
node into the membership. This is a 5-step process directed by the sponsor.

1. The sponsor broadcasts to all current members the identification the joining 
node. 

2. The sponsor sends the membership algorithm configuration data to the joiner
3. The sponsor waits for the first heartbeat from the new joiner.
4. The sponsor broadcasts to all current members that the node is alive
5. The sponsor notifies the joiner that it is inserted in the membership
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The broadcasts are implemented as series of RPC calls, one to each active node in 
the cluster. On an unloaded cluster and network the serialized invocation of RPC to 
30 nodes takes between 100 and 150 milliseconds. When loading the systems with 
compute and IO tasks, the RPC times vary widely from 3 millisecond to 3 second per 
RPC. Broadcast rounds to all 30 nodes were observed taking more than 20 seconds 
to complete (with exceptions up to 1 minute). As this phase is under control of the 
sponsor the join is not aborted because of a time-out. It can abort on a communication 
failure with any of the nodes. 

In step 3 the detection of the new heartbeat is delegated to ClusNet, which performs 
checks every 600 millisecond, resulting in an average waiting period between 0.6 
and 1.2 seconds

Phase 5: Database synchronization.  The joiner synchronizes its configuration 
database with the sponsor. In the experimental setup this database was of minimal 
size and never out-of-date. As the retrieving of the database updates is not dependent 
on cluster size, no further tests were performed on this phase. 

Phase 6: Unlock. The newly joined node uses its access to the global update 
mechanism to broadcast to all nodes that it now is full operation and that the global 
lock should be released.

The join operation is very much dependent on the number of nodes in the system. 
Figure 7.1 shows the times for a join under optimal conditions. All RPC calls in the 
algorithms are serialized and at minimum there are (10 + 7 * number_of_nodes) 
calls. Joining the 32nd node to the cluster requires at least 227 sequential RPC’s. 
This approach collapses under load, frequently it is impossible to join any nodes 
if only a moderate load is placed on the nodes and the system has more than 10-12 
nodes.

7.7.2 Regroup

Upon the receipt of a node failure event generated by ClusNet the Cluster Service 
starts the reconfiguration algorithm, dubbed regroup. The algorithm runs in 5 phases, 
with the transition to each new phase determined after it is believed that all other 
nodes have finished this phase, or when, in the first two phases, timers expire. 

During regroup the nodes periodically (300ms) broadcast their current state 
information to all other nodes using unreliable datagrams. The state is a collection of 
bitmasks, one for each phase, describing whether a node has indicated it has passed 
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a phase. It is not necessary for each node to have heard for each other node in a 
phase; information about which other nodes a certain node has heard of is shared. 
For example if node 1 indicates that it has received a regroup message from node 
2, node 3 uses this without that it actually needs to receive a message from node 
2 in that phase. Also included in the state is a connectivity matrix in which nodes 
record whether they have seen messages from the other nodes and what connectivity 
information has been recorded by the other nodes.

The 5 phases of the regroup algorithm are the following:

Phase 1: Activate. Each node waits for a local clock tick to occur so that it knows 
that its timeout system can be trusted. After that it starts sending and collecting status 
messages. It advances to the next stage if

1. All current members have been detected to be active (e.g. there was a false 
suspicion),

2. If there is one single failure and a minimal time-out has passed or, 
3. When the maximum waiting time has elapsed and several members have not 

yet responded.
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The minimum timeout for phase 1 is 2.4 second, if all but one node have responded 
in this time period it is assumed that there was a single failure and the algorithm 
moves to the next phase. If multiple nodes do not respond, the algorithm waits for 9.6 
seconds to move to the next phase.  If for some reason the regroup algorithm times 
out in a different phase or when there are cascading starts of the regroup algorithm 
at several nodes, the algorithm executes in cautious mode and always waits for the 
maximum timeout to expire.

Phase 2: Closing. This stage determines whether partitions exist and whether the 
current node is in a partition that should survive. The rules for surviving are:

1. The current membership contains more than half the original membership.  
2. Or, the current membership has exactly half the original members, and there 

are at least two members in the current membership and this membership 
contains the tie breaker node that was selected when the cluster was formed.

3. Or, the original membership contained exactly two members and the new 
membership only has one member and this node has access to the quorum 
resource.

After this the new members select a tie breaker node to use in the next regroup 
execution. This tiebreaker then checks the connectivity information to ensure that the 
surviving group is fully connected. If not it prunes those members that do not have 
full connectivity. It records this pruning information in its regroup state, which is 
broadcast to all other nodes.  All move to stage 3 upon receipt of this information.

In case of incomplete connectivity information the tiebreaker waits for an additional 
second to allow all nodes to respond. 

Phase 3: Pruning. All nodes that have been pruned because of lack of connectivity 
halt in this phase. All others move forward to the first cleanup phase once they have 
detected that all nodes have received the pruning decision (e.g. they are in phase 3).

Phase 4: Cleanup Phase One. All surviving nodes install the new membership, 
mark the nodes that did not survive the membership change as down, and inform 
the cluster network to filter out messages from these nodes. Each node’s Event 
Manger then invokes local callback handlers to notify other managers of the failure 
of nodes. 

Phase 5: Phase Two. Once all members have indicated that the Cleanup Phase One 
has been successfully executed, a second cleanup callback is invoked to allow a 
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coordinated two-phase cleanup. Once all members have signaled the completion 
of this last cleanup phase they move to the regular operational state and seize the 
sending of regroup state messages.

The regroup algorithm in its first two phases is timer driven and the algorithm 
makes progress independent of the number of nodes in the cluster. The transitions 
of the next 3 phases are dependent on the number of nodes in the system, but the 
“information sharing” mechanism makes the system robust in dealing with sporadic 
message loss. 

The state information is broadcast by sending point-to-point datagrams to each node 
in the cluster. With an inter-transmission period of 300 millisecond, and 31 nodes 
in the cluster, this generates a background traffic of over 3000 messages/second. A 
single failure reconfiguration has an average runtime of 3 seconds and thus generates 
around 10,000 messages. A two-node failure, with a full running cluster is likely 
to generate between 30,000 and 40,000 messages. Figure 7.2 details the observed 
messages in the system during regroup. 
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7.8 Global Update Protocol

It is essential for a distributed management system to have access to a primitive that 
allows consistent state updates at all nodes. MSCS uses the Global Update Protocol 
(GUP) for this purpose. Although the protocol is described as providing atomicity, 
its implementation has the stronger property of providing total ordering to its update 
messages. 

When a node starts an global update operation, it first competes for a transmission 
lock managed by a node that is assigned the functionality of the locker node. Only 
one transmission can be in progress at a time. If the sender can not obtain the lock it 
is queued on the lock waiting list and blocks until it reaches the head of the queue. 
With the lock request the sender also transmits its update information to the locker 
node which applies it locally, and stores the message for later replay under certain 
failure scenarios. While holding the lock the sender transmits its update to all other 
active nodes in the cluster and terminates the transmission with a final message to the 
locker node which releases the lock (see figure 7.3).

To transmit the messages to all other nodes, the sender organizes the cluster nodes 
into a circular list, ordered by NodeId. After it acquired the lock, the sender sends 
its updates starting with the node that is after the locker node in the list. The sender 
works through the list in order, wrapping when it reaches the last node in the 
cluster to the first node and stops when it once again reaches the locker node. The 
transmission is finished with an unlock message to the locker node.

Acquiring the lock before performing the updates guarantees that only one update 
is in progress at a given time, which gives the protocol the total ordering property. 
Atomicity (if one surviving node applies the update, all other surviving nodes will) is 
achieved through the implementation of a number of fault-handling scenarios. 

1. The sender fails: the locker node takes over the transmission and completes 
it. 

2. A receiver fails: wait for the regroup to finish and then finish the 
transmission. 

3. The locker node fails: the next node in the node list is assigned locker 
functionality and the sender treats it as such.

4. The sender and locker fail: if the node following the locker has received the 
update already, in its role as new locker it takes over the transmission. 
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5. All nodes that received an update and the sender fail: pretend the update never 
happened.

The protocol is implemented as a series of RPC invocations. If an RPC fails, the 
sender waits for the regroup algorithm to run and install a new membership. GUP 
will then finish the update series based on the new membership.

Given the strict serial execution of the protocol, its performance is strongly dependent 
on the number of nodes in the system. The implementation enforces no time bound 
on the execution of an RPC and any node can introduce unbounded delays as long as 
RPC keep-alives are being honored.  

Repeated measurements show huge variations in results, with the variations being 
amplified as the number of nodes increases. When a moderate load is placed on 
the nodes it becomes impossible to produce stable results.  These variations can be 
contributed to the RPC trains, which repeatedly transfer control to the operating 
system while blocking for the reply. Upon arrival of the reply at the OS level, the 
Cluster Service needs to compete with other applications that are engaged in IO, to 
regain CPU control. The non-determinism of the current load state of the system 
introduces the variances.

The latency of the protocol in an ideal setting is shown in figure 7.4, the message 
throughput in figure 7.5. With 32 nodes the system can handle 6 small (50 bytes) 
updates/second or 4 larger (2 Kbytes) updates/second. 

With systems under a load the protocol breaks down with more then 12 nodes in the 
cluster. With 10 nodes frequently transmissions are observed that take 2-5 seconds to 
complete. With 32 nodes transmission times up to one minute were recorded.

7.9 Discussion

When evaluating the scalability of the distributed components of MSCS it is necessary 
to separate two issues: the algorithms used and their particular implementation. 

7.9.1 Failure Detection

MSCS is willing to tolerate a long period of silence (7 seconds) before a failure 
suspicion is raised. This allows for the implementation of mechanisms that can 
easily deal with large number of nodes. The important scale factor is the number of 
messages that the nodes need to process both at the sending and the receiving side. 
Implementing the heartbeat broadcast using repeated point-to-point datagrams does 
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not introduce any problems with 32 nodes, but there is a clear processing penalty at 
the sender and it will limit the growth to larger numbers.

In an unstructured heartbeat scheme (every node sends heartbeats to all other 
nodes), the load on the sender and on the network can be significantly reduced by 
using a true multicast primitive for disseminating the heartbeats. It also removes the 
sender’s dependency on the number of nodes in the system. However, the number 
of messages a receiver has to process remains proportional to the number of nodes 
in the system. 

More structured approaches have been proposed to reduce the overall complexity of 
failure detection by imposing a certain structure on the cluster, and localizing failure 
detection within that structure. A popular approach is to organize the cluster nodes in 
a logical ring [3,65] where nodes only monitor neighbor nodes in the ring and a token 
rotates through the ring to disseminate status information. In this scheme however, 
the token rotation time is dependent on the number of nodes, and the scheme thus 
has clear scalability limits. 

Another aspect of scaling failure detection is the increased chance of multiple 
concurrent node failures in the cluster. The MSCS mechanism handles multiple 
failures just as efficient as single failures, while most of the structured failure 
detection schemes have problems with timely detection of multiple failures and fast 
reconfiguration of the imposed structure.

The most promising work on failure detection for larger systems is the use of gossip 
and other epidemic techniques to disseminate availability information [81]. These 
detectors monitor hundreds of nodes while still providing timely and accurate 
detection, without imposing any significant increased load on nodes and networks.

7.9.2 Membership Join

The observation that it frequently was impossible to join the 15th or higher node 
into the cluster is an artifact of the fact that MSCS was not implemented with a large 
number of nodes in mind.  The join reject happens in the phase that is not under 
control of the sponsor node and where the new node is setting up a mesh of RPC 
bindings and security contexts with all other active nodes. With 32 nodes this phase 
is close to a 100 RPCs and any load on the nodes causes significant variations in 
these serialized executions.
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There is no fundamental solution to the problem; if the RPC infrastructure needs to 
be maintained, the setup phase is needed and some tolerance is needed to allow the 
mesh to be established. A possible solution would for the joiner to update the sponsor 
on its progress in this phase to avoid a join rejection. 

7.9.3 Membership Regroup

The membership reconfiguration algorithm works correct under all tested 
circumstances, independent of the number of nodes used. There are two mechanisms 
that ensure that the operation performs well, even with a larger number of nodes: (1) 
The operation is fully distributed, the constant broadcasting of state allows nodes to 
rely solely on local observation of global state. (2) The sharing of “I-have-heard-
from-node-X” information among nodes, makes that the nodes can move to the next 
phase without having received status messages from all nodes.

Given that a node failure suspicion is not raised until 7 seconds of silence by a node 
and the first phase of regroup waits for an additional 3 seconds, a problematic node 
has 10 seconds to recover from some transient failure state.  As no false suspicions 
were ever observed, the timeouts in the first two phases of regroup can be considered 
to be very conservative. In all observed cases the current membership state was 
already established well within a second, the remaining time (2-9 seconds) was 
spent waiting for the failed nodes to respond. As the first phase is dominant in the 
execution time of the whole regroup operation, a reduction in time can be achieved 
by combining the failure detection information with the observed regroup state.

A major concern in scaling the regroup operation is the number of messages 
exchanged. A typical run with 32 nodes  generates between 10,000 and 40,000 
messages. The status message broadcasts are implemented as series of point-to-
point datagrams, which has two major effects: (1) the number of messages generated 
for the regroup operation grows exponential with the number of nodes and (2) the 
transmission of 32 identical messages every 300 milliseconds introduces a significant 
processing overhead at the sender. The regroup algorithm is run at the cluster service, 
which introduces a user-space/kernel transition for each message, with associated 
overhead. Introduction of a multicast primitive will allow the implementation to 
scale at least linearly with the number of nodes and would remove the processing 
overhead from the sender of status messages. A second needed improvement is the 
implementation of the memebrship engine at kernel level, allowing for lower system 
overhead and a more predictable execution of the algorithms.
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7.9.4 Global Update Protocol

The absence of any concurrency in the message transmission in GUP causes a strict 
linear increase in latency and decrease in throughput when the number of nodes in 
the cluster grows. 

The serialized and synchronous nature of the protocol is amplified in the particular 
MSCS implementation. The protocol was originally developed for updating shared 
OS data-structures, with the update routines running in device interrupt handlers. 
In MSCS the protocol is implemented using a series of RPC calls to user-level 
services. This change in execution environment exposes the vulnerability of the 
strict serialized operation. 

There is no quick solution for the problems that this GUP implementation presents us 
with. To emulate the original Tandem execution environment the complete Cluster 
Service would need to be implemented as a kernel service, which at this point seems 
impractical. 

Replacing GUP with a protocol that provides the same properties but exhibits a 
more scalable execution style seems preferable. This introduces a number of other 
complexities, for example many of the currently popular total ordering protocols rely 
on a tight integration of membership and communication to ensure correct failure 
handling. This would result in replacing regroup as well as GUP.

7.10 Conclusions

In this research some of the scalability aspects of the Microsoft Cluster Service were 
examined. When revisiting the three questions from section 6.3 the following is 
concluded:

Can the currently used distributed algorithms be a solid foundation for scalable 
clusters? 

Both failure detection and regroup scale to the numbers that were tested in the 
experiments. When scaling to larger numbers the state processing at receivers will 
become an issue. The serialized nature of GUP limits its scalability to 10-16 nodes 
in the current MSCS setup.

Are there any architectural bottlenecks that should be addressed if MSCS needs to 
be scalable? 
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The major issue in both failure detection and regroup is the implementation of 
a broadcast facility using repeated point-to-point messages. This introduces a 
significant overhead on the sender and on the network, and needs to be replaced by 
a simple multicast primitive. The RPC trains in the membership join operation and 
in GUP, create a major obstacle for scalability, especially when the systems operate 
under a significant load.

If MSCS is extended with development support for cluster aware applications are the 
current distributed services a good basis for these tools?

Support for cluster aware applications has strong requirements in the area of 
application and component management and failure handling, and requires efficient 
communication and coordination services. These services would need to be 
implemented using GUP, which is, in its current form, unsuitable to provide such a 
service.

To support cluster aware applications a better integration of membership and 
communication is needed. This will allow for the implementation of a very efficient 
communication service with properties similar to GUP. Such a service is capable of 
providing a solid basis for application and component level management and failure 
handling, and will offer efficient communication and coordination services.



Chapter 8

The Galaxy Framework for the Scalable 
Managament of Enterprise-Critical 
Cluster Computing

In this chapter we present the main concepts behind the Galaxy cluster management 
framework. Galaxy is focused on servicing large-scale enterprise clusters through 
the use of novel, highly scalable communication and management techniques. 
Galaxy is a flexible framework built upon the notion of low-level management of 
cluster farms, where within these farms islands of specific cluster management types 
can be created. A number of cluster profiles, which describe the components used 
in the different cluster types, are presented, as well as the components used in the 
management of these clusters.

8.1 Introduction

The face of enterprise cluster computing is changing dramatically. Whereas in the 
past clusters were dedicated resources for supporting particular styles of computing 
(OLTP, large batch processing, parallel computing, high-availability)[27,49,58,70, 
88,97], modern Data Centers hold large collections of clusters where resources can 
be shared among the different clusters or at least easily re-assigned to hotspots 
within the overall Data Center organization. A Data Center may see a wide variety 
of cluster types; cloned services for high-performance document retrieval, dynamic 
partitioning for application controlled load balancing, hot-standby support for 
business-critical legacy applications, parallel computing for autonomous data-
mining and real-time services for collaboration support. 
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It must be obvious that such a complex organization with a variety of cluster types 
exceeds the scope of conventional cluster management systems. In the Galaxy 
project we are concerned with constructing a framework for data-center-wide cluster 
management. Using this framework a management organization can be constructed 
that controls clusters and cluster resources in an integrated manner, allowing for a 
unified, data-center-wide approach to cluster management. 

Galaxy provides a multi-level approach. In its most basic configuration this offers 
two abstractions; the first is the farm, which is the collection of all nodes that are 
managed as a single organization, and the second is a cluster which is an island of 
nodes within the farm that provides a certain cluster style management, based on 
a cluster profile. A profile is a description of a set of components, implementing 
advanced distributed services that make up the support and control services for that 
particular cluster. 

Extreme care has been given to issues related to scalability, especially with respect 
to the components implementing the communication and distributed control 
algorithms. The novel techniques used in the communication, membership and 
failure detection modules allow scalability up to thousands of nodes. In our limited 
experimental setup we have shown that scaling up to 300-400 nodes is possible, 
giving us confidence that our future experiments with even larger sets of nodes will 
continue to show excellent scalability. 

The first phase of the development of Galaxy is complete; the framework and a set of 
generic management components are implemented and a number of example cluster 
profiles and their specialized management components are in daily use. The system 
is developed for the Microsoft’s Windows 2000 operating system, integrating tightly 
with the naming, directory, security, and other distributed services offered by the 
operating system. Galaxy has been selected by a major operating system vendor as 
the basis for its next generation cluster technology. 

This chapter is organized as follows: in sections 8.2 and 8.3 the model underlying 
the framework is presented and in sections 8.4 and 8.5 we provide some background 
on our approach to building scalable distributed components. In sections 8.6 through 
8.9 details are given on the design of the farm and cluster support. The chapter closes 
with some references to related work, a description of our upcoming distribution, 
and plans for the immediate future.
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8.2 General Model

Galaxy uses a multi-level model to deliver the cluster management functionality. The 
basic abstraction is that of a Farm [27], which is a collection of managed machines 
in a single geographical location. The farm can consist of potentially thousands of 
nodes, and is heterogeneous in nature, both with respect to machine architectures and 
network facilities. Galaxy provides a set of core components at each node in the farm 
that implement the basic control functionally. 

The administrative personnel responsible for the overall operation of the farm 
has a set of farm management tools, within which the Cluster Designer is most 
prominent. This tool allows an administrator to construct islands of clusters within 
the farm, grouping nodes in the farm together in tighter organizations to perform 
assigned functionality. Different cluster styles are defined using Cluster Profiles, 
which describe the set of components that make up the management and application 
support functionality for that particular cluster style. A new cluster is created based 
on a profile, and when a node is added to the cluster it will automatically instantiate 
the components described in the profile for the role this particular node is to play, and 
join the cluster management group for purpose of intra-cluster failure monitoring 
and membership management. 

Both at the farm and cluster level, the system architecture at a node is identical. At 
the core one finds a management component that implements membership, failure 
detection and communication. This management service is surrounded with a set of 
service components implementing additional functionality, such as an event service, 
a distributed process manager, a load management service, a synchronization service 
and others. These components export a public service specific API, to be used by 
other management services or applications. Internally each of these components 
implements a standard service API so that the components can be managed by 
the farm or cluster management service. The components receive service specific 
membership information, indicating the activity status of this service at the other 
nodes in the cluster or the farm. 

At a node that is part of a cluster, one would see two management services: one for the 
farm and one for the cluster, each with its own set of managed service components. 
To correctly visualize the hierarchy one should imagine an instance of the Cluster 
management service as a component managed by the Farm management server. In 
principle a node can be part of multiple clusters, although we have only found one 
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case in which overlapping was practical. We believe however that if creation of 
clusters as lightweight management entities is a simple enough action, we may see 
scenarios in which overlapping does play an important role. 

The existing case where overlapping clusters is used in Galaxy arises when grouping 
a collection of nodes into a management cluster. This cluster runs a set of services 
that is specific for controlling the overall management of the farm and configured 
clusters. The nodes in this cluster can be dedicated management nodes or can be 
part of other clusters, performing some general management tasks as background 
activities. The services that are specific for the management cluster are mainly 
related to event collection, persistency of overall management information and the 
automatic processing of management events. 

8.2.1 Extensions to the basic model

After Galaxy had been in use in production settings the need arose for two additional 
management abstractions that were not targeted in the initial design of Galaxy. 
The first extension, the notion of a meta-cluster, was introduced to deal with the 
limited scalability of legacy cluster applications. The second extension, geoplex 
management, addresses the need to have cluster management structures span nodes 
in multiple farms, where the farms are geographically distributed. 

Even though the distributed systems technology underlying Galaxy is highly 
scalable, the technology on which legacy applications are based often is limited 
in scale. Ideally an application cluster would consist of all the nodes necessary to 
implement the functionality, but the limited scalability forces the cluster designer 
to break the cluster into a set of smaller clusters based on the maximum scale of 
the cluster application. To still be able to consistently manage the resources shared 
among these smaller clusters, Galaxy implements a notion of a meta-cluster which 
provides meta-cluster wide membership and communication primitives. 

To manage clusters in a geoplex setting, Galaxy was augmented with a technology 
similar to the meta-clusters, but which functions at the farm level instead of the 
cluster level. In a geoplex membership entities are farms, and failure-detection and 
membership tracking is performed at the level of complete farms. Through geoplex-
wide communication primitives the farms share node and cluster level membership 
information. 
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Galaxy does not allow clusters to span nodes in multiple farms; however it does 
allow meta-clusters to encapsulate clusters that are in different farms to provide 
management of functionality offered through geographical distribution. 

8.3 Distribution model

Distribution support for clusters comes in two forms: first there are the distribution 
services to support the farm and cluster management infrastructure itself, these 
services provide the core mechanisms for all the distributed operations in Galaxy. 
Secondly there is the support offered to the applications that run on the clusters. 
In Galaxy the latter is offered through the services that are unique for each cluster 
configuration. 

A very natural approach in structuring these services is to model them as groups of 
collaborating components [6,7]. This notion of groups naturally appears in many 
places in the system, whether it is in naming, where one wants to be able to address 
the complete set of components implementing a service, in communication where 
one wants to send messages to all instances of a service, or in execution control 
where you want to synchronize all service instances, etc. The notion of a group 
appears from the core communication level all the way to the highest abstraction 
level where one wants the farm and contained clusters to be viewed as groups, to  
access and address them as single entities. 

In Galaxy the process group model is used throughout the whole framework, both 
in terms of conceptual modeling of the system, as in the technology used to provide 
the distribution support. In a modern architecture such as Galaxy, groups no longer 
necessarily consist of processes but are better viewed as interacting components. 
The technology that allows us to design the distributed components using a group 
abstraction provides at its core a view of the components in the group through a 
membership service, identifying which instances are presently collaborating. The 
service uses a failure detector to track the members of the group and to notify 
members of changes in the membership. The membership also provides a naming 
mechanism for communication, both for communication with the complete group 
as well as with individual members [8]. Modeling collaboration components as a 
group allows us to build support for complex interaction patterns where, for example 
message atomicity, request ordering or consensus on joint actions, play an important 
role. This core functionality is used to implement the various distributed operations 
such as state sharing, synchronization, quorum based operations, etc. 
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The communication and membership technology used to provide the group 
abstraction as part of Galaxy is a crucial component in achieving scalability. In 
Galaxy a new group communication system is used, where most of the limits on 
scalability that these systems exhibited in the past have been overcome. 

8.4 Scalability

Cornell’s Reliable Distributed Computing group has been building communication 
support for advanced distributed systems for the past 15 years, resulting in systems 
such as the Isis Toolkit and the Horus and Ensemble communication [8,80] 
frameworks. Most recently, the Spinglass project focuses on issues of scalability in 
distributed systems, with early results in the form of highly scalable communication 
protocols [10], failure detection [81] and resource management [82]. The scalability 
vision that drives the research in Spinglass, also has driven the design and 
development of Galaxy.  

Building on our experiences of building distributed systems, mainly in the industrial 
sector, we have collected a set of lessons that are crucial to developing scalable 
systems. These lessons drive our current research and are applied in the design of 
Galaxy project. The five most important are:

1. Turn scale to your advantage. When developing algorithms and protocols you 
have to exploit techniques that work better when the system grows in scale. 
Adding nodes to a system must result in more stable overall system and that 
provides more robust performance instead of less. Any set of algorithms that 
cannot exploit scaling properties when a system is scaled up is likely be the main 
bottleneck under realistic load and scaling conditions. Successful examples of 
this approach can be found in the gossip-based failure detector work [81], the 
bimodal multicast protocols [10], and the new multicast buffering techniques 
[72].

2. Make progress under all circumstances. Whenever a system grows it is likely 
that, at times, there will be components that are experiencing performance 
degradations, transiently or permanently, or even may have permanently failed 
or brought off-line. Traditionally designed cluster management systems all 
experience an overall performance degradation whenever certain components 
fail to meet basic performance criteria, often resulting in a system that runs at the 
pace of its slowest participant. These dependencies need to be avoided at the level 
of the cluster management infrastructure to avoid scenarios in which bad nodes 
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in the system drag down the complete cluster or, at the worst case, the farm [11]. 
Systems built based on the epidemic technology provide a probabilistic window 
within which the system is willing to tolerate failing components, without 
affecting the overall system. If, after this time window, the component has not 
recovered it is moved from the active set to the recovery set, where system 
dependent mechanisms are deployed to allow the component to catch up. This 
minimizes the impact on the overall system performance [8].

3. Avoid server-side transparency. If applications and support systems are designed 
in a manner unaware of the distributed nature of the execution environment, they 
are likely to exhibit limited scalability. Achieving true transparency for complex, 
production quality distributed systems is close to impossible, as the past has 
shown. Only by designing systems explicitly for distributed operation, will they 
be able to handle the special conditions they will encounter and thus be able to 
exhibit true scalability (see chapter 7).

4. Don’t try to solve all the problems in the middleware. As a consequence of a 
misguided attempt to guarantee transparency, research systems have focused 
providing support for all possible error conditions in the support software, 
attempting to solve these without involving the applications they need to 
support. The failure of this approach demonstrates a need for a tight interaction 
between application and support system. For example, applications can respond 
intelligently to complex conditions such as network partitioning and partition 
repair [103].

5. Exploit intelligent, non-portable runtimes. Cross platform portability is a laudable 
goal, but to build high performance distributed management systems one needs 
to resort to construct modules that encapsulate environment specific knowledge. 
For example the application must be able to inspect the environment using all 
available technology, and use the resulting knowledge in an intelligent manner. 
Any system that limits itself to technologies guaranteed to be available cross-
platform, condemns itself to highly inefficient management systems, that are 
unable to exploit platform specific information which is necessary in achieving 
high-performance. 

An important example is failure detection of services, hosts and networks. 
Approaching this problem in a cross-platform, portable manner is likely to result 
in a system that can only exploit a heartbeat mechanism, possibly augmented 
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with some SNMP status information [99]. Using specific knowledge about the 
environment will allow for construction of highly efficient failure detectors. A 
simple example is that some systems make ICMP error information available 
to the sender of the UDP message that triggered the error response, often an 
indication that the recipient is no longer available, and the failure detection can be 
cut short. Another example arises in the case where nodes are connected through 
a VIA interconnect, which provides ultra-reliable status information about the 
interconnected nodes, providing failure detection without the need for nodes to 
communicate.

8.5 Distribution support system

The Galaxy framework is designed with the assumption that there is access to a 
high-performance communication package, which provides advanced, configurable 
distributed systems services in style of the Horus and Ensemble systems. These 
services have to exhibit the scalability properties needed to provide a solid base for 
a scalable management system, as described in the previous section. In the current 
implementation we use an advanced communication package based on the new 
Spinglass protocols.

The Scalable Group Communication Service (SGCS) package is similar to the Horus 
and Ensemble in that it is built around a set of configurable communication stacks, 
which implement a unified mechanism for point-to-point and group communication, 
and provides an abstraction for participant membership and failure detection. This 
new system represents an advancement over these previous research systems in 
that it is based on the scalable failure detection, communication and state sharing 
protocols developed in the Spinglass project, and uses a next generation stack 
construction mechanism, allowing for asymmetric, optimized send and receive 
paths, and a message management paradigm that provides integration with user-
level network facilities. 

The communication system provides mechanisms for the creation of communication 
of multi-party communication channels with a number of reliability and ordering 
guarantees, and offers a unified name space for group and point-to-point 
communication. 

The protocol core of the system is portable but its runtime is specifically adapted to 
function well in kernel environments, and parts of the system used in this research 
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runs as a kernel module in Windows 2000. The complete package is encapsulated as 
a component server integrating well with existing development tools.

8.5.1 Failure detection and membership services

Essential for a reliable distributed system is the knowledge of which participants 
are available and which are off-line or have failed. To achieve this most systems 
deploy a failure detection service that tracks nodes and reports possible failures 
to subscribers. In Galaxy a multi-level failure detection service is used that can 
be configured to respond to failures in different time-frames. This gives us the 
opportunity to make trade-offs between accuracy, speed of detection and resource 
usage. For example in a cluster that runs a cloned application (i.e. a web server with 
replicated content), the reconfiguration triggered by a false suspicion is simple and 
can easily be undone when the system recognizes the mistake. However in the case 
of a partitioned database server a failure notification triggers a reconfiguration of the 
database layout and is likely to pull a standby server into the cluster configuration. 
Such a false suspicion is considered a disaster. 

The multi-level failure detector has several modules, of which the most important 
are:

Gossip-based failure detector

The failure detector is part of the light-weight state service of SGCS, which provides 
functionality for participants to share individual state, the consistency of which is 
guaranteed through an epidemic protocol. A node includes in its state a version 
number which it increments each time is contacts another node to gossip to. In this 
gossip message the node will distribute a vector of node identifiers combined with 
the latest version numbers and a hash of the state information it has. The receiver of 
this message can decide, by comparing the version number and hash vectors, whether 
it has information that is newer than the sender, or that the sender has information 
that is newer. The receiver can then decide to push the newer information it has to 
the original gossiper, and to request transmission of the updated information from 
the gossiper. Failure detection can be performed without the need for an additional 
protocol: whenever a node receives a version number for a node that is larger than 
the one it has, it updates a local timestamp for that node. If for a certain amount of 
time the version number of a node has not been incremented, the node is declared to 
have failed. The rigorous mathematics unpinning the epidemic data dissemination 
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theory allows for us to exactly determine the probability that a false suspicion will 
be made based on the parameters such as gossip rate and group size. As such this 
approach gives a clear control over the accuracy of the failure detection. A second 
advantage of this technique is that it allows each node to completely autonomously 
decide on whether another node has failed without the need for communication with 
other nodes.

Hierarchical gossip-based failure detector

Even though the gossip techniques are highly scalable, to minimize the 
communication and processing load needed to run the failure detector, a number of 
additional techniques are used. The SGCS light-weight state service has a notion of 
distance between nodes, which is partly based on operator configuration and partially 
determined through network tracking. The service will gossip less frequently with a 
node when the distance to that node increases. This has the additional advantage that 
router overload will not have an averse effect on the overall distribution probability. 
A second approach which yields an extremely scalable service is to organize the 
nodes into zones and organize the zones into virtual information hierarchies. The 
non-leaf zones in the hierarchy do not contain node information, but information on 
the child zones which are summaries from the individual entries at that zone level. 
This technique is successfully deployed in the Astrolabe tools and will be used for 
further integration into Galaxy [83].

Fast failure detector.

The gossip based failure detector is highly accurate, but slow. Over common 
communication links, with the communication load lower than 1% and a group size 
up to a thousand nodes, Galaxy tunes the failure detection threshold to be around 7-8 
seconds. This is convenient as a number of anomalies in PC and operating systems 
architectures have shown that there are scenarios under which nodes can be network-
silenced for several seconds, which would cause false suspicions when using more 
aggressive thresholds. Experiments with gossip-based failure detectors with more 
aggressive thresholds have been successfully performed, but mainly in controlled 
hardware and communication settings [79]. 

To address the need for faster failure detection, modules have been added to the 
multi-level failure detector that use more traditional techniques to track other nodes. 
These techniques are not as general and scalable as the gossip-based detector, and 
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as such are only deployed on subsets of nodes. Most commonly used is the buddy 
failure-detector module where in a group the individual nodes will ping each other 
and the failure of a node to respond to pings will trigger a failure suspicion. This 
suspicion decision is broadcast to the other nodes. This module is fully configurable 
in how many nodes a single node will track and how many suspicions one needs to 
receive before the node will indicate the suspicion to the other system modules. The 
module makes use of the membership information produced by the light-weight state 
service to configure which nodes to track. 

In Galaxy the farm membership is based on the gossip-based failure detection 
techniques, while the fast failure detectors are added to nodes based on management 
configuration. This can be based on knowledge of specific node and network 
configurations, or it can be part of a specific cluster profile.

Environmental failure detectors

The multi-level failure detector has a plug-in architecture for a class of very 
specialized failure detectors. These modules can track the environment to make 
intelligent and often highly accurate decisions about node availability. Examples of 
modules developed for particular Galaxy deployments are 

• UPS management-event processors, which using the power supply information 
to determine the health of a node.

• SNMP monitors of switch link state information
• ICMP error message processors
• High-speed interconnect connection-state information

Consensus based membership

To support environments where agreement on the membership is essential, SGCS 
provides a consensus based membership protocol that runs a traditional leader-based 
consensus protocol. This membership module takes the suspicions generated by 
the fast or gossip-based failure detectors and runs an agreement protocol to ensure 
that all the participants in the group have seen the membership changes and have 
taken actions accordingly. If the SGCS stack instance is configured which virtual 
synchronous messaging, it will tag information onto the membership agreement 
messages to ensure agreement on message delivery with respect to the membership 
changes.
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The use of different membership views in Galaxy

There are five different membership views in Galaxy, each of them implemented 
using some or all of the failure detectors described above. 

1. Farm Service membership. This membership is based on the gossip based failure 
detector, and the cluster administrator configures the threshold of when to switch 
to the hierarchical gossip based failure detector. The cluster administrator also 
has the option to add fast and environmental failure detectors to the farm service 
but in general the gossip-based failure detector is sufficient to implement the farm 
service membership functionality.

2. Cluster Service membership. This service uses the membership information from 
the farm service as basic input and adds at least a fast failure detector to run within 
the cluster group, possibly augmented with the consensus based membership 
module. The exact modules to be used, including the additional environmental 
modules, are based on the cluster profile constructed by the administrator.

3. Component membership. The cluster service maintains the membership list for 
the local galaxy components that subscribe to the cluster service functionality, 
and exchanges this information with the other nodes in the cluster. Given that this 
shared state information is of the single-writer, multiple-reader kind, no special 
communication properties are required except for a reliable group multicast. 
When a new node joins the cluster it receives a state message from each of the 
other cluster nodes. The components receive a membership view which includes 
the state of each cluster node, information on which other nodes are running this 
particular component.

4. Meta-cluster membership. Each of the clusters in the meta-cluster group elect 
two nodes that will join a separate communication channel on which the elected  
nodes will  exchange membership information from their local cluster. Associated 
with this communication channel is a failure detection module that runs less 
aggressive than the failure detectors in the member clusters. If at the local cluster 
the failure of an elected node is detected, a new node is elected to join the meta-
cluster membership, before the meta-cluster failure detector is triggered. If the 
meta-cluster failure detector is triggered it is an indication that all the nodes in a 
member cluster have failed.

5. Geoplex membership. This membership protocol uses a technique similar to the 
meta-cluster. Each farm elects a number of nodes to participate in the geoplex 
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membership protocol, where upon node failure new nodes are elected to  maintain 
the membership. The module is in general augmented with an environmental 
failure-detector that tracks the availability of the communication links between 
the data-centers.

8.5.2 Epidemic communication

Although a detailed description of the protocols used in SGCS is outside the scope 
of this chapter, it is important to understand the nature of the new protocols used 
to support the Galaxy operations. SGCS relies heavily on so-called epidemic or 
gossip protocols. In such protocols, each member, at regular intervals, chooses 
another member at random and exchanges information. Such information may 
include the “sequence number of the last message received”, the “current view of 
the group”, or the “version of the light-weight state”. This gossip is known to spread 
exponentially fast to all members in spite of message loss and failed members, and 
therefore communication systems based on this scale extremely well. In fact, this 
dissemination process is a well-understood stochastic process about which we can 
make several probabilistic guarantees. It allows the protocol designer to provide 
guarantees such as “the probability that a message is not delivered atomically is 
less than epsilon”. Here, epsilon can be configured to be a very small, configurable 
constant. 

Next to the excellent scalability of the information dissemination techniques, 
protocols based on these techniques are also very robust to node failures and message 
loss. Once information has been exchanged with a few nodes, the probability that 
it will not reach all nodes eventually is very small. Experiments with 75% message 
loss, or with nodes perturbed 50% of the time, show that it is almost impossible to 
stop the information dissemination once a few nodes have been infected. 

In SGCS the light-weight state service and the basic reliable multicast are 
implemented using epidemic protocols. These group membership protocols 
provide views to group members, which in turn, are built using information from 
the light-weight state service, and are thus also probabilistic in nature. On top of 
these protocols, SGSC provides lightweight versions of protocols that give more 
traditional (non-probabilistic) guarantees, such as virtual synchrony, total order and 
consensus. Because these protocols can now rely on the high probability of success, 
the amount of work they have to put into buffering, for example, is drastically 
reduced. These protocols do need to be aware that there are conditions under which 
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the guarantees for success will be violated (i.e. a message will not be delivered or 
recovered by the reliable multicast protocol). These conditions however are detected 
by the lower-level protocols and indicated to its subscribers, which can then run 
recovery protocols if necessary. 

8.6 The farm

Essential to enterprise cluster management is that the set of nodes out of which 
the clusters are created, can be viewed and managed as a single collection. This 
provides the manager with a single access point through which the operation of the 
complete data center clustering can be viewed and controlled. At this level Galaxy 
provides the notion of a Farm, which brings together all managed nodes into a single 
organizational unit. 

To provide the farm abstraction, each node runs a farm service, which implements 
farm membership, node failure detection, intra-farm communication and state 
sharing. Additionally the farm service includes configuration and security services, 
as well as management functionality for control of a collection of farm service 
components. These components are separate from the farm service process, allowing 
for the set of services used in a farm to be configurable, and extendable. Farm 
service component must implement a service control interface used by the farm 
service process to control the service components and to establish a communication 
mechanism for components to communicate or exchange state. 

The service components that are generally loaded at each farm node are: 

• Event Service: this service monitors the state of local node and generates Farm 
Events, which are disseminated to the collection of nodes that make up the 
management cluster. At the management cluster the events are automatically 
processed, and saved for off-line auditing. The event processors in the management 
cluster have the ability to find correlations in generated events, and to generate 
operator warnings. Future work in this area will include a capability for the event 
processors to automate corrective actions for certain alarm conditions. We are 
looking for integration of our event technology with current advances in online 
data mining. The Event service is extensible and can use a variety of sources from 
which events can be drawn; current mechanisms include the Windows2000 Event 
log, WMI objects, performance counters and ODBC data sources. The set of 
information sources to monitor, as well which objects to collect from the sources 
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is configurable. The service distributes its events in an XML encapsulation, 
allowing for easy extending at both event generator end process sides.

• Measurement Service: This service collects local performance information and 
posts this information in the Farm Management Information Database. The type 
and amount of information, as well as the update frequency is configurable at 
runtime when the information is drawn from the WMI and performance counters 
collections.

• Process and Job Control Service: This service implements functionality for 
controlled execution of processes on farm nodes. The service provides full 
security and job control, through an interface that allows authoritative users to 
create jobs on sets of nodes, add processes to an existing job and control the 
execution of the job. It provides full flexibility in client access. A client does not 
necessarily need to connect to a node where it wants to start processes, but can 
connect to any node in the farm to create and control jobs on any other node.

• Remote Script Service: Similar to the process service is the remote scripting 
engine, which allows administrators to produce simple scripts and execute 
these scripts concurrently on sets of nodes. This service is based on the Active 
Scripting component, which is augmented with a set of simple synchronization 
services, and output redirection and logging services.

• Component Installation Service: This is a simple service that ensures that 
the current components versions are installed based on farm configuration 
information and assigned cluster profiles.

8.6.1 Inserting nodes in the farm

To add a node to the farm, an administrator installs the basic farm management 
service and components, and starts the farm service. The farm service at the node 
uses a network resource discovery mechanism at startup time to locate basic 
information about the farm it is to be active in; it then announces itself to the farm 
controller service, which is part of the management cluster. The node will not 
become part of the farm automatically, but instead its insertion request is queued 
until an administrator has confirmed that this node is granted access to join the 
farm. Included in the confirmation process is a set of security actions that will 
enable the new node to access security tickets necessary for running a farm service, 
and to retrieve the necessary key information to communicate with the other farm 
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members. After the new node has joined the farm it retrieves the farm configuration, 
which results in the launch of the service components.

8.6.2 The Farm Information Database

Information about the nodes in the farm is kept in the Farm Management Information 
Database. In part this database is filled with static, administrator supplied information 
about the nodes, but much of the information in the database is dynamic in nature and 
updated constantly by the farm management components such as the measurement 
and the process control services. The database is completely distributed in design 
and can be accessed from each of the nodes in the farm without the need to contact 
other nodes. The database is updated using an epidemic dissemination protocol to 
ensure scalable operation, automatically controlling the update rates and the amount 
of data transferred based on the number of nodes involved.

8.6.3 Landscapes

To manage very large farms Galaxy provides a mechanism for viewing the state 
of the farm using different Landscapes. Landscapes are employed as a mechanism 
for organizing nodes into smaller collections, such that the administrator can get 
a detailed view of parts of the farm without being forced to deal with the overall 
picture. Landscapes are created by specifying grouping criteria in the form of a 
SQL statement, which is applied to the Farm Management Information Database. 
There are two forms of landscapes, based on the actions that update the landscape 
grouping: If the data used is static or changes only infrequently, a trigger is added 
to landscape control components such that the landscape is recomputed whenever a 
field changes. The second form handles landscapes that provide views of data that is 
dynamic in nature, and where the landscape is recomputed on a periodic basis. 

An example of the first form is grouping by physical location, by machine type 
or by assigned functionality. The second form generally handles grouping based  
on information such as compute load, number of active transaction components, 
number of client connections serviced or available storage space, often using an 
additional level of grouping based on cluster functionality. 

8.7 Cluster design and construction

Although the farm provides the administrator with a set of new tools to manage 
collections of nodes, they are too primitive to support the level of control, service 
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provision and customization needed in the types of cluster computing one typically 
encounters in an enterprise data center. To support the specialized operation each 
cluster instance requires additional functionality, which must be added on a per-
application basis to nodes that make up a cluster1. 

One of the most important tools in the farm management is the Cluster Designer, with 
which the administrator can group nodes together into a cluster and assign additional 
functionality in the form of cluster service components. Which components, and 
which component versions are needed for the operation of a particular cluster is 
specified in a predefined cluster profile, which is unique per type of cluster. The 
Cluster Designer manages these profiles, and a simple composition scheme is used 
to create new profiles for specialized clusters. 

Basic in the operation of each cluster is a cluster service, which is a set of components 
running at each node in a cluster. The cluster service provides functionality similar 
to the farm service with which it cooperates in sharing network and state sharing 
resources. The cluster service augments the functionality of the farm service 
with additional failure detection, which is a more focused version that exploits 
knowledge about the cluster to provide an as fast and reliable service as is possible, 
and with a cluster membership abstraction. The cluster membership is maintained 
using a consensus based membership protocol, guaranteeing that every member 
sees identical changes in the membership in the same order. The cluster service 
also provides additional communication services to the cluster components, and 
it provides component control and membership functionality similar to that of the 
farm service. The cluster service makes the cluster, the cluster member nodes and its 
cluster service components available to its members through a single unified naming 
scheme. 

Using the Cluster Designer is often not sufficient to create a fully functional cluster. 
Frequently the cluster service components need additional configuration. For 
example the web-clone cluster component needs to be configured to find the source 
of the document tree to be replicated or which cyclic multicast file transfer service 
to subscribe to, to receive document updates. Other more complex configuration 
situations arise when the nodes are physically sharing resources such as storage area 
networks, which may need additional management actions. Even though Galaxy is 
able to provide a large part of the cluster management and support infrastructure, the 
administrator still will need to install application level functionality and provide the 
configuration of application components.
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1 In the metaphor of farms and landscapes, clusters can be visualized as pastures, 
and although we would have liked to use this term, we will continue to use cluster, 
as it contributes to a better understand of the work.

8.8 Cluster communication services

When a cluster-service instantiates the components it manages, it provides the 
components with an interface for intra-component communication and membership 
notification, similar to the service the farm-service provides to its components. 
The cluster-service communication facilities are different from those in the farm-
service as they allow the cluster components to select communication properties 
such as reliability level and message ordering, or to provide flow and rate control 
parameterization. Cluster service components also have the possibility to create 
new communication channels within the cluster, to be used next to the basic intra-
component channel. 

The communication package used by the cluster-service is internally configurable, 
and the software components used inside the package are based on the particular 
cluster profile. For example if the cluster has access to multiple networks, or 
to a high-performance interconnect, it is the information in the cluster profile 
that determines which networks to use for administrative and intra-component 
communication, which networks can be used for additional communication created 
by the cluster service components, and which networks and techniques to use for 
failure detections. 

8.9 Cluster profiles and examples

To support the initial Galaxy development goals we defined a number of cluster 
types and the cluster profiles that describe them. For two profiles we have developed 
a complete set of example cluster service components; the Development Server and 
Component Server are in daily use to support related research. The components of 
a third profile, the Internet Game Server, have been developed in the past months, 
and are currently under stress test. Of the other examples, the Web-Clone and the 
Primary-Backup profiles are making the transition from paper to real software 
design. An overview of the example cluster profiles is in table 8.1. In Figure 8.1 an 
example component layout is shown. 
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8.9.1 Application development cluster

This is a cluster type that is in daily use within the research group, and handles the 
functionality that is needed to support team development of cluster applications. The 
majority of the functionality of the components deals with easy integration into a 
development environment, with support for process & job control, install & version 
control, logging and debug support, and resource usage measurement and reporting. 
Process control, install services and debug message services have client parts that 
are integrated into Microsoft Visual Studio, providing a single point of access for 

Profile Cluster Service Components
Application Development 
Cluster

Process & job control, install & versioning, debugging 
and distributed logging, Visual Studio integration, 
resource measurement.

Component Management 
Cluster 

System Services: Component Runtime, Component & 
Component factory membership, Debugging, Logging 
and Monitoring, Isolation Service
Application Services: State management, Global 
snapshots & Check-pointing, Synchronization, 
Consensus, Voting, Shared Data Structures

Game Server Cluster Client management, Application level 
request routing, Specialized Measurement service, 
Synchronization services, State Sharing services, Shared 
VM service

Primary-Backup Cluster Distributed Log Service, VM replication Service, 
Transaction service, Lock Manager, Fail-over & 
reconfiguration service

MSCS – Compatible Cluster Fail-over Manager, Resource Manager &Controllers, 
Node Manager, Membership Manager, Event Processor, 
Database Manager, Object Manager, Global Update 
Manager, Checkpoint Manager, Log Manager

Cloned Service Cluster Fail-over & reconfiguration service, Version & install 
service, Multicast file transfer service, Cache Control 
management.

Partitioned Service Cluster Client Request Redirector, Distributed Log service, 
Synchronization service, Transaction service, 
Lock Manager, Shared State Manager, Failover & 
reconfiguration service

Parallel Computing Cluster Job Queuing Manager, Process & Job Control, 
Synchronization service, Logging & Debugging service.

Table 8.1. Example Cluster Profiles
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development of cluster applications. Resource usage information is accessed at the 
developer side through a version of the Windows NT task manager that provides a 
cluster view instead of single node view.

8.9.2 Component management cluster

One of the main objectives of our cluster area research is to develop a programming 
and execution environment for Cluster-Aware applications. This research is triggered 
by our past failures to provide useful high-level programming concepts for building 
advanced distributed systems. The services offered by the components in this cluster 
make up an execution runtime for cluster application implemented as components 
themselves, similar in concept to MTS or COM+/AppCenter [103].

The services are split into two categories: the first handles general management 
functionality: Component runtime management, which includes a functionality for 
providing component- & component factory membership, debugging, logging & 
monitoring services, and component isolation mechanisms for fault-containment. 
The second category handles the high-level distributed systems support for cluster-
aware application construction: state management, global snapshots & check-
pointing, synchronization, consensus, voting, shared data structures.

8.9.3 Game server cluster

One of the areas that provides us with the most complex technical challenges for 
providing scalable services is that of real-time multi-user Internet Game Servers. 
Clusters are an obvious match to provide a cost-effective “scale-out” solution, but 
the server side of the most games has not been designed with any cluster-awareness. 
In our research we are interested in investigating what support services are useful 
to provide on a cluster dedicated to serving Game Engines. Our first experiments 
involved restructuring one of the Quake server engines and build service components 
that allowed load-balancing as well as client fail-over. The initial results are 
promising, but the testing (simulating thousands of Quake clients) is still too difficult 
to report on solid results. 

The cluster services that are developed to support the cluster version of the Quake 
game server are: client management, application level request routing, dedicated 
load measurement service, synchronization and state sharing services, and a shared 
VM service.
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8.10 Component development libraries

Building farm and cluster components and their clients is made easier through the 
use of two libraries that we have developed. The first library supports the creation of 
the cluster components by providing classes that handle the interaction with the farm 
and cluster server, by parsing membership reports and incoming message types and 
providing those through event based processing structure. This library also supplies 
classes for handling clients from outside the cluster, in case this component supports 
direct connections made by client programs. It provides a scheduler centralizing 
the handling of input from the client, the cluster-services, and other component 
instances communicating through the cluster service, making it easier to building 
state machine structured distributed components. 
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Figure 8.1. Layout of the various components in the Game Server Profile
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The second library provides a collection of classes that makes it easier to build client 
applications that do not run on the clusters themselves. The classes encapsulate 
connection management such that a cluster name can be used at connection time, 
and the support classes manage the connection to the nodes in the named cluster, and 
automatically reconnecting on connection failure, possibly to another node in the 
cluster. There are also classes in both libraries that deal with forwarding membership 
information to clients, naming clients, and routing replies to client programs.

8.11 Related work

There is a significant body of work on cluster management systems, but none of 
the previous work provides a framework for farm management and supports for 
multiple styles as cluster computing in the way that Galaxy does. Most of the cluster 
management systems provide only support for very specific styles of management 
as they are built to support the operation of specific commercial clusters. Of these 
commercial clusters VAXClusters [58] and Parallel Sysplex [70] deserve special 
mention as they did groundbreaking work in building general distribution support 
for clusters. Microsoft’s Cluster Service (MSCS) [100] has brought enterprise class 
clustering to the masses through a low-cost  solution for mainly fail-over scenarios. 
MSCS is limited in scale [101] and other styles of clustering are offered through 
separate Microsoft products such as NLB for web-site clustering or AppServer for 
middle-tier cluster management. In the Open Source community large number of 
packages are under development that support enterprise computing, of which two 
receive most attention: Linux-HA [85] which provides failure detection using a heart 
beat mechanism for Linux machines, and Compac’s Cluster-Infrastructure for Linux 
[20] which provides a re-implementation of some of the Tandem NonStop Cluster 
membership and inter-node communication technology for Linux machines. 

Cluster management systems supporting compute clusters are ubiquitous, most of 
them built at the major research labs to support custom clusters constructed over 
the past decade, e.g. [39]. With the advent of a trend towards more cost effective 
parallel computing, the Beowulf [97] package for parallel computing under Linux 
has become very popular, supporting a large number of compute cluster over the 
world. New directions in parallel computing require a more fine-grained, component 
based approach, as found in NCSA’s Symera [40]. 

Historically there were only a few high-profile management systems for high-
available cluster computing, which often was supported by dedicated cluster 
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hardware support such as the systems by Tandem and Stratus [49]. Since the move 
to more cost enterprise systems most of the vendors have developed commercial 
cluster management products for high availability. All of these systems have limited 
scalability [28] and are very specific in terms of hardware support or supported 
configurations. An overview of the various vendor products can be found in [77].

Scalability in cluster systems has been addressed in cluster research, but mostly 
from an application specific viewpoint: The Inktomi [42] technology is a highly 
scalable cluster targeted towards Internet search engines and document retrieval. 
A cluster based SS7 call processing center [43] with good scalability from a real-
time perspective, was build in 1998 using Cornell communication technology. 
Another cluster system that claims excellent scalability is Porcupine, which is very 
specifically targeted towards Internet mail processing systems [88]. In terms of 
specific distributed systems support for cluster management systems, there is only 
limited published work. Next to the systems based on Cornell research technology, 
the Phoenix system from IBM research has similar properties and is also applied 
to cluster management [3]. In the Oceano project research at IBM have started to 
experiment with automatic configuration and management of large datacenters, 
the results of which are fueling the Autonomic computing projects that focus on 
automatic management and self-healing systems.

8.12 Evaluating scalability

One of our activities that has not received much attention in this chapter but is a very 
important part of our research is ongoing work on developing a systematic approach 
to evaluating scalability. In this chapter we have made a number of claims about the 
scalability of the Galaxy farm and cluster components based on our theoretical and 
experimental results. It is outside of the scope of this chapter to present the detailed 
experimental and usage results and we refer the interested reader to the papers on 
probabilistic multicast [10,11],  buffering and garbage collection techniques [72], 
gossip based failure detection [81] and hierarchical epidemics & scalable datafusion 
[82,83] for additional details. 

There are many aspects to the scalability of distribution services. More research is 
needed before we are able to identify, isolate and measure, in a scientific manner, 
the scalability of systems. Providing a framework for reasoning about the scalability 
of complex distributed systems such as Galaxy, is one of our highest research 
priorities.
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PART - III

System experimentation and analysis of 
large-scale systems

Introduction

Understanding the way systems are used in production settings is essential for 
successful systems research. The design and development of Galaxy and the other 
tools that came out of the Spinglass project was largely driven by the experiences 
with deploying complex software systems that were a part of earlier research 
prototypes or widely used commercial products.

Observing active production systems in a way that lets us draw valid conclusions 
from the observations is a major challenge. Unlike a more traditional experiment 
design, there is only limited control over the variables that determine the usage of 
the system. Instrumentation, data collection and data analysis become very complex 
operations, and frequently a number of iterations of all three phases is necessary 
before the observation system meets the rigid requirements of proper system 
analysis. 

During 1997 and 1998, I designed a system for large scale tracing of file systems 
usage on standard workstations. The work was triggered by the observation that it was 
almost 10 years since the last general file system trace experiments were published, 
and that the changes in both workstation hardware and computer usage no longer 
warranted the usage of those older traces as predictors for modern system usage. 
Thus we are building cluster out of components which have a poorly understood 
behavior. A second motivation for the work was to understand the challenges in the 
design of a scalable trace system that would collect the data in a rigorous scientific 
manner. Analysis of the older traces has shown that those experiments were flawed 
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by the lack of appropriate statistical analysis, and the absence of the relevant 
information from the traces. 

It took more than a year to refine the trace system and the analysis procedures to a 
point where large scale tracing could be executed with confidence and the results 
used for proper statistical analysis. The data collection phase resulted in almost 20 
GByte of data representing over 190 million trace records. After the collection phase 
it still took more than 8 months, and the use of advanced tools, to produce the first 
results that could be seen as statistically significant. The sheer  amount of trace data 
required a non-traditional approach in processing the data. The results of the study 
were published in the 1999 ACM Symposium on Operating Systems Principles 
(SOSP) and can be found in chapter 9.

The case for rigorous statistical analysis

Section 6 of chapter 9 goes into details about the correctness of the statistical analysis 
and emphasizes the importance of including tail-analysis in the experiment analysis. 
Frequently,  experimental results are described using simple statistical tools (average, 
mean, variation, 95% mark) without actually testing whether the data distribution as 
a whole meets the criteria of a normal distribution. The presence of heavy tails in a 
workload can have a significant influence on the operation of a system, but by only 
using simple statistical tests it is likely that a tail is never discovered. This will lead 
to erroneous conclusions or under-performing systems if only the simple statistical 
parameters are used to tune a system.

In the case of the file systems tracing, the statistical analysis process is complicated 
by the difficulties of analyzing large amounts of trace data. In the statistical process it 
is essential that the distributions are visually inspected for anomalies, which becomes 
impossible when there are so many possible relations and time-scales to explore. 
Although there aren’t many precendents in systems research of processing these large 
amounts of data for exploring potential relations, it is a process that is quite common 
in settings outside of research. The process of exploring the trace-data is similar 
to the data-mining performed by many corporations on their customer and sales 
databases. By switching to using commercial-grade Online Analytical Processing 
(OLAP) tools and storing the trace data in a high-performance commercial database, 
the processing could be done with confidence. So-called “drill-down” operations 
into the many data-cubes constructed out of the data, provided clear insights and 



154 System experimentation and analysis of large-scale systems The case for rigorous statistical analysis 155154 System experimentation and analysis of large-scale systems The case for rigorous statistical analysis 155

permitted us to reach conclusions that would not have been possible without the use 
of these tools.

A final conclusion

The research cited above was primarily focused on the construction of the 
experiments themselves and the analysis of the results., Thought should also be 
given to how the results of these experiments might drive a new research agenda for 
file system development. 

If there is one clear observation on the differences between the earlier traces and the 
new results it is that applications on the early Unix systems were quite uniform in the 
way that they used the file system. In general they were developed by a small group of 
developers who shared the same philosophy of application design. The newer traces 
show that there is hardly any uniformity in the way that modern applications use the 
file system. The developers are a large, diverse group with no common approach. One 
application will close files immediately after reading them into memory, while others 
may keep them open from complete duration of the applications lifetime.  This leads 
to the conclusion that it is almost impossible to construct generic workloads that one 
can use to test file-system effectiveness. Using application centered workloads is 
likely to be more successful and produce more useful insights.

An important research question to ask about the observation of lack of uniformity in 
file systems programming is what triggers this diverse behavior.  Could it be that the 
limited functionality in the common file access application programming interface 
(open-rw-close) also is a contributing factor to the chaos? An avenue to explore for  
the future is whether a radical departure from the way developers use file access may 
better serve the needs of applications developers and will provide file systems with 
more predictable application behavior.
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Chapter 9

File system usage in Windows NT 4.0

We have performed a study of the usage of the Windows NT File System through 
long-term kernel tracing. Our goal was to provide a new data point with respect to 
the 1985 and 1991 trace-based File System studies, to investigate the usage details 
of the Windows NT file system architecture, and to study the overall statistical 
behavior of the usage data.

In this chapter we report on these issues through a detailed comparison with the 
older traces, through details on the operational characteristics and through a usage 
analysis of the file system and cache manager. Next to architectural insights we 
provide evidence for the pervasive presence of heavy-tail distribution characteristics 
in all aspect of file system usage. Extreme variances are found in session inter-
arrival time, session holding times, read/write frequencies, read/write buffer sizes, 
etc., which is of importance to system engineering, tuning and benchmarking.

9.1 Introduction

There is an extensive body of literature on usage patterns for file systems 
[5,45,59,66,71], and it has helped shape file system designs [56,69,87] that perform 
quite well. However, the world of computing has undergone major changes since 
the last usage study was performed in 1991; not only have computing and network 
capabilities increased beyond expectations, but the integration of computing in all 
aspects of professional life has produced new generations of systems and applications 
that no longer resemble the computer operations of the late eighties. These changes 
in the way computers are used may very well have an important impact on the usage 
of computer file systems. 
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One of the changes in systems has been the introduction of a new commercial 
operating system, Microsoft’s Windows NT, which has acquired an important 
portion of the professional OS market. Windows NT is different enough from Unix 
that Unix file systems studies are probably not appropriate for use in designing or 
optimizing Windows NT file systems. 

These two observations have lead us to believe that new data about file systems usage 
is required, and that it would be particularly interesting to perform the investigation 
on a Windows NT platform. 

In this chapter we report on a file system usage study performed mainly during 1998 
on the Windows NT 4.0 operating system. We had four goals for this study:

1. Provide a new data point with respect to earlier file system usage studies, 
performed on the BSD and Sprite operating systems.

2. Study in detail the usage of the various components of the Windows NT I/O 
subsystem, and examine undocumented usage such as the FastIO path.

3. Investigate the complexity of Windows NT file system interactions, with a focus 
on those operations that are not directly related to the data path.

4. Study the overall distribution of the usage data. Previous studies already hinted 
at problems with modeling outliers in the distribution, but we believe that this 
problem is more structural and warrants a more detailed analysis.

Next to these immediate goals, we wanted the investigation to result in a data 
collection that would be available for public inspection, and that could be used as 
input for file system simulation studies and as configuration information for realistic 
file system benchmarks.

The complexity of Windows NT file usage is easily demonstrated. When we type a 
few characters in the Notepad text editor, saving this to a file will trigger 26 system 
calls, including 3 failed open attempts, 1 file overwrite and 4 additional file open and 
close sequences. 

The rest of this chapter is structured as follows: in section 9.2 we describe the systems 
we measured, and in section 9.3 and 9.4, we describe the way we collected the data 
and processed it. In section 9.5 we examine the file system layout information, and 
in section 9.6 we compare our tracing results with the BSD and Sprite traces. Section 
9.7 contains a detailed analysis of the distribution aspects of our collected data. 
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In comparison with the Sprite and BSD traces
− Per user throughput remains low, but is about 3 times higher (24 Kbytes/sec) 

than in Sprite (8 Kb/sec)
− Files opened for data access are open for increasingly shorter periods: 75% of 

files remain open for less then 10 milliseconds versus a 75th percentile of 250 
milliseconds in Sprite.

− Most accessed files are short in length (80% are smaller than 26 Kbytes), which 
is similar to Sprite.

− Most access (60%) to files is sequential, but there is a clear shift towards 
random access when compared to Sprite.

− The size of large files has increased by an order of magnitude (20% are 4Mbytes 
or larger), and access to these files accounts for the majority of the transferred 
bytes.

− 81% of new files are overwritten within 4 milliseconds (26%) or deleted within 
5 seconds (55%).

Trace data distribution characteristics
− There is strong evidence of extreme variance in all of the traced usage 

characteristics.
− All the distributions show a significant presence of heavy-tails, with values for 

the Hill estimator between 1.2 and 1.7, which is evidence of infinite variance.
− Using Poisson processes and Normal distributions to model file system usage 

will lead to incorrect results.
Operational characteristics
− The burstiness of the file operations has increased to the point where it disturbs 

the proper analysis of the data.
− Control operations dominate the file system requests: 74% of the file opens are 

to perform a control or directory operation.
− In 60% of the file read requests the data comes from the file cache. 
− In 92% of the open-for-read cases a single prefetch was sufficient to load the 

data to satisfy all subsequent reads from the cache.
− The FastIO path is used in 59% of the read and 96% of the write requests.
− Windows NT access attributes such as temporary file, cache write- through, 

sequential access only, can improve access performance significantly but are 
underutilized.

File system content
− Executables, dynamic loadable libraries and fonts dominate the file size 

distribution.
− 94% of file system content changes are in the tree of user profiles (personalized 

file cache).
− Up to 90% of changes in the user’s profile occur in the WWW cache.
− The time attributes recorded with files are unreliable

Table 9.1. Summary of observations
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Sections 9.8, 9.9 and 9.10 contain details about the operation of various Windows 
NT file system components. Section 9.11 touches on related work and section 9.12 
summarizes the major points of the study. An overview of our observations can be 
found in table 9.1.

9.2 Systems under study

We studied a production environment in which five distinct categories of usage are 
found: 

• Walk-up usage. Users make use of a pool of available systems located in a 
central facility. The activities of these users vary from scientific analysis and 
program development to document preparation. 

• Pool usage. Groups of users share a set of dedicated systems, located near their 
work places. These users mainly are active in program development, but also 
perform a fair share of multimedia, simulation and data processing.

• Personal usage. A system is dedicated to a single user and located in her office. 
The majority of the activities is in the category of collaborative style applications, 
such as email and document preparation. A smaller set of users uses the systems 
for program development.

• Administrative usage. All these systems are used for a small set of general 
support tasks: database interaction, collaborative applications, and some 
dedicated administrative tools.

• Scientific usage. These systems support major computational tasks, such as 
simulation, graphics processing, and statistical processing. The systems are 
dedicated to the small set of special applications.

The first four categories are all supported by Pentium Pro or Pentium II systems 
with 64-128 Mb memory and a 2-6 GB local IDE disk. The pool usage machines 
are in general more powerful (300-450 MHz, some dual processors), while the 
other machines are all in the 200 MHz range. The scientific usage category consists 
of Pentium II 450 Xeon dual and quad processors with a minimum of 256 MB of 
memory and local 9-18 GB SCSI Ultra-2 disks. All systems ran Windows NT 4.0 
with the latest service packs applied. At the time of the traces the age of file systems 
ranged from 2 months to 3 years, with an average of 1.2 years.
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There is central network file server support for all users. Only a limited set of personal 
workstations is supported through a backup mechanism, so central file storage is 
implicitly encouraged. All systems are connected to the network file servers through 
a 100 Mbit/sec switched Ethernet. The users are organized in three different NT 
domains, one for the walk-up usage, one general usage and one for experiments. The 
experimental domain has a trust relationship with the general domain and network 
file services are shared. The walk-up domain is separated from the other domains 
through a network firewall and has its own network file services. 

From the 250 systems that were available for instrumentation, we selected a set of 
45 systems based on privacy concerns and administrative accessibility. A subset of 
these systems was traced for 3 periods of 2 weeks during the first half of 1998 while 
we adjusted the exact type and amount of data collected. Some of the changes were 
related to the fact that our study was of an exploratory nature and the data collection 
had to be adjusted based on the initial results of the analysis. Other adjustments 
were related to our quest to keep the amount of data per trace record to an absolute 
minimum, while still logging sufficient information to support the analysis. We were 
not always successful as, for example, logging only the read request size is of limited 
use if the bytes actually read are not also logged. The analysis reported in this chapter 
is based on a final data collection that ran for 4 weeks in November and December of 
1998.  The 45 systems generated close to 19 GB of trace data over this period.

Since then we have run additional traces on selected systems to understand particular 
issues that were unclear in the original traces, such as burst behavior of paging I/O, 
reads from compressed large files and the throughput of directory operations.

9.3 Collecting the data

The systems were instrumented to report two types of data: 1) snapshots of the 
state of the local file systems and 2) all I/O requests sent to the local and remote file 
systems. The first type is used to provide basic information about the initial state of 
the file system at the start of each tracing period and to establish the base set of files 
toward which the later requests are directed. In the second type of data all file system 
actions are recorded in real-time. 

On each system a trace agent is installed that provides an access point for remote 
control of the tracing process. The trace agent is responsible for taking the periodic 
snapshots and for directing the stream of trace events towards the collection servers. 
The collection servers are three dedicated file servers that take the incoming event 
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streams and store them in compressed formats for later retrieval. The trace agent 
is automatically started at boot time and tries to connect to a collection server; if it 
succeeds, it will initiate the local data collection. If a trace agent loses contact with 
the collection servers it will suspend the local operation until the connection is re-
established.

9.3.1 File system snapshots

Each morning at 4 o’clock a thread is started by the trace agent server to take a 
snapshot of the local file systems. It builds this snapshot by recursively traversing 
the file system trees, producing a sequence of records containing the attributes of 
each file and directory in such a way that the original tree can be recovered from the 
sequence. The attributes stored in a walk record are the file name and size, and the 
creation, last modify and last access times. For directories the name, number of files 
entries and number of subdirectories is stored. Names are stored in a short form as 
we are mainly interested in the file type, not in the individual names. On FAT file 
systems the creation and last access times are not maintained and thus ignored. 

The trace agent transfers these records to the trace collection server, where they are 
stored in a compressed format. Access to the collection files is through an OLE/
DB provider, which presents each file as two database tables: one containing the 
directory and the other containing file information. 

Producing a snapshot of a 2 GB disk takes between 30 and 90 seconds on a 200 MHz 
P6.

9.3.2 File system trace instrumentation

To trace file system activity, the operating system was instrumented so that it would 
record all file access operations. An important subset of the Windows NT file system 
operations are triggered by the virtual memory manager, which handles executable 
image loading and file cache misses through its memory mapped file interface. As 
such, it is not sufficient to trace at the system call level as was done in earlier traces. 
Our trace mechanism exploits the Windows NT support for transparent layering 
of device drivers, by introducing a filter driver that records all requests sent to 
the drivers that implement file systems. The trace driver is attached to each driver 
instance of a local file system (excluding removable devices), and to the driver that 
implements the network redirector, which provides access to remote file systems 
through the CIFS protocol.
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All file systems requests are sent to the I/O manager component of the Windows 
NT operating system, regardless of whether the request originates in a user-level 
process or in another kernel component, such as the virtual memory manager or 
the network file server. After validating the request, the I/O manager presents it to 
the top-most device-driver in the driver chain that handles the volume on which the 
file resides. There are two driver access mechanisms: one is a generic packet based 
request mechanism, in which the I/O manager sends a packet (an IRP -- I/O request 
packet) describing the request, to the drivers in the chain sequentially. After handling 
a request packet a driver returns it to the I/O manager, which will then send it to the 
next device. A driver interested in post-processing of the request, after the packet 
has been handled by its destination driver, modifies the packet to include the address 
of a callback routine. A second driver access mechanism, dubbed FastIO, presents 
a direct method invocation mechanism: the I/O manager invokes a method in the 
topmost driver, which in turn invokes the same method on the next driver, and so on. 
The FastIO path is examined in more detail in section 9.10. 

The trace driver records 54 IRP and FastIO events, which represent all major I/O 
request operations. The specifics of each operation are stored in fixed size records 
in a memory buffer, which is periodically flushed to the collection server. The 
information recorded depends on the particular operation, but each record contains at 
least a reference to the file object, IRP, File and Header Flags, the requesting process, 
the current byte offset and file size, and the result status of the operation. Each record 
receives two timestamps: one at the start of the operation and the other at completion 
time. These time stamps have a 100 nanosecond granularity. Additional information 
recorded depends on the particular operation, such as offset, length and returned 
bytes for the read and write operations, or the options and attributes for the create 
operation. An additional trace record is written for each new file object, mapping 
object id to a file name.

The trace driver uses a triple-buffering scheme for the record storage, with each 
storage buffer able to hold up to 3,000 records.  An idle system fills this size storage 
buffer in an hour; under heavy load, buffers fill in as little as 3-5 seconds.  Were the 
buffers to fill in less than 1 second, the increased communication latency between 
the host and server could lead to the overflow of the tracing module storage buffer. 
The trace agent would detect such an error, but this never occurred during our tracing 
runs.
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Kernel profiling has shown the impact of the tracing module to be acceptable; under 
heavy IRP load the tracing activity contributed up to 0.5% of the total load on a 200 
MHz P6. 

In a 24-hour period the file system trace module would record between 80 thousand 
and 1.4 million events. 

9.3.3 Executable and paging I/O

Windows NT provides functionality for memory mapped files, which are used 
heavily by two system services: (1) the loading of executables and dynamic loadable 
libraries is based on memory mapped files, and (2) the cache manager establishes a 
file mapping for each file in its cache, and uses the page fault mechanism to trigger 
the VM manager into loading the actual data into the cache. This tight integration of 
file system, cache manager and virtual memory manager poses a number of problems 
if we want to accurately account for all the file system operations.

The VM manager uses IRPs to request the loading of data from a file into memory and 
these IRPs follow the same path as regular requests do. File systems can recognize 
requests from the VM through a PagingIO bit set in the packet header. When tracing 
file systems one can ignore a large portion of the paging requests, as they represent 
duplicate actions: a request arrives from process and triggers a page fault in the 
file cache, which triggers a paging request from the VM manager. However, if we 
do ignore paging requests we would miss all paging that is related to executable 
and dynamic loadable library (dll) loading, and other use of memory mapped files. 
We decided to record all paging requests and filter out the cache manager induced 
duplicates during the analysis process.

We decided in favor of this added complexity, even though it almost doubled the 
size of our traces, because of the need for accuracy in accounting for executable-
based file system requests. In earlier traces the exec system call was traced to record 
the executable size, which was used to adjust the overall trace measurements. In 
Windows NT this is not appropriate because of the optimization behavior of the 
Virtual Memory manager: executable code pages frequently remain in memory after 
their application has finished executing to provide fast startup in case the application 
is executed again. 
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9.3.4 Missing and noise data

We believe the system is complete in recording all major file system IO events, 
which is sufficient for getting insight into general Windows NT file system usage. 
There are many minor operations for which we did not log detailed information 
(such as locking and security operations), but they were outside of the scope of our 
study. During our analysis we found one particular source of noise: the local file 
systems can be accessed over the network by other systems. We found this access to 
be minimal, as in general it was used to copy a few files or to share a test executable. 
Given the limited impact of these server operations we decided to not remove them 
from the trace sets. 

9.4 The data analysis process

The data analysis presented us with a significant problem: the amount of data was 
overwhelming. The trace data collection run we are reporting on totaled close to 20 
GB of data, representing over 190 million trace records. The static snapshots of the 
local disks resulted in 24 million records. 

Most related tracing research focuses on finding answers to specific sets of questions 
and hypotheses, which could be satisfied through the use of extensive statistical 
techniques, reducing the analysis to a number crunching exercise. Given the 
exploratory nature of our study we needed mechanisms with which we could browse 
through the data and search for particular patterns, managing the exposed level of 
details.  Developing a representation of the data such that these operations could 
be performed efficiently on many millions of records turned out to be a very hard 
problem. 

We were able to find a solution by realizing that this was a problem identical to 
the problems for which there is support in data-warehousing and on-line analytical 
processing (OLAP).  We developed a de-normalized star schema for the trace data 
and constructed corresponding database tables in SQL-server 7.0. We performed a 
series of summarization runs over the trace data to collect the information for the 
dimension tables. Dimension tables are used in the analysis process as the category 
axes for multi-dimensional cube representations of the trace information. Most 
dimensions support multiple levels of summarization, to allow a drill-down into the 
summarized data to explore various levels of detail. An example of categorization is 
that a mailbox file with a .mbx type is part of the mail files category, which is part of 
the application files category.
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We departed from the classical data-warehouse model in that we used two fact 
tables (the tables that hold all the actual information), instead of one. The first table 
(trace) holds all the trace data records, with key references to dimension tables. The 
second table (instance) holds the information related to each FileObject instance, 
which is associated with a single file open-close sequence, combined with summary 
data for all operations on the object during its life-time.  Although the second table 
could be produced by the OLAP system, our decision to use two fact tables reduced 
the amount of storage needed in the trace table by references to the instance table, 
reducing the processing overhead on operations that touch all trace records. 

The use of a production quality database system provided us with a very efficient 
data storage facility. An operation that would touch all trace data records, such as 
calculation of the basic statistical descriptors (avg, stdev, min, max) of request inter-
arrival times, runs at 30% of the time a hand optimized C-process on the original 
trace data takes. More complex statistical processing that could not be expressed 
in SQL or MDX was performed using the SPSS statistical processing package that 
directly interfaces with the database. 

Because we processed the data using different category groupings (e.g. per day, 
per node, per user, per process, etc.) our analysis frequently did not result in single 
values for the statistical descriptors. In the text we show the ranges of these values 
or, where relevant, only the upper or lower bound. 

9.5 File system content characteristics

To accurately analyze the real-time tracing results we needed to examine the 
characteristics of the set of files that were to be accessed in our trace sessions. 
For this we took snapshots of each of the file systems that was used for tracing as 
described in section 9.3.1. We collected file names and sizes, and creation and access 
times, as well as directory structure and sizes. 

We supplemented this data with periodic snapshots of the user directories at the 
network file severs. However, the results of these snapshots cannot be seen as the 
correct state of the system from which the real-time tracing was performed, as they 
included the home directories of more users than those being traced. The network 
file server information was used to establish an intuitive notion of the differences 
between local and network file systems.
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Recently Douceur and Bolosky have published a study on the content of over 10,000 
Windows NT file systems within Microsoft [28]. Most of our findings are consistent 
with their conclusions, and we refer to their paper for a basic understanding of 
Windows NT file system content. Our content tracing allowed us to track the state of 
the file systems over time, and in this section we report from that specific view.

We see that the local file systems have between 24,000 and 45,000 files, that the file 
size distribution is similar for all systems, and that the directory depth and sizes are 
almost identical. File systems are between 54% and 87% full. 

The network server file systems are organized into shares, which is a remote 
mountable sub-tree of a file system. In our setting each share represents a user’s 
home directory. There was no uniformity in size or content of the user shares; sizes 
ranged from 500 Kbytes to 700 Mbytes and number of files from 150 to 27,000. The 
directory characteristics exhibit similar variances.

Decomposition of the local and network file systems by file type shows a high 
variance within the categories as well as between categories. What is remarkable 
is that this file type diversity does not appear to have any impact on the file size 
distribution; the large-sized outliers in the size distribution dominate the distribution 
characteristics. If we look again at the different file types and weigh each type by 
file size we see that the file type distribution is similar for all system types, even for 
the network file systems. The file size distribution is dominated by a select group of 
file-types that is present in all file systems. For local file systems the size distribution 
is dominated by executables, dynamic loadable libraries and fonts, while for the 
network file system the set of large files is augmented with development databases, 
archives and installation packages.

When we examine the local file systems in more detail we see that the differences 
in file system state are determined by two factors: 1) the file distribution within the 
user’s profile, and 2) the application packages installed. Most of our test systems 
have a limited number of user specific files in the local file system, which are 
generally stored on the network file servers. 

Of the user files that are stored locally between 87% and 99% can be found in the 
profile tree (\winnt\profiles\<username>). Each profile holds all the files that are 
unique to a user and which are stored by the system at a central location. These files 
are downloaded to each system the user logs into from a profile server, through the 
winlogon process. This includes files on the user’s desktop, application specific data 
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such as mail files, and the user’s world-wide-web cache. At the end of each session 
the changes to the profiles are migrated back to the central server. When we detect 
major differences between the systems, they are concentrated in the tree under the 
\winnt\profiles directory. For the “Temporary Internet Files” WWW cache we 
found sizes between 5 and 45 Mbytes and with between 2,000 and 9,500 files in the 
cache. 

A second influence on the content characteristics of the file system is the set of 
application packages that are installed. Most general packages such as Microsoft 
Office or Adobe Photoshop have distribution dynamics that are identical to the 
Windows NT base system and thus have little impact on the overall distribution 
characteristics. Developer packages such as the Microsoft Platform SDK, which 
contains 14,000 files in 1300 directories, create a significant shift in file-type count 
and the average directory statistics. 

When we examine the changes in the file systems over time, similar observations can 
be made. Major changes to a Windows NT file system appear when a new user logs 
onto a system, which triggers a profile download, or when a new application package 
is installed. Without such events, almost all of the measured changes were related to 
the current user’s activities, as recorded in her profile. A commonly observed daily 
pattern is one where 300-500 files change or are added to the system, with peaks of 
up to 2,500 and 3,000 files, up to 93% of which are in the WWW cache. 

Changes to user shares at the network file server occur at much slower pace. A 
common daily pattern is where 5-40 files change or are added to the share, with 
peaks occurring when the user installs an application package or retrieves a large set 
of files from an archive.

If we look at the age of files and access patterns over time, a first observation to 
make is that the three file times recorded with files (creation, last access, last change) 
are unreliable. These times are under application control, allowing for changes that 
cause inconsistencies. For example, in 2-4% of the examined cases, the last change 
access is more recent than the last access times. Installation programs frequently 
change the file creation time of newly installed files to the creation time of the file 
on the installation medium, resulting in files that have creation times of years ago on 
file systems that are only days or weeks old. In [89] the creation times were also not 
available and a measure used to examine usage over time was the functional lifetime, 
defined as the difference between the last change and the last access. We believe that 
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these timestamps in Windows NT are more accurate than the creation time, as the 
file system is the main modifier of these timestamps, but we are still uncertain about 
their correctness, and as such we cannot report on them.

9.6 BSD & Sprite studies revisited

One of the goals of this study was to provide a new data point in relation to earlier 
studies of the file system usage in BSD 4.2 and the Sprite operating systems. These 
studies reported their results in three categories: 1) user activity (general usage of the 
file system on a per user basis), 2) access patterns (read/write, sequential/random), 
and 3) file lifetimes. A summary of the conclusions of this comparison can be found 
in table 9.1.

The Windows NT traces contain more detail than the BSD/Sprite traces, but in 
this section we will limit our reporting to the type of data available in the original 
studies. 

Strong caution: when summarizing the trace data to produce tables identical to those 
of the older traces, we resort to techniques that are not statistically sound. As we will 
show in section 9.7, access rates, bytes transferred and most of the other properties 
investigated are not normally distributed and thus cannot be accurately described by 
a simple average of the data. We present the summary data in table 9.2 and 9.3 to 
provide a historical comparison. 

9.6.1 User activity

Table 9.2 reports on the user activity during the data collection. The tracing period 
is divided into 10-minute and 10-second intervals, and the number of active users 
and the throughput per user is averaged across those intervals. In the BSD and Sprite 
traces it was assumed that 10 minutes was a sufficient period to represent a steady 
state, while the 10-second average would more accurately capture bursts of activity. 

The earlier traces all reported on multi-user systems, while the Windows NT 
systems under study are all configured for a single user. A user and thus a system are 
considered to be active during an interval if there was any file system activity during 
that interval that could be attributed to the user. In Windows NT there is a certain 
amount of background file system activity, induced by systems services, that was 
used as the threshold for the user activity test. 
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The result of the comparison is in table 9.2. The average throughput per user has 
increased threefold since the 1991 Sprite measurements. A remarkable observation 
is that this increase can only be seen for the 10-minute periods, for the 10-second 
period there was no such increase and the peak measurements are even lower. 

The Sprite researchers already noticed that the increase in throughput per user was 
not on the same scale as the increase of processor power per user. They attributed 
this to the move from a system with local disk to a diskless system with network 
file systems. In our traces we are able to differentiate between local and network 
access, and when summarizing it appears that there is indeed such a difference in 
throughput. However detailed analysis shows that the difference can be completely 
attributed to the location of executables and large system-files such as fonts, which 
are all placed on the local disk.

One of the reasons for the high peak load in Sprite was the presence of large files 
from a scientific simulation. Although the scientific usage category in our traces uses 
files that are of an order of magnitude larger (100-300 Mbytes), they do not produce 
the same high peak loads seen in Sprite. These applications read small portions of the 
files at a time, and in many cases do so through the use of memory-mapped files.

The peak load reported for Windows NT was for a development station, where in a 
short period a series of medium size files (5-8 Mb), containing precompiled header 
files, incremental linkage state and development support data, was read and written.

9.6.2 File access patterns

The BSD and Sprite (and also the VMS [78]) traces all concluded that most access 
to files is sequential. Summaries of our measurements, as found in table 9.3, support 
this conclusion for Windows NT file access, but there is also evidence of a shift 
towards more randomized access to files when compared to the Sprite results. 

A sequential access is divided into two classes: complete file access and partial file 
access. In the latter case all read and write accesses are sequential but the access does 
not start at the beginning of the file or transfers fewer bytes than the size of the file 
at close time. 

The Windows NT traces do not support the trend seen in Sprite, where there was a 
10% increase in sequential access. On average 68% of the read-only accesses were 
whole-file sequential, versus 78% in the Sprite traces. A significant difference from 
Sprite is the amount of data transferred sequentially: in Sprite 89% of the read-only 
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Figure 9.1. The cumulative distribution of the sequential run length weighted by the 
number of files

run length (bytes)

10 100 1K 10K 100K

pe
rc
en
ta
ge

of
fi
le
s

0

20

40

60

80

100

read runs

write runs

run length(bytes)

10 100 1K 10K 100K

pe
rc
en
ta
ge

of
By
te
s
Tr
an
sf
er
ed

0

20

40

60

80

100

read runs

write runs

Figure 9.2. The cumulative distribution of the sequential run length weighted by 
bytes transferred
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opened
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data was transferred sequentially versus 58% in the Windows NT traces. When 
comparing this type of trace summary there is a stronger presence of random access 
to data both in number of accesses and in the amount of data accessed for all file 
usage categories.

Another important access pattern examined is that of the sequential runs, which is 
when a portion of a file is read or written in a sequential manner. The prediction of 
a series of sequential accesses is important for effective caching strategies. When 
examining these runs we see that they remain short; the 80% mark for Sprite was 
below the 10 Kbytes, while in our traces we see a slight increase in run length with 
the 80% mark at 11 Kbytes (figure 9.1). 

An observation about the Sprite traces was that most bytes were transferred in the 
longer sequential runs. The Windows NT traces support this observation, although 
the correlation is less prominent (figure 9.2). Access to large files shows increasing 
random access patterns, causing 15%-35% (in some traces up to 70%) of the bytes 
to be transferred in non-sequential manner.

If we look at all file open sessions for which data transfers where logged, not just 
those with sequential runs, we see that the 80% mark for the number of accesses 

File open times

1 msec 1 sec 16 min 4 days

Pe
rc
en
ta
ge

of
Fi
le
s

0

20

40

60

80

100

all files
local file system
network file server

Figure 9.5. The file open time cumulative distribution, weighted by the number of 
files.



176 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 177176 File system usage in Windows NT 4.0 9.6 BSD & Sprite studies revisited 177

changes to 24 Kbytes. 10% of the total transferred bytes were transferred in sessions 
that accessed at least 120 Kbytes.

When examining the size of files in relation to the number of sequential IO operations 
posted to them we see a similar pattern: most operations are to short files (40% to 
files shorter than 2K) while most bytes are transferred to large files (figures 9.3 and 
9.4). 

In Sprite the researchers found that, when examining the top 20% of file sizes, an 
increase of an order of magnitude was seen with respect to the BSD traces. This 
trend has continued: in the Windows NT traces the top 20% of files are larger than 
4 Mbytes.  An important contribution to this trend comes from the executables and 
dynamic loadable libraries in the distribution, which account for the majority of 
large files.

The last access pattern for which we examine the traces concerns the period of time 
during which a file is open. In this section we only look at file open sessions that 
have data transfer associated with them; sessions specific for control operation are 
examined in section 9.8. The results are presented in figure 9.5; about 75% of the 
files are open less than 10 milliseconds.  This is a significant change when compared 
to the Sprite and BSD traces, which respectively measured a quarter-second and a 
half-second at 75%. The less significant difference between the two older traces was 
attributed to the fact that in the BSD traces the I/O was to local storage while in the 
Sprite the storage was accessed over the network. In the Windows NT traces we are 
able to examine these access times separately, and we found no significant difference 
in the access times between local and remote storage.

9.6.3 File lifetimes

The third measurement category presented in the BSD & Sprite traces is that of 
the lifetime of newly created files. The Sprite traces showed that between 65% and 
80% of the new files were deleted within 30 seconds after they were created. In the 
Windows NT traces we see that the presence of this behavior is even stronger; up to 
80% of the newly created files are deleted within 4 seconds of their creation.

In Windows NT we consider three sources for deletion of new files: (1) an existing 
file is truncated on open by use of a special option (37% of the delete cases), (2) a 
file is newly created or truncated and deleted using a delete control operation (62%), 
and (3) a file is opened with the temporary file attribute (1%).
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In about 75% of the delete-through-truncate cases a file was overwritten within 4 
milliseconds after it was created. The distribution shows a strong heavy tail with the 
top 10% having a lifetime of at least 1 minute, and up to 18 hours. If we inspect the 
time between the closing of a file and the subsequent overwrite action, we see that 
over 75% of these files are overwritten within 0.7 millisecond of the close. 

In the case of explicitly deleted files, we see a higher latency between create and 
delete action. 72% of these files are deleted within 4 seconds after they were created 
and 60% 1.5 seconds after they were closed (see figure 9.6). 

One of the possible factors in the difference in latency is related to which process 
deletes the file. In 94% of the overwrite cases, the process that overwrites the file 
also created it in the first place, while in 36% of the DeleteFile cases the same 
process deletes the file. A second factor is that there are no other actions posted to 
overwritten files, while in 18% of the DeleteFile cases, the file is opened one or more 
times between creation and deletion.

The temporary file attribute not only causes the file to be deleted at close time, 
but also prevents the cache manager’s lazy writer threads from marking the pages 
containing the file data for writing to disk. Although it is impossible to extract the 
exact persistency requirements for temporary file usage from the traces, analysis 
suggests that at least 25%-35% of all the deleted new files could have benefited from 
the use of this attribute.

In 23% of the cases where a file was overwritten, unwritten pages were still present 
in the file cache when the overwrite request arrived. In the case of the CreateFile/
DeleteFile sequence 5% of the newly created files had still unwritten data present in 
the cache when deleted. Anomalous behavior was seen in 3% of the cases where the 
file was flushed from the cache by the application before it was deleted.

The apparent correlation between the file size and lifetime, as noticed by the Sprite 
researchers, is tremendously skewed by the presence of large files. In the Windows 
NT case only 4% of the deleted files are over 40 Kbytes and 65% of the files are 
smaller than 100 bytes. In the traces we could not find any proof that large temporary 
files have a longer lifetime. Figure 9.7 shows a plot of lifetime versus size of a trace 
sample, and although there are no large files in this plot that are deleted in less then 1 
second, there is no statistical justification for a correlation between size and lifetime 
of temporary files.
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9.7 Data distribution

When analyzing the user activity in section 9.6.1 we were tempted to conclude 
that for Windows NT the average throughput in general has increased, but that the 
average in burst load has been reduced. The use of simple averaging techniques 
allows us to draw such conclusions, in similar fashion one could conclude from 
the file access patterns that most file accesses still occur in a read-only, whole-file 
sequential manner. If we examine the result of analysis of the file access in table 
9.3 once more, the truly important numbers in that table are the ranges of values 
that were found for each of the statistical descriptives. The -/+ columns in the table 
represent the min/max values found when analyzing each trace separately.

When we have a closer look at the trace data and the statistical analysis of it, we find 
a significant variance in almost all variables that we can test. A common approach 
to statistically control burstiness, which is often the cause of the extreme variances, 
is to examine the data on various time scales. For example, in the previous two 
file system trace reports, the data was summarized over 10-second and 10-minute 
intervals, with the assumption that the 10-minute interval would smoothen any 
variances found in the traces. 

If, for example, we consider the arrival rate of file system requests to be drawn from 
a Poisson distribution, we should see that the variances should diminish when we 
view the distribution at coarser time granularity. In figure 9.8 we compare the request 
arrival rates in one of our trace files, randomly chosen, with a synthesized sample 
from a Poisson distribution for which we estimated its mean and variance from the 
trace information (the details of this test are presented in [106]). When we view the 
samples at time scales with different orders of magnitude, we see that at larger time 
scales the Poisson sample becomes smooth, while the arrival data in our sample 
distribution continues to exhibit the variant behavior. 

In almost all earlier file system trace research there is some notion of the impact of 
large files on the statistical analysis. In the Sprite research, for example, an attempt 
was made to discard the impact of certain categories of large files, by removing 
kernel development files from the traces. The result, however, did not remove the 
impact of large files, leading the researchers to conclude that the presence of large 
files was not accidental. 

Analyzing our traces for the impact of outliers we find they are present in all 
categories. For example if we take the distribution of bytes read per open-close 
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session, we see that the mean of the distribution is forced beyond the 90th percentile 
by the impact of large file read sessions. If we visually examine how the sample 
distribution from figure 9.8 departs from normality through a QQ plot (figure 9.9) 
we see that values in the quartiles support the evidence that the distribution is not 
normal. If we use a QQ plot to test the sample against a Pareto distribution, which 
is the simplest distribution that can be used to model heavy-tail behavior, we see an 
almost perfect match. 

To examine the tail in our sample distribution we produced a log-log complementary 
distribution plot (figure 9.10). The linear appearance of the plot is evidence of the 
power-law behavior of the distribution tail; normal or log-normal distributions would 
have shown a strong drop-off appearance in the plot. When we use a least-squares 
regression of points in the plotted tail to estimate the heavy-tail α parameter1, we 
find a value of 1.2. This value is consistent with our earlier observation of infinite 
variance; however, we cannot conclude that the distribution also has an infinite mean 
[84].

This observation of extreme variance at all time scales has significant importance for 
operating system engineering and tuning: Resource predictions are often made based 
on the observed mean and variance of resource requests, assuming that, over time, 
this will produce a stable system. Evidence from our traces shows that modeling the 
arrival rates of I/O request as a Poisson process or size distributions as a Normal 
distribution is incorrect. Using these simplified assumptions can lead to erroneous 
design and tuning decisions when systems are not prepared for extreme variance in 
input parameters, nor for the long-range dependence of system events.

An important reason for the departure from a normal distribution in file system 
analysis is that user behavior has a very reduced influence on most of the file 
system operations. Whether it is file size, file open times, inter-arrival rates of write 
operations, or directory poll operations, all of these are controlled through loops in 
the applications, through application defined overhead to user storage, or are based 
on input parameters outside of the user’s direct control. More than 92% of the file 
accesses in our traces were from processes that take no direct user input, even though 

1 A random variable X follows a heavy-tailed distribution if P[X > x] ~ x-α, as x → ∞, 0 < α < 
2. A reliable estimator for α is the Hill estimator. We have computed this for our samples and 
it confirms the more llcd plot estimation results. A value of α < 2 indicates infinite variance, 
if α < 1 this also indicates an infinite mean.
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all the systems were used interactively. From those processes that do take user input, 
explorer.exe, the graphical user interface, is dominant, and although the user controls 
some of its operation, it is the structure and content of the file system that determines 
explorer’s file system interactions, not the user requests. Unfortunately this kind of 
information cannot be extracted form the older traces so we cannot put this into a 
historical perspective.

This process controlled dominance of file system operations is similar to observations 
in data-communication, where, for example, the length of TCP sessions are process 
controlled, with only limited human factors involved. File system characteristics 
have an important impact on the network traffic; as for example the file size is a 
dominant factor in WWW session length. Given that the files and directories have 
heavy-tailed size distributions, this directly results into heavy-tailed distributions for 
those activities that depend on file system parameters [21,45]. 

Another important observation is that some characteristics of process activity, 
independent of the file system parameters, also play an important role in producing 
the heavy-tailed access characteristics. From the analysis of our traces we find that 
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Figure 9.10. A log-log complementary distribution plot for the tail of the sample from 
figure 8, combined with a fitted line for the estimation of the α parameter
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process lifetime, the number of dynamic loadable libraries accessed, the number 
of files open per process, and spacing of file accesses, all obey the characteristics 
of heavy-tail distributions. Some of these process characteristics cannot be seen as 
completely independent of the file system parameters; for example, the lifetime of 
the winlogon process is determined by the number and size of files in the user’s 
profile. 

Our observations of heavy-tail distributions in all areas of file system analysis lead 
to the following general conclusions:

1. We need to be very careful in describing file system characteristics using 
simple parameters such as average and variance, as they do not accurately 
describe the process of file system access. At minimum we need to describe 
results at different granularities and examine the data for extreme variances. 

2. In our design of systems we need to be prepared for the heavy-tail 
characteristics of the access patterns. This is particularly important for the 
design and tuning of limited resource systems such as file caches, as there 
is important evidence that heavy-tail session length (such as open times and 
amount of bytes transferred) can easily lead to queue overflow and memory 
starvation [48].

3. When constructing synthetic workloads for use in file system design and 
benchmarking we need to ensure that the infinite variance characteristics are 
properly modeled in the file system test patterns. In [92], Seltzer et al. argue 
for application-specific file system benchmarking, which already allows more 
focused testing, but for each test application we need to ensure that the input 
parameters from the file system under test and the ON/OFF activity pattern of 
the application is modeled after the correct (heavy-tailed) distributions.

4. When using heuristics to model computer system operations it is of the highest 
importance to examine distributions for possible self-similar properties, which 
indicate high variance. Exploitation of these properties can lead to important 
improvements in the design of systems, as shown in [47].

9.8 Operational characteristics

There were 3 focus points when we analyzed the traces to understand the specifics of 
the Windows NT file system usage:

• Examine the traces from a system engineering perspective: the arrival rate of 
events, the holding time of resources, and the resource requests in general. 
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• Gain understanding in how applications use the functionality offered through 
the broad Windows NT file system interface and how the various options are 
exploited. 

• Investigate the complexity of the Windows NT application and file system 
interactions.

In this section we explore these points by looking at the different file system 
operations, while in the next 2 sections we will investigate cache manager related 
technologies from these perspectives.

9.8.1 Open and close characteristics

Any sequence of operations on a file in Windows NT is encapsulated in an Open/
Close sequence of events. Some operating systems have core primitives such 
as rename and delete which do not require the caller to open the file first, but in 
Windows NT these operations are generic file operations on files that have been 
opened first. For example, the deletion of a file or the loading of an executable can 
only be performed after the file itself has been opened.  

Figure 9.11 displays inter-arrival times of open requests arriving at the file system: 
40% of the requests arrive within 1 millisecond of a previous request, while 90% 
arrives with 30 milliseconds.  When we investigate the arrivals by grouping them 
into intervals, we see that only up to 24% of the 1-second intervals of a user’s session 
have open requests recorded for them. This again shows us the extreme burstiness 
of the system. 

If we examine the reuse of files, we see that between 24% and 40% of the files that 
are opened read-only are opened multiple times during a user’s session. Of the files 
accessed write-only, 4% are opened for another write-only session, while 36%-52% 
are re-opened for reading. 94% of the files that were open for reading and writing are 
opened multiple times, in the same mode.

An important measurement for resource tuning is the time that files are kept open 
(file session lifetime). In figure 9.12 we present the session lifetimes for a number 
of cases. The overall statistics show that 40% of the files are closed within one 
millisecond after they were opened and that 90% are open less then one second. 
Of the sessions with only control or directory operations 90% closed within 10 
milliseconds. 
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When we investigate session times for the type of data access, we see that 70% of 
read-write access happens in periods of less then 1 second, while read-only and 
write-only accesses have this 1 second mark at 60% and 30%, respectively.

The session length can also be viewed from the process perspective. Some processes 
only have a single style of file access and the session time for each access is similar. 
The FrontPage HTML editor, for example, never keeps files open for longer then a 
few milliseconds. Others such as the development environments, databases control 
engines or the services control program keep 40%-50% of their files open for the 
complete duration of their lifetime. Programs such as loadwc, which manages a 
user’s web subscription content, keep a large number of files open for the duration of 
the complete user session, which may be days or weeks. The first approach, opening 
a file only for the time necessary to complete IO, would produce a correlation 
between session time and file size. When testing our samples for such a correlation 
we could not find any evidence. 

In general it is difficult to predict when a file is opened what the expected session 
time will be. All session distributions, however, had strong heavy-tails, from which 
we can conclude that once a file is open for a relatively long period (3-5 seconds, 
in most cases) the probability that the file will remain open for a very long time is 
significant. 

Windows NT has a two stage close operation. At the close of the file handle by the 
process or kernel module, the IO manager sends a cleanup request down the chain 
of drivers, asking each driver to release all resources. In the case of a cached file, 
the cache manager and the VM manager still hold references to the FileObject, and 
the cleanup request is a signal for each manager to start releasing related resources. 
After the reference count reaches zero, the IO manager sends the close request to 
the drivers. In the case of read caching this happens immediately as we see the close 
request within 4-8 μsec after the cleanup request. In the case of write caching the 
references on the FileObject are released as soon as all the dirty pages have been 
written to disk, which may take 1-4 seconds. 

9.8.2 Read and write characteristics

The burst behavior we saw at the level of file open requests has an even stronger 
presence at the level of the read and write requests. In 70% of the file opens, read/
write actions were performed in batch form, and the file was closed again. Even in 
the case of files that are open longer than the read/write operations require, we see 
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that the reads and writes to a file are clustered into sets of updates. In almost 80% of 
the reads, if the read was not at the end-of-file, a follow-up read will occur within 90 
microseconds. Writes occur at an even faster pace: 80% have an inter-arrival space 
of less than 30 microseconds. The difference between read and write intervals is 
probably related to the fact that the application performs some processing after each 
read, while the writes are often pre-processed and written out in batch style.

When we examine the requests for the amount of data to be read or written, we find 
a distinct difference between the read and write requests. In 59% of the read cases 
the request size is either 512 or 4096 bytes. Some of the common sizes are triggered 
by buffered file i/o of the stdio library. Of the remaining sizes, there is a strong 
preference for very small (2-8 bytes) and very large (48 Kbytes and higher) reads. 
The write sizes distribution is more diverse, especially in the lower bytes range (less 
then 1024 bytes), probably reflecting the writing of single data-structures.

9.8.3 Directory & control operations

The majority of file open requests are not made to read or write data. In 74%, the 
open session was established to perform a directory or a file control operation. 

There are 33 major control operations on files available in Windows NT, with many 
operations having subdivisions using minor control codes. Most frequently used are 
the major control operations that test whether path, names, volumes and objects are 
valid. In general the application developer never requests these operations explicitly, 
but they are triggered by the Win32 runtime libraries. For example, a frequently 
arriving control operation is whether the “volume is mounted”, which is issued in 
the name verification part of directory operations. This control operation is issued 
between up to 40 times a second on any reasonably active system. 

Another frequently issued control operation is SetEndOfFile, which truncates the file 
to a given size. The cache manager always issues it before a file is closed that had 
data written to it. This is necessary as the delayed writes through the VM manager 
always have the size of one or more pages, and the last write to a page may write 
more data than there is in the file. The end-of-file operation then moves the end-of-
file mark back to the correct position.

9.8.4 Errors

Not all operations are successful: of the open requests 12% fail and of the control 
operations 8% fail. In the open cases there are two major categories of errors: the 
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file to be opened did not exist in 52% of the error cases and in 31% the creation of a 
file was requested, but it already did exist.  When we examine the error cases more 
closely we see that a certain category of applications that uses the “open” request 
as a test for the existence of the file: the failure is immediately followed by a create 
action, which will be successful.

Reads hardly ever fail (0.2%); the error that does occur on the read are attempts to 
read past the end-of–file. We did not find any write errors.

9.9 The cache manager

An important aspect of the Windows NT file system design is the interaction with 
the cache manager. The Windows NT kernel is designed to be extensible with 
many third party software modules, including file systems, which forces the cache 
manager to provide generalized support for file caching. It also requires file system 
designers to be intimately familiar with the various interaction patterns between file 
system implementation, cache manager and virtual memory manager. A reasonably 
complete introduction can be found in [67].

In this section we will investigate two file system and cache manager interaction 
patterns: the read-ahead and lazy-write strategies for optimizing file caching. The 
cache manager never directly requests a file system to read or write data; it does this 
implicitly through the Virtual Memory system by creating memory-mapped sections 
of the files. Caching takes place at the logical file block level, not at the level of disk 
blocks. 

A process can disable read caching for the file at file open time. This option is hardly 
ever used: read caching is disabled in only 0.2% of all files that had read/write 
actions performed on them. 76% of those files were data files from opened by the 
“system” process. All of these files were used in a read-write pattern with a write-
through option set to also disable write caching. Developers using this option need to 
be aware of the block size and alignment requirements of the underlying file system. 
All of the requests for these files will go through the traditional IRP path.

9.9.1 Read-ahead

When caching is initialized for a file, the Windows NT cache manager tries to predict 
application behavior and to initiate file system reads before the application requests 
the data, in order to improve cache hit rate. The standard granularity for read-ahead 
operation is 4096 bytes, but is under the control of the file system, which can change 
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it on a per file basis. In many cases the FAT and NTFS file systems boost the read-
ahead size to 65 Kbytes.  Caching of a file is initiated when the first read or write 
request arrives at the file system driver.

Of all the sessions that performed reads 31% used a single IO operation to achieve 
their goal, and although this caused the caching to be initiated and data to be loaded 
in the cache, the cached data was never accessed after the first read.

Of the sequential accesses with multiple reads, which benefit from the read-ahead 
strategy, 40% used read sizes smaller than 4Kbytes and 92% smaller than 65Kbytes. 
This resulted in that only 8% of the read sequences required more than a single read-
ahead action.

The cache manager tries to predict sequential access to a file so it can load data 
even more aggressively. If the application has specified at open time that the file 
data will be processed through sequential access only, the cache manager doubles 
the size of the read-ahead requests. Of file-opens with sequential read accesses 
only 5% specified this option.  Of those files 99% were smaller than the read-ahead 
granularity and 80% smaller than a single page, so the option has no effect.

The cache manager also tries to predict sequential access by tracking the application 
actions: read-ahead is performed when the 3rd of a sequence of sequential requests 
arrives. In our traces this happened in 7% of the sequential cases that needed data 
beyond the initial read-ahead. 

The cache manager uses a fuzzy notion of sequential access; when comparing 
requests, it masks the lowest 7 bits to allow some small gaps in the sequences. In 
our test in section 9.6.2, this would have increased the sequential marked trace runs 
by 1.5%.

9.9.2 Write-behind

Unless explicitly instructed by the application, the cache manager does not 
immediately write new data to disk. A number of lazy-write worker threads perform 
a scan of the cache every second, initiating the write to disk of a portion of the dirty 
pages, and requesting the close of a file after all references to the file object are 
released. The algorithm for the lazy-writing is complex and adaptive, and is outside 
of the scope of this description. What is important to us is the bursts of write requests 
triggered by activity of the lazy-writer threads. In general, when the bursts occur, 
they are in groups of 2-8 requests, with sizes of one or more pages up to 65 Kbytes.
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Applications have two methods for control over the write behavior of the cache. 
They can disable write caching at file open time, or they can request the cache 
manager to write its dirty pages to disk using a flush operation.

In 1.4% of file opens that had write operations posted to them, caching was disabled 
at open time. Of the files that were opened with write caching enabled, 4% actively 
controlled their caching by using the flush requests. The dominant strategy used by 
87% of those applications was to flush after each write operation, which suggests 
they could have been more effective by disabling write caching at open time. 

9.10 FastIO

For a long time the second access path over which requests arrived at the file system 
driver, dubbed the FastIO path, has been an undocumented part of the Windows NT 
kernel. The Device Driver Kit (DDK) documentation contains no references to this 
part of driver development, which is essential for the construction of file systems. 
The Installable File System Kit (IFS) shipped as Microsoft’s official support for file 
system development, contains no documentation at all. Two recent books [67,96] 
provide some insight into the role of the FastIO path, but appear unaware of its key 
role in daily operations. In this section we will examine the importance of this access 
path, and provide some insight into its usage.

For some time the popular belief, triggered by the unwillingness of Microsoft to 
document FastIO, was that this path was a private “hack” of the Windows NT kernel 
developers to secretly bypass the general IO manager controlled IRP path. Although 
FastIO is a procedural interface, faster when compared with the message-passing 
interface of the IO manager, it is not an obscure hack. The “fast” in FastIO does 
not refer to the access path but to the fact that the routines provide a direct data 
path to the cache manager interface as used by the file systems. When file system 
drivers indicate that caching has been initialized for a file, the IO manager will try 
to transfer the data directly in and out of the cache by invoking methods from the 
FastIO interface.  The IO manager does not invoke the cache manager directly but 
first allows file system filters and drivers to manipulate the request. If the request 
does not return a success value, the IO manager will in most cases retry the operation 
over the traditional IRP path. File system filter drivers that do not implement all 
of methods of the FastIO interface, not even as a passthrough operation, severely 
handicap the system by blocking the access of the IO manager to the FastIO interface 
of the underlying file system and thus to the cache manager.
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Figure 9.13. The cumulative distribution of the service period for each of the 4 major 
request types.

Figure 9.14. The cumulative distribution of the data request size for each of the 4 
major request types
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Caching is not performed automatically for each file; a file system has to explicitly 
initialize caching for each individual file and in general a file system delays this until 
the first read or write request arrives. This results in a file access pattern where the 
traces will log a single read or write operation through the IRP interface, which sets 
up caching for that file, followed by a sequence of FastIO calls that interact with the 
file cache directly. The effect on latency of the different operations is shown in figure 
9.13.

If we examine the size of the read requests in figure 9.14, we see that FastIO requests 
have a tendency towards smaller size. This is not related to the operation itself, 
but to the observation that processes that use multiple operations to read data, in 
general use more targeted sized buffers to achieve their goal. Processes that use only 
a few operations do this using larger buffers (page size, 4096 bytes, being the most 
popular). 

Some processes takes this to the extreme; a non-Microsoft mailer uses a single 
4Mbyte buffer to write to its files, while some of the Microsoft Java Tools read files 
in 2 and 4 byte sequences, often resulting in thousands of reads for a single class 
file.

The cache manager has functionality to avoid a copy of the data through a direct 
memory interface, providing improved read and write performance, and this 
functionality can be accessed through the IRP as well as the FastIO interface. We 
observed that only kernel-based services use this functionality.

9.11 Related work

File tracing has been an important tool for designing file systems and caches. There 
are 3 major tracing studies of general file systems: the BSD and Sprite studies [5,71], 
which were closely related and examined an academic environment. The 3rd study 
examined in detail the file usage under VMS at a number of commercial sites [78]. 
One of our goals was to examine the Windows NT traces from an operating system 
perspective; as such we compared our results with those found in the BSD and Sprite 
studies. The VMS study focused more on the differences between the various usage 
types encountered, and a comparison with our traces, although certainly interesting, 
was outside of the scope of this research.
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A number of other trace studies have been reported, however, they either focused on 
a specific target set, such as mobile users, or their results overlapped with the 3 major 
studies [25,59,66,107].

There is a significant body of work that focuses on specific subsets of file system 
usage, such as effective caching, or file system and storage system interaction.

There have been no previous reports on the tracing of file systems under Windows 
NT. A recent publication from researchers at Microsoft Research examines the 
content of Windows NT file systems, but does not report on trace-based usage [28].

With respect to our observations of heavy-tails in the distributions of our trace data 
samples; there is ample literature on this phenomenon, but little with respect to 
operating systems research. A related area with recent studies is that of wide-area 
network traffic modeling and World Wide Web service models.

 In [45], Gribble, et al. inspected a number of older traces, including the Sprite traces, 
for evidence of self-similarity and did indeed find such evidence for short, but not for 
long term behavior. They did conclude that the lack of detail in the older traces made 
the analysis very hard. The level of detail of the Windows NT traces is sufficient for 
this kind of analysis.

9.12 Summary

To examine file system usage we instrumented a collection of Windows NT 4.0 
systems and traced, in detail, the interaction between processes and the file system. 
We compared the results of the traces with the results of the BSD and Sprite studies 
[5,71] performed in 1985 and 1991. A summary of our observations is presented in 
table 9.1.

We examined the samples for presence of heavy-tails in the distributions and for 
evidence of extreme variance. Our study confirmed the findings of others who 
examined smaller subsets of files: that files have a heavy-tail size distribution.  But 
more importantly we encountered heavy-tails for almost all variables in our trace set: 
session inter-arrival time, session holding times, read/write frequencies, read/write 
buffer sizes, etc. This knowledge is of great importance to system engineering, tuning 
and benchmarking, and needs to be taken into account when designing systems that 
depend on distribution parameters.
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When we examined the operational characteristics of the Windows NT file system 
we found further evidence of the extreme burstiness of the file systems events. We 
also saw that the complexity of the operation is mainly due to the large number 
of control operations issued and the interaction between the file systems, cache 
manager and virtual memory system.

The file system cache manager plays a crucial role in the overall file system 
operation. Because of the aggressive read-ahead and write-behind strategies, an 
amplification of the burstiness of file system requests occurs, this time triggered by 
the virtual memory system.

We examined the undocumented FastIO path and were able to shed light on its 
importance and its contribution to the overall Windows NT file system operation.

In this chapter we reported on the first round of analysis of the collected trace data. 
There are many aspects of file system usage in Windows NT that have not been 
examined such as file sharing, file locking, details of the control operations, details 
of the various file cache access mechanisms, per process and per file type access 
characteristics, etc. We expect to report on this in the future.
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Samenvatting

In de afgelopen tien jaar heeft Enterprise Computing een aantal belangrijke 
veranderingen doorgemaakt. Voorheen lag de nadruk  op een centrale verwerking van 
gegevens door een beperkt aantal database servers, voornamelijk ter ondersteuning 
van online transaction processing en verwerking van batch-opdrachten. Deze 
gegevensverwerking geschiedt nu door groepen applicatie-servers die een grote 
verscheidenheid van diensten verzorgen voor de verschillende bedrijfsprocessen. 
Inbegrepen in deze diensten zijn nog steeds de traditionele orderverwerking 
en inventarisbeheer, maar zij bevatten nu ook de interne en externe informatie 
portals, verschillende email- en samenwerkingsdiensten, de alom doorgedrongen 
integratie van customer relationship management in allerlei processen, alsmede 
diverse rekendiensten ter ondersteuning van de enterprise management processen 
zoals bijvoorbeeld de financiële voorspellings-technologie en het ononderbroken 
verwerken van de gegevens van de onderneming door datamining-processen. 

Het is van belang te onderkennen dat deze diensten centraal zijn komen te staan 
in het functioneren van de onderneming en dat vertraging van of het volledig 
uitvallen van deze diensten de hele onderneming kan stil leggen. Deze diensten 
zijn dus van mission-critical aard voor het functioneren van de onderneming en als 
zodanig dienen zij schaalbaar en foutbestending te zijn en hun prestaties zo volledig 
mogelijk gegarandeerd. Om aan deze eisen tegemoet te kunnen komen, leek het de 
aangewezen weg om deze diensten te organiseren in compute-clusters, aangezien 
deze technologie de mogelijkheid bood om zowel schaalbaar als foutbestendig te 
opereren.

In het begin van de jaren negentig was de cluster-computing technologie voornamelijk 
beperkt tot  OLTP en parallel computing. Deze technologie was onvoldoende om 
de schaalbare en betrouwbare diensten te ontwikkelen die de nieuwe informatie 
georiënteerde onderneming nodig had. De problemen waarmee enterprise cluster 
computing geconfronteerd werden zijn het best weergegeven door Greg Pfister in 
zijn boek  “In Search of Clusters ...”:
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“Pogingen om parallel processing te gebruiken zijn in het verleden gestruikeld 
over slappe micro-processoren, overbodige communicatie-patronen en de 
noodzaak om de parallelle programmatuur iedere keer weer opnieuw van de 
grond af op te bouwen. Deze situatie heeft geleid tot de volledig begrijpelijke 
overtuiging dat deze vorm van gegevensverwerking geen toekomst had indien 
niet enorme vooruitgang zou worden geboekt in prestaties of  functionaliteit” 

In dit proefschrift worden de resultaten beschreven van mijn onderzoek naar 
oplossingen voor een aantal van de problemen waarmee mission-critical enterprise 
cluster-computing geconfronteerd werd. Deze problemen leken aanvankelijk 
onoverkomelijke barrières voor de wijdverspreide introductie van cluster-computing 
in de enterprise. Mijn onderzoek heeft zich voornamelijk toegespitst op de volgende 
vier gebieden:

• De eliminatie van de barrières die het gebruik van hoge-snelheids netwerken 
in standaard  werkstations en servers in de weg stonden. 

• Het ontwerp van efficiënte runtime-systemen  voor cluster-bewuste enterprise- 
applicaties.

• Het opzetten van een gestructureerd beheer van grootschalige enterprise 
cluster-computing systemen.

• De analyse van grootschalige systemen door middel van instrumentatie en 
gebruiks-monitoring.

De resultaten van mijn onderzoek, als beschreven in dit proefschrift hebben in grote 
mate bijgedragen aan het creëren van de mogelijkheid om nu wel cluster-applicaties 
te bouwen die in staat zijn om de diensten te verlenen die tegemoet komen aan 
de schaalbaarheids- en beschikbaarheids eisen van de moderne onderneming. De 
ontworpen technologieën hebben hun toepassing gevonden in industrie standaards 
zoals de Virtual Interface Architecture, zijn gebruikt in commercieel beschikbare 
applicatie-servers en zijn gebruikt voor het ontwerp van een nieuw commercieel, 
grootschalig cluster-beheerssysteem, dat ondersteuning geeft aan enterprise-wide, 
geografisch verspreid beheer van cluster diensten. In dit  proefschrift wordt een 
overzicht gegeven van de meest belangrijke onderzoeksresultaten. Echter het 
aantal resultaten waartoe dit onderzoek heeft geleid is veel groter, en strekt zich uit 
ook buiten deze vier gebieden. Deze zijn terug te vinden middels de referenties in 
Appendix A. 
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Een aantal onderdelen van de Quintet software zijn overgenomen door commerciële 
applicatie servers, en zij vormen ook de basis voor de applicatie ondersteuning in 
het Galaxy cluster-beheerssysteem. Sommige specifieke onderdelen zoals de multi-
level failure detector zijn opnieuw gebruikt in cluster-beheerssystemen, maar ze zijn 
ook beschikbaar gemaakt als op zichzelf staande software voor het onderhouden van 
kleinere web- en compute-clusters.

In deel II van dit proefschrift wordt mijn onderzoek naar cluster-runtime en cluster-
beheerssystemen behandeld. In hoofdstuk 5 worden de ervaringen met het toepassen 
van academisch ontwikkelde software in productie systemen beschreven, terwijl in 
hoofdstuk 6 een overzicht wordt gegeven van de Quintet applicatie server.

Gestructureerd beheer van grootschalige enterprise cluster- computing 
systemen

De verbeteringen in zowel de processor- als de communicatietechnologieën in het 
begin van de jaren negentig waren op zichzelf niet voldoende om cluster-computing 
beschikbaar te maken voor de algemene enterprise-computing wereld. Software 
ondersteuning voor enterprise cluster-computing, zowel op het systeem-  als op 
het applicatie niveau, werd nog steeds ernstig geplaagd door structurerings- en 
schaalbaarheidsproblemen. Dit was het duidelijkst op het terrein van de cluster-
beheerssystemen, waar de traditionele beheerssystemen waren ontworpen voor 
zeer kleinschalige systemen, en vaak gebaseerd op een zeer specifiek hardware 
platform.

Waar de kosten-effectieve parallelle gegevensverwerking op grote schaal 
werd mogelijk gemaakt door het Beowulf cluster-beheerssysteem, was er geen 
vergelijkbare oplossing voor mission-critical enterprise computing. De voornaamste 
reden voor het ontbreken van enige vooruitgang op dit gebied was het feit dat 
een cluster-beheerssysteem voor enterprise-computing een grote variëteit van 
applicatietypes moest ondersteunen, ieder met zeer specifieke eisen met betrekking 
tot de uitvoering van schaalbaarheid en beschikbaarheid. De software-technologie 
die nodig was om deze ondersteuning te geven was in vele gevallen complexer dan 
de applicatie-software waarvan het de ondersteuning diende te zijn.

Het Galaxy Cluster Management Framework was het eerste beheerssysteem dat een 
schaalbare oplossing bood voor het beheer van clusters in grootschalige datacenters. 
In Galaxy is de beheers- infrastructuur opgebouwd uit verschillende lagen, waardoor 
het mogelijk is om grote groepen (farms) van clusters te beheren terwijl deze farms 
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Hieronder volgt nu een  meer gedetailleerde beschrijving van elk van de vier 
onderzoeksgebieden.

Barrières bij het gebruik van hoge-snelheids netwerken door standaard 
werkstations

Hoewel er in het begin van de jaren negentig goede vooruitgang was geboekt in de 
ontwikkeling van hoge-snelheids cluster interconnects, was de technologie nog niet 
gereed om gebruikt te gaan worden door kant-en-klare enterprise cluster-systemen. 
De communicatie technieken waren volledig gericht op de specifieke wijze waarop 
besturings-systemen hun diensten aanboden aan de applicaties en de wijze waarop 
parallelle applicaties ontworpen werden. De traditionele technieken maakten 
het onmogelijk om de interconnect technologie te gaan gebruiken in standaard 
werkstations. Een voorbeeld hiervan is de IBM SP2, die alleen maar aan één 
applicatie toestond om de interconnect te gebruiken, aangezien het besturingssysteem 
geen bescherming en isolatie bood voor deze vorm van netwerk communicatie.

Met de komst van een aantal gestandaardiseerde hoge-snelheids netwerk 
technologieën werd de verwachting gewekt dat het op korte termijn mogelijk zou 
worden voor reguliere werkstations en servers om gelijkwaardige communicatie 
technologieën te gebruiken als de parallelle verwerkingssystemen, maar dan wel op 
een veel kosten-effectievere manier. Helaas waren de besturingssystemen van deze 
computers niet ontworpen voor hoge-snelheids communicatie en de vertragingen bij 
de verwerking van netwerk-pakketten door het besturingssysteem waren dusdanig 
groot dat de meeste voordelen van de nieuwe netwerken niet beschikbaar konden 
worden gemaakt voor de applicaties.

Tezamen met Thorsten von Eicken was ik in 1994 begonnen aan een onderzoek 
gericht op het doorbreken van deze barrières. Dit onderzoek resulteerde in een nieuwe 
communicatiestructuur voor besturingssystemen, genaamd U-Net, dat een volledig 
nieuwe abstractie bood en de kracht van de user-level communicatie combineerde 
met de volledige bescherming en isolatie van traditionele besturingssystemen. In 
U-Net was de netwerk adapter gevirtualizeerd in de adresruimte van de applicatie, 
waardoor het mogelijk werd om prestaties te bereiken die dicht bij de maximaal 
haalbare hardware-prestaties lagen. Doordat in deze structuur het data transport en 
de controle mechanismen voor de netwerk processen volledig gescheiden waren was 
het mogelijk om cluster applicaties te ontwikkelen met zeer goede prestaties.
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Een industrie consortium onder leiding van Intel, Microsoft en Compaq nam het 
U-Net prototype en gebruikte het als basis voor de Virtual Interface Architecture, 
hetgeen nu de de-facto standaard is voor enterprise cluster-interconnects. De U-
Net architectuur, de overgang van prototype naar een industrie-standaard en de 
ervaringen met een grootschalig cluster gebaseerd op de VIA technologie, zijn 
beschreven in deel I van het proefschrift.

Efficiënte runtime systemen voor cluster-bewuste enterprise applicaties 

Door de voortuitgang die geboekt was in de verbetering van de schaalbaarheid 
van cluster-hardware en besturingssystemen konden een groter aantal applicaties 
nu gebruik maken van de beschikbare netwerk snelheden en van de grotere 
beschikbaarheid van de systemen. De structuur van de meeste van deze applicaties 
was echter gebaseerd op de afwezigheid van een gedistribueerde systeemstructuur 
en er was geen mogelijkheid om nieuwe communicatie-abstracties te integreren. 
Hoewel dit transparant houden van de distributie een aantal voordelen leek te 
hebben, voornamelijk in de interactie tussen clients en servers, was het introduceren 
van nieuwe technologieën onvermijdelijk om tegemoet te kunnen komen aan de 
eisen van schaalbaarheid en beschikbaarheid op het niveau van de server applicaties. 
Deze conclusie was mede gebaseerd op de jarenlange ervaring met het ontwerpen 
en toepassen van groep-communicatie systemen voor complexe, gedistribueerde 
productie systemen, waar het duidelijk was dat het volledig afgeschermd houden 
van de distributie eigenschappen een grote hindernis was voor het construeren van 
gevorderde server applicaties.

Mijn onderzoek naar efficiënte runtime systemen voor cluster-bewuste applicaties 
concentreerde zich op de vraag wat de juiste software-hulpmiddelen zouden 
moeten zijn die de applicatie-ontwikkelaars ten dienste zouden moeten staan, 
indien het gedistribueerde karakter van de applicatie expliciet zou zijn in plaats 
van afgeschermd. Het resultaat van dit onderzoek was een voor cluster applicaties  
gespecialiseerde applicatie server, genaamd “Quintet”. Deze Quintet applicatie-
server geeft de ontwikkelaar van enterprise componenten gereedschap in handen 
om deze componenten zowel schaalbaar als extra beschikbaar te laten zijn. Deze 
extra diensten zijn echter niet afgeschermd en de ontwikkelaar dient een aantal 
mechanismen aan de componenten toe te voegen ter assistentie bij het uitvoeren van 
de gedistribueerde taken door het runtime systeem.
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mogelijk over verschillende geografische lokaties zijn verdeeld. Binnen iedere farm 
bevinden zich kleinere groepen van gespecialiseerde clusters die ieder beheerd 
worden naargelang hun cluster profiel. Het systeem was ontworpen overeenkomstig 
de principes die voortgekomen waren uit de analyse van het grootschalig gebruik van 
groep-communicatie systemen, alsmede uit een diepgaande analyse van bestaande 
enterprise cluster-beheerssystemen.

Galaxy kon worden beschouwd als een succes toen het ontwerp en onderliggende 
principes door één van de grootste besturingssysteem-bedrijven werd overgenomen 
als basis voor hun next-generation cluster beheerssysteem. 

Het voorbereidende werk en een overzicht van het Galaxy cluster-beheerssysteem is 
terug te vinden in hoofdstukken 7 en 8 van dit proefschrift.

Analyse van grootschalige systemen.

Het verkrijgen van inzicht in de wijze waarop software systemen worden gebruikt 
in de dagelijkse praktijk is essentieel voor systeem georiënteerd onderzoek dat tot 
doel heeft bij te dragen aan het vinden van oplossingen voor de problemen waarmee 
de huidige informatie onderneming geconfronteerd wordt. Zowel het instrumenteren 
van systemen en verzamelen van gebruiksgegevens op grote schaal over langere 
tijd, als het analyseren van deze gegevens is een onderzoeksgebied op zich. Het 
ontwerpen van het monitor- en analyse systeem is vaak zeer complex aangezien er 
vele gegevensbronnen zijn die gelijktijdig actief zijn, terwijl er geen controle is over 
het systeemgebruik dat de aanmaak van de gegevens veroorzaakt. Het is dan ook 
van het allergrootste belang om mechanismen te ontwerpen die dusdanig gegevens 
verzamelen dat er een precieze statistische analyse valt te maken, zonder dat dit 
proces invloed uitoefent op de werkwijze van het systeem dat bestudeerd wordt.

In dit proefschrift zijn een tweetal studies opgenomen die op grote schaal het gebruik 
van systemen onderzoeken:

De eerste studie is een rapportage van de resultaten van een onderzoek naar het 
gedrag van een hogesnelheid cluster-interconnect wanneer deze wordt overbelast. 
De cluster-interconnect is opgebouwd uit 40 op VIA gebaseerde netwerk-switches. 
De studie maakt gebruik van een traditioneel experimentmodel, waarin er volledige 
controle is op de wijze waarop de netwerk-last gegenereerd wordt. Het unieke aan 
dit experimentmodel was echter dat het dusdanig ontworpen moest worden dat 
van de observaties aan de eindpunten afgeleid kon worden wat het gedrag van de 
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switches in het midden van het netwerk was, aangezien het niet mogelijk was om 
de switches zelf te instrumenteren. Het ontwerp van het experimenteel raamwerk 
vereiste speciale aandacht aangezien er met hoge snelheid zeer grote hoeveelheden 
metingen dienden te worden verricht. De details van deze studie zijn terug te vinden 
in hoofdstuk 4.

In de tweede studie, waaraan deel 3 van dit proefschrift gewijd is, wordt de aandacht 
gericht op het probleem dat optreedt wanneer er geen controle over de bronnen 
mogelijk is. Het onderwerp van de studie was een grootschalig onderzoek naar de 
gebruiks-karakteristieken van het file-systeem van reguliere werkstations. Hiertoe 
was een groot aantal werkstations geïnstrumenteerd en geobserveerd gedurende 
een langere periode. De analyse van de resultaten werd ernstig bemoeilijkt door de 
enorme hoeveelheid observaties en de complexiteit die geïntroduceerd werd door de 
heterogeniteit in de applicaties die actief waren op de verschillende werkstations. In 
de conclusies van deze studie wordt de nadruk gelegd op het gebruik van speciale 
statistische technieken met betrekking tot de analyse van grote verzamelingen 
observaties. Deze exacte statistische benadering, die ontbrak in vroegere file-
systeem-studies, is noodzakelijk voor het ontwerp van de juiste werklast-modellen, 
die gebruikt kunnen worden in toekomstige file-systeem prestatietesten en bij het 
ontwerpen van nieuwe file-systeem-componenten.
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